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Isocurvature baryon yerturbations and inflation
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It has been observed that if an extra scalar field {in addition to the inflaton) is present during the
inflationary phase, its decay into thermal radiation after baryogenesis gives rise to fluctuations in

the initially smooth entropy-per-baryon ratio. There was a hope that these perturbations were of
the isocurvature type and that they may help explain several observed features in the large-scale
structure of the Universe. We study in detail the generation of perturbations in such a two-field

inflationary model. We find that the resulting fluctuations are not of the isocurvature type, but that
the entropy perturbation induces a curvature fluctuation which is larger than the entropic one be-

fore the wavelengths of the perturbations enter the Hubble radius. Thus, this model is not a good
candidate to provide the initial conditions for the baryon isocurvature perturbations.

I. INTRODUCTION

One of the main achievements of the inflationary
scenario is that it has provided a natural mechanism to
explain the origin of the energy-density fluctuations in
the early Universe. The usual picture' is that they arise
during the inflationary era from quantum fluctuations of
the scalar field which drives inflation and that these quan-
tum fluctuations give rise to perturbations in the classical
energy density when the wavelength of the perturbations
becomes larger than the Hubble radius. When the scalar
field decays, the fluctuations in the energy density of its
decay products follow the original fluctuations of the sca-
lar field. In the usual model, baryogenesis occurs after
the reheating due to the decay of a heavy boson, but it is
also possible to produce the baryon asymmetry during
the process of decay of another scalar field. In both
cases the ratio of the resulting baryon asymmetry to en-
tropy is only dependent on microphysical parameters,
such as the coupling constants and the temperature at
which 8-violating interactions go out of equilibrium, and
it is not expected to show any spatial variation. Thus,
these fluctuations are of the adiabatic type.

However, it has been noticed that adiabatic fluctua-
tions are not the only possibility, but that fluctuations of
the isocurvature or isothermal type may also be produced
provided that other scalar fields were present during the
inflationary era. This point has first been studied in the
case of the axion and has then been extended to more
general scalar fields. Since the contribution of these sca-
lar fields to the global energy density during inflation was
small, their fluctuations did not affect it too much and so
they can be considered to be of the isocurvature type.
However, the interest in these models comes from the
fact that, if some of these fields interact weakly with the
other fields, during the expansion of the Universe, their
energy density will decay more slowly than that of the
products of the inflaton decay, so that they will eventual-

ly dominate and their inhomogeneities will becomes im-

portant. The resulting spectrum of density fluctuations
in a wide class of models including several interacting

scalar fields has been studied in Ref. 6.
Further, it has recently been pointed out by Peebles

that if one of these scalar fields decays into radiation after
baryogenesis, the fluctuations of this scalar field will give
rise to fluctuations in the ratio of baryon asymmetry to
entropy, which are absent in other models that do not
modify the baryogenesis mechanism. This gives rise to
baryon isocurvature fluctuations. (There is another
scenario in which baryon isocurvature fluctuations arise,
recently proposed by Turner, Cohen, and Kaplan. In
this model an alternative baryogenesis scenario is con-
sidered, the so-called spontaneous baryogenesis, in which
the baryon asymmetry produced is a function of spatial
position, but it is not in the scope of this work to analyze
it. )

Finally, the interest in these models has increased re-
cently as some problems have been found within the stan-
dard cold-dark-matter adiabatic perturbation model. '

The main points are that the epoch of galaxy formation
seems to occur too late and that the fluctuations in the
mass distribution are anticorrelated on scales larger than
-50—100 Mpc, which seems to be inconsistent with ob-
servations of large-scale velocity fields and structures in
the galaxy distribution. " This calls attention to models
with baryon isocurvature initial fluctuations, as in this
context galaxies can form early (z —30), and mass flu-
ctuation on the scale A,z can drive large-scale velocity
fields. ' On the other hand, detailed studies of the
cosmic-microwave-background radiation anisotropies
show that this is a crucial point to test the viability of
these models. ' ' This is the reason why it is interesting
to develop a model for the origin of this type of fluctu-
ation.

In this paper, we analyze in detail the fluctuations pro-
duced in models with an additional scalar field that is
present during inflation and that decays into radiation
afterwards. The two main steps in this study are the cal-
culation of the spectrum of quantum fluctuations during
the inflationary era (this will give the initial conditions
for the classical fluctuations), and following the evolution
of the fluctuations outside the Hubble radius, for which it
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aS 1+w.
6p

1+wp

where 6:—6p /p and w—:p /p, in terms of the ener-

gy density p and the pressure p. S & is gauge invariant
and measures the relative fluctuations between com-
ponents.

Adiabatic fluctuations are characterized by having
S &

=0, which means that all the components fluctuate in
the same way. Isocurvature fluctuations instead corre-
spond to relative fluctuations between the di6'erent com-
ponents such that the total curvature is left invariant.

In general Auctuations will not be exclusively of the
adiabatic or isocurvature type. In order to see which is
the dominant mode in a particular problem, the magni-
tude of the entropy perturbation S & and the total energy

is necessary to know the evolution of the background un-

perturbed variables. This will allow us to know the am-
plitude of the density fluctuations when they reenter the
Hubble radius, and to estimate if they are predominantly
of the adiabatic or the isocurvature type. The subsequent
evolution of the fluctuations has been studied before in
the context of phenomenological models, which assume
the isocurvature as an initial condition in the radiation-
dominated era.

In order to study the evolution of the fluctuations from
the time they leave the Hubble radius during the
inflationary era up to the time they reenter the Hubble
radius in the radiation- or matter-dominated era and then
inside the Hubble radius, it is necessary to follow the evo-
lution of the Auctuations in the multicomponent system
composed by the inflaton, the products of its decay, the
other scalar field and eventually the products of its decay
(for example, in the Peebles model analyzed here, the sca-
lar field decays into radiation). This study is simplified if
we consider one component as composed by the inflaton

P and the radiation and baryons to which it decays

(P+R &+8&) and another component by the other scalar
field and its decay products (y+Rr ). With this choice,
we can reduce the problem to the study of the evolution
of the fluctuations in a system of two uncoupled fluids at
least up to the time at which g decays in radiation. Up to
this time, we can assume that the stress tensor of each
component is individually conserved T „,'"=0 (we will
use the greek indices a and P for the fluid components
and use p, v for the tensorial labels, running from 0 to 3).
After g decays in radiation, it is necessary to consider the
momentum transfer from one component to the other
through electron scattering.

