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Narrow resonances in the diquonium system
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We study the diquonium qqq q system within the chromopotential confining model. Unexpected-

ly, we find narrow resonances for S-wave intercluster angular momenta. These resonances, with
widths of the order of 10 MeV, are located just below the radially excited meson levels, indicating
that these new states are bound states ("molecules") of (qq)&=& with (qq)& o, for example, for the
first resonance. Although we start from a confining potential, we show that the scattering problem
can be treated with the usual methods of scattering theory, essentially because the residual potential
between the asymptotic meson-meson states (van der Waals force) decreases fast enough. We are
dealing with a multichannel scattering problem for which we use a truncated four-quark
Schrodinger equation. Our choice of trial functions in the variational calculation ensures us that
the resonances that we find are not artifacts of the method: we only introduce meson-meson states
in which the system can apparently decay without any problem by quark rearrangement. We par-
ticularize to the case of the harmonic-oscillator potential, where the separate conservation of inter-
cluster orbital angular momenta simplifies the problem. Moreover, the computation of the T matrix
reduces then to the inversion of a matrix of finite dimension. We discuss the limits of the model: in

particular, decays of these states by quark pair creation will enlarge their widths.

I. INTRODUCTION

We study the system qqq q in the confining chromopo-
tential model with the aim of looking at possible reso-
nances in this system. We did present a resume of our re-
sults at the 1989 Hadron Spectroscopy Conference. '

Weinstein and Isgur have recently pointed out that
the old discussions on the states I 3 ) I 3 } and I 6I I 6I did
not take into account the strong coupling between these
colored states and hence did not include the coupling to
the unconfined mesons Ilj I1I. This remark is very
reasonable and seems to suggest that there cannot be

qqq q bound states or narrow resonances, as these states
would be widened by the strong coupling to the meson-
meson channels. This is indeed the result found by Wein-
stein and Isgur in their method of an effective potential
between ground-state mesons (note, on the other hand,
that 5 and S' are below the KK threshold).

On the contrary, taking fully into account the interac-
tion between the different color channels, we find narrow
resonances in this system. More precisely, studying the
sector where all intercluster orbital angular momenta are
L =0, we find very narrow resonances just below the
threshold of the radial excitations, suggesting that these
states are bound states or "molecules" of the ground-
state mesons and the radially excited ones or of the radi-
ally excited ones among themselves. For example, the
first resonance that we find seems to be a bound state of
(qq )~, with (qq )~ o. These states are found taking ful-

ly into account the coupling to the open meson-meson
channels, and contradict therefore the objection of %ein-
stein and Isgur. Their appearance remains nevertheless
rather surprising. Maybe the effective potential method
between ground-state mesons of Weinstein and Isgur

misses the attraction involving excited mesons. Note that
our narrow resonances are obtained taking into account
the coupling to the meson meson channels, but ignoring
the possible coupling, by qq pair creation, to the baryon-
antibaryon channels, as we will discuss below.

The present narrow resonances seem of similar nature
as the bound states that we found long time ago in the
chromoharmonic potential. The difference is that the
latter were uncoupled to the open channels by peculiar
angular momentum selection rules, while the former are
coupled to some of these open channels.

These old results can be summarized as follows: (1) in
the I 6I I 6 I structure, one could find resonances only for
the very large angular momenta (L ~ 9); (2) in the I 3 ) I 3 I

structure we found bound states for L & 2. We recall by a
simple argument how these bound states appear (not the
whole variational calculation of Ref. 3) in Appendix A.
Assuming a more realistic potential, one could expect
these bound states to be narrow resonances. Note that
this calculation did take fully into account the coupling
to the meson-meson channels, as in the present work.

This calculation left two questions unanswered. (1}
One could question the degree of generality of these
bound states, since one could suspect that their existence
was