The evolution of the perturbations in a multicom-
ponent system has been studied by Kodama and Sasaki"
in the linear approximation. As this is the formalism
used here, a brief review of the variables used to describe
the system and their equations of motion is given in the
Appendix. We will consider only the case of a spatially
Aat-spacetime background.

In addition to being interested in the evolution of the
gauge-invariant fluctuations of the energy density and ve-
locity of each component 6 and V, and of the total
Quid ones 5 and V, we are also interested in the entropy
fluctuations, which are given by

II. QUANTUM FLUCTUATIONS OF TWO
UNCOUPLED SCALAR FIELDS

Let P be the inflation field and y the other scalar field
which contributes to the energy density much less than P
during inflation: p&. (&p&. Both fields will have quantum
fluctuations during inflation, 5$ (x,t):—(P(x, t)$(0, t))
and 5y (x, t )

—= (y(x, t )y(0, t ) ) .
We define the Fourier transform of these quantities as

5P (x, t)=— —J d k e'""5$ (k, t),1

(2m )
(2.1)

and similarly for g. These fluctuations will be computed
in the context of generalized inflationary cosmologies, ' '
making it possible to apply this analysis to a variety of
inflationary models, and as a particular case to the usual
exponential inflation. The scale factor takes the form

H
a(t)=a 1+ (t —t }

where a, , H, , and t, are constants and p =2/3(1+ w ).
For p & 1, it corresponds to "power law*' or
"subinflation, " for p ~ ~ it describes exponential
inflation and for negative p "pole law" or
"superinflation, "' Solving the Klein-Gordon equation
for a massless scalar field in the expanding background
and replacing it in the definition of 5P (x, t ), the expres-

perturbation b, must be compared. If ~S &~ )) ~b, ~, this
means that the fluctuations in the individual components
compensate one with another giving a small total
energy-density Auctuation, and in this case we can say
that the fluctuations are predominantly of the isocurva-
ture type.

On the other hand, entropy and energy-density pertur-
bations are not decoupled, even outside the Hubble ra-
dius. In particular, as it has been pointed out in Refs. 16
and 17, entropy perturbations act as a source for density
fluctuations. We follow in the particular model con-
sidered in this paper the evolution of entropy and
energy-density perturbations outside the Hubble radius.
The main result obtained is that, in the model studied
here, perturbations which were of the isocurvature type
at the Hubble radius crossing during inflation generate a
large curvature perturbation by the Hubble radius reen-
trance time in the radiation- or matter-dominated era.
The sources of this e8'ect are nonadiabatic pressure per-
turbations originated by the presence of the entropy per-
turbation S &.

The organization of the paper is as follows. In Sec. II
we study the perturbations in the energy density and ve-
locity of a two-component system originated by quantum
Auctuations during inflation of the two scalar fields. In
Sec. III we specify the model analyzed in this paper in de-
tail and follow the evolution of the unperturbed variables.
In Sec. IV we compute the amplitudes of the adiabatic
and isocurvature modes when a given wavelength leaves
the Hubble radius, and follow the subsequent evolution
up to the time it reenters the Hubble radius. Section V is
devoted to a discussion of the results.

Units are chosen so that c =8+G =A= 1.
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sion obtained for the Fourier transformation is
2

a
~ «~~~+ p»~»)

2k
(2.11)

5$'(k r)=—, p H„4gHp —1 aHp —1
(2.3}

can be computed from Eq. (2.10b) and its equivalent for y
as

where 0=a /a is the Hubble constant, H are the Hank-
el functions and v=(l —3p)/2(1 —p). For wavelengths
well outside the Hubble radius, it can be approximated by

2

(&'+0'} =0(D4} 0—DC+i(DX} X—DX,

5$'(k, r ) = p Ir(v) I' k p
4mp 1 aH aH2(p —1)

(2.4)

(2.12)

we see that at Hubble radius crossing the total density
perturbation is

Note that for p~ ~,v~ —,
' and we recover the quantum

fluctuations of a scalar field in a de Sitter space,

H
41

2k
(2.5)

p b =p 5 +3p (1+w~) (v —8) .
Ha

(2.6)

Comparing the perturbed stress tensor of a scalar field,
given by Eq. (A3), with that of a fluid, given by Eq. (A2),
we can identify

pp5~
= —A P +$5/+ U~5$, (2.7a)

which corresponds to a scale-invariant spectrum of densi-
ty fluctuations. However, the spectral index is modified if
other values of p are considered, as can be seen from Eq.
(2.4).

The gauge-invariant fluctuations in the energy density
and velocity produced by the fluctuations of the scalar
fields can be computed as follows (see the Appendix):

Vy+y V» k PDP+gDy
j2+~2 a j2+~2

At Hubble radius crossing

PDP+yDy
f2+ ' 2

(2.14)

(2.15)

In Eq. (2.13), b, IH is given as a function of (DP)' and
(Dg)', so we need their expressions in terms of DP and

Dy. They can be computed by solving approximately the
equations of motion for DP and Dy near the Hubble ra-
dius crossing time (k /a -H ). DP satisfies

[P(DP)' PDP—+j (Dy) f Dy—), (2.13)
3H

where the contribution of the kinetic energy to the total
energy during inflation has been neglected (j'~, P &&H ).

In the same way, the total velocity fluctuation can be
computed from (2.10a) and its equivalent for y:

pp(1+ w~ )v~ =B(t + $5$, — (2.7b) (D$) "+3H(D$) ++U'~p DP= 4/4 +2U~@- ,
k

Q

D$ =5/+ —8 — H—
k k

(2.9)

where U denotes the potential energy of the scalar field
and U&

——BU/BP. So

p~b ~
= —A P +$5$ $5$ . — (2.8)

It is possible to associate a gauge-invariant variable to 5$
b 20

(2.16)

where U&&=—8 U/BP .
Using Eq. (2.12), 4 and 4 can be replaced in terms of

DP and its derivatives. The complicated resulting equa-
tion for DP can be largely simplified in a period of
inflationary expansion (using the slow-rolling approxima-
tion, P « U(P} and P «3HQ, U&&) and near the Hub-
ble radius crossing time. Changing finally the derivative
variable from time to the scale factor a, Eq. (2.16) yields

in terms of which the gauge-invariant perturbation to the
stress tensor of the scalar field can be expressed as

d DQ 4dDQ+ k

da a da H a
(2.17)

~ k
$V = DP, — (2.10a) which has the form of a Bessel equation. Solving it, it

can be seen that, for k /a -H,
p~b, ~=/ 4+/(DP)' PD$, — (2 10b)

where N is a gauge-invariant quantity which character-
izes the perturbations in the geometry and is defined in
the Appendix. Similar equations hold for the fluctuations
corresponding to the scalar field y.

We are interested in computing the magnitude of the
fluctuations in the individual components and total ener-
gy density and velocity at Hubble radius crossing
(k/aH=1) in terms of he fluctuation in the scalar field
DP. Noting that

(DP)'= HD$ . —

Replacing this in Eq. (2.13), we obtain that

(2.18)

($DP+yDv) . (2.19)

The quantum fluctuations of the scalar fields given in
(2.3) have been computed in the unperturbed metric, so
they correspond to the fluctuations 5$ and 5g in any
gauge in which the fluctuations in the geometry are
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small.
In the case in which m~, m& &&H, we have DP-Dg

and, as can be seen from Eq. (2.19), the major contribu-
tion to the total density Auctuation will be given by the
scalar field which has larger kinetic energy when a given
wavelength leaves the Hubble radius, which corresponds
to having the larger potential energy derivative (U4, or

Ur ).
The initial condition for the Auctuations in each partic-

ular component can also be computed to be

Py~(k H 0H —D& I tt, p,~, l &
— i H—Dxl tt, (2.20)

and

HDP
I

HDyPH~~rH
H H

(2.21)

These give the initial conditions for the evolution of
the classical perturbations outside the Hubble radius.

It is useful to change the variable of derivation from t to
the scale factor a:

d . d d2 . 2d . da d—=a =a +a
dt da dt da da da

It can be seen that

(3.4)

da =H ——'(1+m )H-H,
da

(3.5)

++4 ++ xi=0,mr

da da
(3.6)

where g has been taken as a massive noninteracting field.
Changing the variable to X=a g,

where m=p/p, and in the last term the kinetic energy
has been neglected with respect to the total energy

(I 1+wI «1). Then, (3.3) can be written as

III. BACKGROUND EVOLUTION

In order to go on with the analysis of the evolution of
these fluctuations, it is necessary to specify in more detail
the evolution of the background model: during inflaton,
in addition to the inflaton field P, we will consider anoth-
er scalar field y, whose contribution to the total energy
density is much smaller than that of the inflaton, but
whose interactions with the rest of the matter are much
weaker, so that the mean life of the associated particles is
larger. At the reheating time, P decays into radiation and
matter, and baryogenesis takes place as usual. The
Universe becomes radiation dominated and its energy
density decays as a . As in this period the interactions
of the field g can be neglected, it behaves as a free mas-
sive field, so its energy density decreases as a and after
some time it becomes the dominant contribution to the
total energy density. After this epoch, the decay of y
into radiation begins to be important and finally this radi-
ation becomes the dominant component. This corre-
sponds to the radiation-dominated epoch of the standard
model. Meanwhile, the energy density of the matter pro-
duced by the inflaton decay is decreasing as a and
when it becomes dominant we enter the matter-
dominated era.

We will study now the evolution of the background
variables that will be needed in the next section to solve
the fluctuation evolution equations. We consider a com-
ponent o; formed by the inflaton and its decay products,
and a component P formed by y and the radiation in
which it decays. During inflation a =P,P=y, and the
main contribution to the total energy density is given by
the potential energy of P. In a flat Friedman universe,

m
2 — X=0.

da a
(3.7)

In the case that m x ((H, it gives the following behavior
for y:

y= A +Ba (3.8)

a
P Py Prh

arh
(3.9)

where p,h and a,h refer to their values at the end of
inflation.

The evolution equation for y in this case can be written
as

a' ++-2Q ++ xy=Od2 d mx
a' da H

(3.10)

where the relation da/da = —H has been used. Replac-
ing H in terms of a and changing variables to Y=ag
there results

where A and 8 are constants. It has a constant mode
and a decaying mode. After a few expansion times, the
constant mode will be the dominant one and this shows
that, in this regime, the energy density of the component
P stays nearly constant: pr- —,'tnry . During this period
the evolution of the inflaton is not affected by y and so

pp
——U(P).
For times larger than the reheating time, the energy

density of the inflaton field has been converted into radia-
ation energy and the Universe expands as a —t ', the en-

ergy density decreases as
' —4

ds =dt a(t)(dx +dy +—dz )

the Einstein equation is

(3.1) 3md Y+ x a
Y O

2 4 7

dQ Prh a r

(3.1 1)

H'( )=&=
3 3

(3.2)
which has the form of a Bessel equation. We obtain for
the field g,

The equation of motion for y is

y+ 3Hy+ U~ =0 . (3.3)

2—1/2 may=a CJ)~4
2E

ma+DJ ~y4 2E
(3.12)
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—1/4

where e'=Qp, h/3a, h and C and D are constants which
must be fixed from the initial conditions for y at the end
of the inflationary era. The expression for y can be ap-
proximated using the asymptotic form of Bessel functions
for small (m «H) and large (m »H) arguments. If
m «H/2=+4p, &/3(a, h/a ), then

' 1/4
C m

r(5/4)
D m

I (3/4) 4e
(3.13)

y=a 4p ma 3'F

26 8

+D cos
ma

2E'
(3.14)

As y is negligible at the last stages of inflation, the ini-
tial condition is that D must be very small. Then, in this
regime y stays approximately constant, and consequently
also p&.

When H becomes smaller than m,
' 1/2

a2 8 3
ln 3

FIG. 1. Evolution of the background model. The dashed line
corresponds to p and the solid line to p&. a l corresponds to the
scale factor at the end of the inflation, a2 to that when the g
field becomes dominant, a3 to that when y decays into radiation
and a4 to that when the Universe becomes matter dominated.

which corresponds to an oscillating function of time with
frequency co=m and a global damping term. The total
energy density associated with y is given by

p
] m 2 ~2 + ]~ 2 (3.15)

a
P Px x (3.16)

where px denotes the value of px at a =&2@/m. The y
density decreases more slowly than the radiation energy
and after some time it becomes the dominant component:

2~H =-,p& . (3.17)

This case has been studied in the regime that the oscil-
lation period is much smaller than the expansion time
(m »H) (see, e.g., Ref. 21). Under this assumption,
averaging the kinetic term over one oscillation period, it
can be seen that

' —3
a

px=px(")
ao

(3.18)

and (p) =0.
When the damping of the oscillations due to the decay

of y into light particles (radiation) is taken into account,
the evolution is modified to

a
px ao

—I (f—f )
e 0 (3.19)

For times larger than I ' (mean life of the y particles),
the scalar field energy has mainly been converted into ra-
diation. After this time the evolution is identical to that

Differentiating Eq. (3.14), y can be computed and it
can be seen from Eq. (3.15) that the potential and kinetic
energy contributions are comparable in amplitude and
that they oscillate with opposite phases; i.e., the energy is
transformed from potential to kinetic with an overall
damping

—3

in the standard model.
The general behavior of the energy density of com-

ponents a and P can be followed in Fig. 1. When the
scale factor equals a2 and a4, p =p&.

IV. EVOLUTION OF THE FLUCTUATIONS

In this section the evolution of the fluctuations in the
two-component system is studied. The formalism used'
is reviewed in the Appendix. The fluctuations are
characterized by the gauge-invariant variables 6, 6&,
and 6 corresponding to the energy-density fluctuations of
each component and the total energy, V, V&, and Vcor-
responding to the velocity fluctuation of each component
and the total fluid velocity one, the entropy fluctuation
S

& given by Eq. (1.1) and the relative velocity fluctuation
between components V &. They are properly defined in
the Appendix. Their equations of motion are given by
Eqs. (A8), (All), and (A13). We will refer with a to the
component corresponding to the inflaton and its decay
products and with P to the g field and its decay products.

The evolution is divided into different periods accord-
ing to the changes in the equation of state of the com-
ponents. The equations of motion are solved in each
period with w and w& approximately constant. The ini-
tial conditions are taken from Sec. II and the matching
between different periods is made by imposing the con-
tinuity of all the fluctuation variables. Up to the time in
which g decays into radiation, the two components are
decoupled, so Q =F. =F =0 (and also for P).

A. Inflationary period

The first period to be studied is the inflationary one. In
this period a=/ and P=y and the energy density of both
fields is dominated by the potential term (~1+w

~
&&1

and ~1+w&~ && 1). We study both fields making an anal-

ogy with two fluids, so we also need to determine the as-
sociated sound velocity to solve the equation of evolution
for the fluctuations. It is defined by c,2 =P /p . In the
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case of a scalar field g, diff'erentiating the associated pres-
sure and energy density we obtain

3HQ+2U~

3HQ
(4.1)

In the slow-rolling approximation, we have
3HQ= —U&. We see from Eq. (4.1) that with this hy-
pothesis

~ c,&+ 1
~

&& 1. We will take c,&
——1 and

c,&
———1. Another point to be taken into account is that,

when dealing with scalar fields, the individual entropy
perturbations g cannot be neglected; they are given by
Eq. (A12). In this case, w 2) =22)) and wprip=2bp.

We define ak as the value of the scale factor at the time
at which the wavelength associated with k leaves the
Hubble radius (ak H /k = 1), and a new variable g—:a /ak.

In order to solve the system of coupled equations in
this period, it is convenient to begin by solving the equa-
tions for the entropy S &

and the relative velocity V
&

[Eq. (All)], as they form a system decoupled from the
rest of the variables:

for wavelengths larger than the Hubble radius, as is dis-
cussed at the end of the Appendix. The solutions are

g —Cg
—2+ 3(1+w) +D g

—3+3(1+w)/2

(4.6)

g
—1+3(1+w)/2+ 3D(—2

1+w 2

From these solutions for 5, V, S &, and V &, we can
construct the remaining quantities in which we are in-
terested (b, , 6p, V, and Vp). The four constants
A, B, C, and D can be computed by evaluating Eqs.
(4.4) and (4.6) at the Hubble radius crossing time and
equating them to the values given by the quantum fluc-
tuations of the fields during inflation. So, let us specify
the fluctuations computed in Sec. II for our model. The
fluctuations in the total energy density and velocity are
given by Eqs. (2.19) and (2.15) in terms of the quantum
fluctuations of the fields. We see that the dominant con-
tribution corresponds to the field with larger time deriva-
tive. Typically, this will be the inflation. Then

'2

+6S p= — V p 18+
aH

PDP
V~

H DP
3H (4.7)

dV p

dg
—2V~p aHS(,p .

(4.2)

We also need the initial conditions for V
&

and S &.
They can be computed from (2.20) and (2.21):

They can be combined to give a second-order equation
for V p, and noting that, for constant w, k /aH

we obtain

2 +[6——', (1+w)]
d $2

T '2

+ 4+3(1+w)+ =0 . (4.3)
k Vap

HDy

H

2HDy
H

(4.8)

For wavelengths much larger than the Hubble radius
(k /aH « 1), Eq. (4.3) admits power-law solutions,
V p

~ P. Taking into account that
~
1+w

~
&& 1, it follows

that

V g g
—1 —3(1+w) /2+ g g

—4+3(1+w)
aP

S = —[3+—,'(1+w)] A(aP

[6 3( 1 + ) ]g g
—3+3(1+w)/2

(4.4)

where A and B are constants.
The equations of motion for the total fluid velocity and

energy-density fluctuations are also simplified in this case.
The system (A13) can be written as

8 HDy
9 X

1 HDy
H' 9 i H

(4.9a)

and C and D in Eq. (4.6) can be computed from Eq. (4.7):

Note that these expressions imply that the fluctuations
are initially of the isocurvature type, as S

p~H ))A~H
(during inflation ((),y «H ).

The constants A and B in Eq. (4.4) can be computed
from Eq. (4.8),

k—3w —= — (1+w)—,
dg ( aH

dV+ V 3aHE k 1

d( g 2 k ( aH1+w g

(4.5)
kADA
3H

(4.9b)

Then, in this particular case, the global variables
behave as the velocity and energy fluctuations of a single
fluid, without feeling the individual component fluctua-
tions; and it can be seen that there is a constant of motion

From these initial conditions and the evolution laws
during inflation, the amplitude of the perturbations at the
end of inflation (which correspond to a value a, for the
scale factor in Fig. 1) can be calculated:
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—2 —3(1+tt)) where d/dg has been denoted by a prime. This equation
holds for wavelengths much larger than the Hubble ra-
dius. On the other hand, from Eqs. (4.11c), (4.11d), and
(A8a), we obtain (for k laH « 1)

' —1 —3(1+m)/2
a1

ap

' —3(1+w)

(4.10)

CI I

V"'+2 —4 +4-
g2 gi

T

3a, V'p VpV" —3 —5
4 a2

(4.13)

8 HDy
aP 1

a1

H . Qk

8 HDy
ap1 9 x

a,
ak

—1 —3(1+u)/2

B. First radiation-dominated period

dS p
V~p+3hp,

dVp k 1—(S p
—2b,p),aH 3

dh k V—3w —= —(1+w)
dg g aH g

dV V 3aHE c, k
dg g 2 k g 1+waH g

1 k 1pp
3(1+w) aH g p

(4.11a)

(4.11b)

(4.11c)

After the decay of the inflaton, the component a is
mainly made of radiation, so w =

—,
' and e, = —,'. The

component P is still given by the field y, which soon be-
gins to oscillate around the minimum of the potential. In
this regiine, (p&) =0 and this component behaves essen-
tially as dust (w&-c,&-0). However, the fact that it is a
scalar field does not allow us to neglect the entropy per-
turbation gp, that satisfies w pgp

=5p. For the component
cz we can take g =0. This hypothesis holds up to the de-
cay of y. In this regime there are two periods to be con-
sidered, first when the Universe is dominated by radiation
(component a) and then when it is dominated by y (com-
ponent P). For both of them, the system of equations to
be solved is

V~& =E sin(i/5 in')+F cos(v 5 in()+ Gg~,
(4.14)

V=
Q2

2v'5F+13E( . (~
—

1 ~)

—2 5E+13F( (~51 ~)+ 27
G(

28 40

+I( +Jg+ —~,

where E, F, 6, I, J, and E are constants. The remain-
ing perturbation variables can be computed with the help
of these expressions. In particular,

k ai 5 5F+E( (~ 1 ()aH a2 42

'Ig
——'Jg+ ———4 2 E

3 3 3 2

(4.15)

Equations (4.12) and (4.13) form a system of coupled
equations for V and V p. As initially the amplitude of
the relative velocity is much larger than the total veloci-
ty, we will solve the system, neglecting the right-hand
side of (4.12), solving first for V

&
and inserting this solu-

tion into the source term on the right-hand side of (4.13).
This corresponds to studying the effect of the entropy
perturbations as a source for curvature perturbations,
which can be important in this problem, and not vice ver-
sa. The result is

X 2hp+ —3 V p
aH

1+w
(4.11d) S &

= — [(v'5F +2E )sin( v'5 in/)

k

a1H1
( —', gV' —

—,
' V),
(4.12)

Let us first analyze the period dominated by the radia-
tion, which corresponds to the scale factor evolving from
a, to a2. In this period it is convenient to normalize the
variable g with a, ,(—=(a/a, ) and it is easy to see that
aH lk = (a,H, /k )g

' and p&/p =(a, /a& )g. With these
expressions and the help of Eq. (A8a) for b,&, Eqs. (4.11a)
and (4.11b) can be combined to give

VI I Vf
Vip' + &p +4 ap

10 ap

+( i/5E+2F)cos(&—5 in() —18Gg ] .

Since we have differentiated Eq. (4.11) to derive (4.12)
and (4.13), we must check whether these solutions satisfy
(4.11). The result is that there are two spurious modes
and we must take 6=I=0. The remaining constants
can be evaluated by matching these solutions with the
fluctuation amplitudes at the end of inflation(4. 10). The
result is
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1 ~k 2HDQ
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16 ai HDy
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(4.16)

With these values and (4.14) and (4.15), it is possible to compute the amplitude of the perturbations at the end of this
period, just before the component P becomes dominant:

8 HDy
ap2 9 x

7 8 HDysiny+3cosy, V &e'~ a
1—siny —cossy

a'~

a, a&

'2
ak a2 4 u2 HDp

9
8 1 2 4 . HD~+————cosy — —siny
9 3 7 7v'5 (4.17)

~k 1 2 HD$
VI =

a, 3 a,
2 10 2 . HDycosy+ —sing
3 21 21v'5

where y =&5 ln(a~/a, ).

C. y-dominated period 2

'23g 8 k Sp k V

2 P 9 aH g' aH

The next period begins when the field g becomes dom-
inant (p&& p ) and ends when y decays in radiation (at
a3). The evolution equations for the fluctuations are also
given by (4.11). We now normalize the variable g with
a2, /=a/az and we use that aH/k=(a2H2/k)(
and p /p&=g '. Combining Eqs. (4.11) and using (A10),
we obtain for k &&aH the couple of equations

S" + —+5 4 S'& 6 g 9 b,+—S =3 +——, (4.18a)
3g g g3 0

g 2 g2

(4.18b)

As in the previous period, we solve the system neglecting
the right-hand side of Eq. (4.18a), solving for S &, then
computing V

&
from Eq. (4.11) and inserting it into the

source term on the right-hand side of Eq. (4.18b) (which
corresponds to considering the curvature perturbation
generated by the entropy perturbation and not vice ver-
sa). The result is

S p- Lg J3/2(2—&6( ' )+M) J 3/2(2&6/ '
)

2 P 1 /2
V = ——

g L J (2&6/ '
) — ~ J, (2v'6g '/

)
9 aH 3/2 ~6 1/2

(4.19)

2gl /2
+M J 3/p(2&6( )+ — J ~/2(2&6/ )

6

where J„are the Bessel functions and I. and M are con-
stants that can be computed from the initial conditions at
a2'.

Solving for V and 5 is more involved because the
source term has a complicated expression. The solutions
of the homogeneous equations are

HDy
x

a,
( 13 siny —5.6 cosy ), v„..=og'"+~g-',

(4.21)

HDyM= . (1.6siny+9cosy) .
a2

(4.20) ( ogl
/2 p pg

—2)

where 0 and P are constants.
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A particular solution of Eq. (4.18b) was obtained, but
its expression is too lengthy to be quoted here. The
asymptotic behavior for a ))a2 is

0=
15 a~i

QkQ2
V ——1.3X10 Lg

1

(4.22)

Qk HDy
Q)

(
—0.4+ 143 siny —53 cosy ),

(4.23)
QkQ2

2, -1.1X10 ', M .
Q)

However, to compute the constants 0 and P, it is
necessary to fit the initial conditions at a2 using the exact
solutions. There results

1 akaz HDp
15

Qk HDy+ . ( —0.22+ 356 siny —45 cosy ) .
Q& X 0

The amplitude of the perturbations at the end of this period can be obtained from these results:

HDy
aP 3

Qj
(0. 12 siny —0.6 cosy ),

HQ2
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x

QkQ3

Q 1

1/2
a, a2
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+ ~
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a', j a i
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D. From y decay to Hubble radius crossing

The last period to be studied before the wavelengths
reenter the Hubble radius corresponds to the epoch after
the decay of g in radiation. The situation is quite
different in this period as the hypothesis of uncoupled
fluids does not hold anymore. The Universe is composed
by radiation and baryons tightly coupled through elec-
tron scattering. Then, the momentum transfer between
components must be taken into account. This means that
the source term f which appears in (A8) cannot be
neglected anymore, but is given by'

tive velocity between components goes to zero.
On the other hand, after the decay of y we can neglect

both rl and g&. In this case, the couple of Eqs. (A13) for
the total fluid perturbations 5 and V can be combined to
give a second-order equation:

Ql
b,"—

(
——'+ —"iu —3c')

2 2 S

2

+ ——' —12w+9c +—'w + c
k

2 2 aH

4pf„=R,(u —u„), f = R, (v„—v ),
3Pm

(4.25)

'2

aH ph
(4.26)

where v, and v are the radiation and matter velocity
fluctuation defined in (A2) and R, is the ratio of the Hub-
ble radius to the mean free path for photons colliding
with electrons. The effect of this interaction corresponds
to the introduction of an extra source term in the right-
hand side of (Allb) given by F &=f f&= —y &V&-
where y & is proportional to R„and is much larger than
unity before decoupling. As has been pointed out in Ref.
22, S & stays nearly constant in this regime and the rela-

The homogeneous equation in a radiation-dominated
universe has the solution hh, =Qg +Rg ' for wave-

lengths much larger than the Hubble radius, with Q and
R constants (we norinalize here g with the scale factor at
the radiation and matter equivalence time, a4). When
the component a is mainly made of baryons and P of ra-
diation, the entropy perturbation, acting as a source,
gives rise to an extra growing mode given by
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1 k

6 a4H4

aS p a4

3

(4.27)

The corresponding velocity fluctuation is given by

a4H4
(Qg —2Rg ) — S A/2 .

a4H4

(4.28)

The constants Q and R can be computed fitting the ini-
tial conditions at the beginning of this period.

In the matter-dominated era (g) 1) the behavior of b,

and Vis given by

Q g+R g-'/2+
10 15 a4H4

2

(4.29)a4H4
I/ —

(
9 Qgl/2 3 R g

—2)
k v'2

2+2 k g] /2

15 a4H4
In order to see if the perturbations so obtained are of

the isocurvature type, the amplitude of the perturbations
5 and S &

must be compared. For wavelengths that
reenter the Hubble radius during the radiation- and
matter-dominated era, the magnitude of b are, respec-
tively,

6+4&2 ~} 6 ~2 HDP + HDy
H X H

(
—0.4+ 143 siny —53 cosy )

(4.30)

6+4 2 i 6 2 HDP +HDX
( 04+143 ~

53 )

H X H

Comparison- of- these amplItudes- with- S- & fr-=m- Eq-.

(4.24) shows that the perturbations are no longer of the
isocurvature type, since the perturbation in the total en-

ergy density has gown larger than the entropy perturba-
tion [note that the term proportional to Dy in Eq. (4.30)
is by itself larger than the amplitude of S & given in Eq.
(4.24)]. This result does not depend on how small the ini-
tial perturbation of 6 during inflation is (given by the
fluctuation in P), as the perturbation in the total energy
density originated by the original entropy perturbation
(given by the fluctuation in y) has grown larger than S &.
This means that, in this kind of model, initially isocurva-
ture perturbations develop a large adiabatic mode, and
consequently do not provide a good model for the phe-
nomenologically proposed baryon isocurvature perturba-
tions.

Another criterion has been proposed in Ref. 22 to
define isocurvature perturbations, which has been used to
impose the initial conditions in Ref. 14. It can be seen
that the conclusion obtained is the same in this frame.
(The term Qg in b, corresponds to a growing adiabatic
mode in Ref. 14, which is not small compared to the "iso-
curvature" mode given here by b,~. )

V. CONCLUSIONS

The perturbations in the energy density arising from

quantum fluctuations during inflation in a model in

which there is a second scalar field present besides the

inflaton have been studied in detail. In particular, we

have considered the case in which this scalar field decays
into radiation after baryogenesis producing spatial flu-
ctuation in the baryon number per photon. The pertur-
bations in the energy density and velocity of the individu-
al components and of the total system, originated from

the quantum- Auctuations- of- the fields- at- the Rubble ra=

dius crossing, have been determined in the case of gen-
eralized inflationary models. We then followed the evolu-
tion of the perturbations in the composite system from
the time that a given wavelength leaves the Hubble radius
up to the time it reenters it. Since the model considered
here has been proposed as a way for generating isocurva-
ture baryon perturbations, we have analyzed in detail the
evolution of the total energy perturbation 5 and the en-

tropy one S &. In particular, the fact that an entropy
perturbation acts as a source for density perturbations,
even outside the Hubble radius, has been carefully con-
sidered. The main result is that this effect is very impor-
tant indeed, and is responsible for originating, from an in-
itially isocurvature model (S & «5), a large curvature
perturbation during the evolution of the wavelengths out-
side the Hubble radius, so that the total energy-density
perturbation grows to be proportional but approximately
2 orders of magnitude larger than the entropy perturba-
tion at the Hubble radius crossing. This result is not in
agreement with a previous claim that the evolution
should tend to maintain the initially homogeneous mass
distribution on scales larger than the matter-radiation
Jeans length. The point here is that the Jeans length
does not correspond in this problem to the scale over
which pressure gradient effects can be neglected. The
reason being that when we deal with a nonadiabatic pres-
sure perturbation (i.e., a pressure perturbation not given
by 5p =c, 5p), as in the case considered here, there is an
extra source term for the energy-density perturbations
which makes fluctuations grow from an initially homo-
geneous universe, as has been shown in Refs. 16 and 17.
This source corresponds to the entropy perturbation
defined as 2)=—mL

—(c, /w)5. ' In the case of a two-
component fiuid, it is given by 9)=(p rI +p&9)&)/
p+h hIi(c, —c,&)S &/hp. So, there are two kinds of
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contributions, corresponding to a nonadiabatic pressure
perturbation of the individual components (as it happens,
for example, when one of them is given by a scalar field}
and to the relative fluctuation between components. In
the model analyzed here, both need to be taken into ac-
count. As has been stressed before, the effect is

significant and in the model discussed here it is responsi-

ble for the growth of the adiabatic mode which prevents
the model from being a good candidate for the origin of
baryon isocurvature fluctuations.

ACKNOWLEDGMENTS

I am grateful to S. Matarrese, F. I.ucchin, E. Roulet,
D. Sciama, M. Mijic, and G. F. R. Ellis for very useful
discussions and for reading the manuscript.

APPENDIX: EVOLUTION OF THE FLUCTUATIONS
IN A MULTICOMPONENT SYSTEM

The analysis can be done in close analogy with the
one-fluid case. ' We will concentrate only on scalar per-
turbations as this is the only mode which is excited when
dealing with scalar fields. Perturbations in all the vari-
ables are expanded in terms of a complete set of scalar
harmonics Y(x ) (a label k indicating the associated wave
number will be everywhere understood}. The metric per-
turbations are described by four functions of time,
A, B,HL, ,H~, defined by

T o= —
2$

—U+(Ap —p5p —U~5$)Y,

T~ = —$5$YJ J 7

T o= (8—4'+ 45—4}Y'
(A3)

p = —3Hh +Q

where h, —:p +p .
In addition, it is necessary to consider perturbations as-

sociated to the energy-momentum source term. They are
characterized by two new variables e and f given by

Q, = —aQ [1+(A —e )Y],

Q =a[Q (u —8)+Hh f ]YJ. ,
(A4)

where U corresponds to the total fluid velocity perturba-
tion.

Gauge-invariant variables can be defined from the
gauge-dependent ones as

a
V =—U

——Hz,

T~,' = [—,
'
P —U (A—P $5—$+ Ut, 5$ ) Y]5,'

Writing the source term in the background as
Q„=(—aQ, O), the unperturbed continuity equation for
a given component is given by

ds = —(1+2 A Y )dt aBY,dt d—x'

+a (5,"+2HL5; Y+2HrY; )dx'dx',

where Y;=k 'V; Y and Y; =k V;V~ Y+ —,'5;J Y (latin
indices denote spatial labels running from 1 to 3). We
can define the gauge-invariant variables

Qa6,=5,+3(1+w, ) 1—
a

C2

W~

Ha
(v, —8), (A5)

a H 1 2
~4—= A+ —8+a—8 — (a H )'.

k k

(Al)

and II&. is gauge invariant by itself.
Analogously, for the energy-momentum source pertur-

bations

aHQ Q(v —8), F =f — (V —V) .
a

The matter perturbations must be studied more care-
fully because when dealing with a many-component sys-
tem, the stress of each one is not conserved individually;
we define T „„'"=Q„.The source terms are constrained
by the total energy-momentum conservation T„"
=0, g Q„=O.

Each component is described by a perfect-fluid stress-
energy tensor. Denoting by p and p the background
energy and pressure density, perturbations are defined by

a
b,, =—5 +3(1+w ) 1—

a
(u —8) . (A6)

k

corresponds to the perturbation in the energy densi-

ty of the component a with respect to its own rest frame.
It is useful, when comparing the fluctuations in different
components, to use, instead of 6, the perturbation rela-
tive to the total matter rest frame 6, , which is given by

Tao= —
p (1+5 Y),

T i=(p +p )(v —8)YJ,

T Jo= —(p +p )u YJ,

Ta' =p (5'. +IIL 51+II.r YJ) .

(A2)

These variables are related to the total fluid perturba-
tion variables 6, V, IIL, and Hz-, by

hV= gh V

(A7)

If the component a is given by a scalar field, which can
be decomposed as P(x, t):—P(t)+5$Y(x), the perturbed
energy-momentum tensor is

The equations of motion for the perturbation variables
and V, neglecting the anisotropic stress perturba-

tions II&- and in a flat universe, are
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d~a ~a 3 aH hp Vap—3w = —— (1+w )
a a 2 k H a S P= 1+w

A,p

1+wp

—(1+w ) +
aH a aH p

F
+(1+w )

a

dV V 3aHA
da a 2 k a

(A8a)
bp

S p=
pm

(A9}

where n is baryon number density and s the entropy den-
sity of radiation. A useful relation is

The interpretation of this variable is quite clear when
the component a describes matter and the component P
radiation, then S p reduces to

3 5pr 5n 5s 5(n/s)
4 p„n s n/s

2

+ k Csa ~a Wa 9a+
aH 1+w a 1+w a

F
+

a
hp H, hp

1+w 1+w
+ S p+3 Vp. (A10)

(A8b)

where V p
—=V —Vp. Another variable of interest is the

entropy perturbation already introduced in (1.1):

If the fluids are uncoupled Q =F,=E =0.
The equations of motion for S p and V p for a two-

component system when the interactions between com-
ponents can be neglected are given by

dSap k Vap —3
da aH a 1+w a

Wp 'gp

1+wp a

—h +hp Vp
h a

(Al 1)

(c —c ) S k~+1 k
( 2+ 2

} ~+
aH 1+w a 2 aH ' 'P a 2 aH Csa Csp

—h +hp Sp
h a

k 1 Wala

aH a 1+w
W p'gp

1+Wp

For the interacting case, see Ref. 15.
We will assume that g =0 except when the component

a is a scalar field. In this case, it can be seen that

p~g~ ( c ~ )p~h~ ' (A12)

On the other hand, the equations for the total fluid per-
turbations are given by

dA k V—3w —= —(1+w)
da a aH a

(A13)
dV V 3aHA k 1

a a 2 k a aH ah r r sr r cr+—= —— —+ g(pri+c, pb, , ).
r

This couple of equations is equivalent to the second-
order equation for the Bardeen variable 4, related to 6
by 4= ', (aH/k) b, . In t—he one-component case, this
equation has a first integral for wavelengths larger than
the Hubble radius; this can be easily seen by writing
(A13) in terms of @and I = (aH/k ) V:
d4 4, I+—= —

—,'(1+w )—, (A14a)
da a a

2hr1+—', (1+w) = —+3 g c, —(V —V)
da ' a a k 'r h ar

+ g(p rI +c, p b, ), (A14b}r sr r r

When there is only one component, the second term on
the right-hand side of (A14b) vanishes and the third one
is much smaller than the first for wavelengths larger than
the Hubble radius, so there is an approximate constant of
motion given by 8=4—I. The physical meaning of
this quantity can be understood by noting that

I =H + —+ (V B). —HT
L (A15)

Then, in the comoving gauge what is conserved is the
spatial curvature of hypersurfaces orthogonal to the total
fiuid flow [it can be seen that 5(3R )=4(k/a )2+Y, with
R =HL+Hr/3].

However, when dealing with a multicomponent sys-
tern, this conservation law need not necessarily hold. In
the first place, the second term in the right-hand side of
(A14b) only vanishes in the case that all the components
have the same sound velocity or when the perturbations
in the velocity of all the components are equal. And
second, the third term can only be neglected in the case
that the perturbations in the energy density of the indivi-
dual components are comparable to (or smaller than) the
perturbation in the total energy density. This is actually
true for adiabatic perturbations, but not for isocurvature
ones. So, in general, the spatial curvature of hypersur-
faces orthogonal to the total fluid flow is not a constant of
motion outside the Hubble radius.



42 ISOCURVATURE BARYON PERTURBATIONS AND INFLATION 325

'See, e.g., S. Hawking, Phys. Lett. 115B,295 (1982); A. H. Guth
and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); A. D. Linde,

Phys. Lett. 116B, 335 (1982); A. A. Starobinski, ibid. 117B,
175 (1982);J. M. Bardeen, P. J. Steinhardt, and M. S. Turner,
Phys. Rev. D 28, 697 (1983); A. H. Guth and S.-Y. Pi, ibid.
32, 1899 (1985).

I. AfHeck and M. Dine, Nucl. Phys. B249, 361 (1985); A. D.
Linde, Phys. Lett. 160B,243 (1985).

M. Axenides, R. H. Brandenberger, and M. S. Turner, Phys.
Lett. 126B, 178 (1983); A. D. Linde, ibid. 158B, 375 (1985);
D. Seckel and M. S. Turner, Phys. Rev. D 32, 3178 (1985).

~A. D. Linde, Pis'ma Zh. Eksp. Teor. Fiz. 40, 496 {1984)[JETP
Lett. 40, 1333 {1984)];L. A. Kofman, Phys. Lett. B 173, 400
(1986).

5L. A. Kofman and A. D. Linde, Nucl. Phys. B282, 555 (1987).
D. S. Salopek, J. R. Bond, and J. M. Bardeen, Phys. Rev. D 40,

1753 (1989), L. A. Kofman and D. Yu. Pogosyan, Phys. Lett.
B 214, 508 (1988).

~P. J. Peebles, in Large Scales Structures and Motions in the

Universe, proceedings of the Meeting, Trieste, Italy, 1988,
edited by M. Mezetti et al. (Astrophys. and Space Science Li-
brary 151) (Kluwer, Boston, 1989).

M. S. Turner, A. G. Cohen, and D. B. Kaplan, Phys. Lett. 8
216, 20 (1989).

A. G. Cohen and D. B. Kaplan, Nucl. Phys. B308, 913 (1988).

See, e.g., C. S. Frenk, S. D. M. White, M. Davis, and G.
Efstathiou, Astraphys. J. 327, 507 (1988), and references

therein.
"A. Dressier et al. , Astrophys. J. Lett. 313, L37 (1987); M. P.

Haynes and R. Giovanelli, ibid. 306, L55 (1986).
' C. J. Hogan and N. Kaiser, Astrophys. J. 274, 7 (1983); P. J.

E. Peebles, Nature (London) 327, 210 (1987).
' P. J. E. Peebles, Astrophys. J. 315, L73 (1987); G. Efstathiou

and J. R. Bond, Mon. Not. R. Astron. Soc. 227, 33 (1987);K.
M. Gorski and J. Silk, report (unpublished).

N. Gouda, M. Sasaki, and Y. Suto, Astrophys. J. 341, 557

(1989).
' H. Kodama and M. Sasaki, Frog. Theor. Phys. Suppl. 78, 1

(1984).
L. F. Abbott and M. B.Wise, Nucl. Phys. B244, 541 (1984).

' F. Lucchin and S. Matarrese, Phys. Lett. 164B, 282 (1985); F.
Lucchin and S. Matarrese, Phys. Rev. D 32, 1316(1988).

~ H. Sasaki, Prog. Theor. Phys. 70, 394 (1983).
M. S. Turner, Phys. Rev. D 28, 1243 (1983).
H. Kodama and M. Sasaki, Int. J. Mod. Phys. A 1, 265 (1986).

'W. H. Press and E. T. Vishniac, Astrophys. J. 239, 1 (1980).
J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
D. H. Lyth, Phys. Rev. D 31, 1792 (1985); R. H. Branden-

berger and R. Kahn, ibid. 29, 2172 (1984). See also Bardeen,
Steinhardt, and Turner (Ref. 1).


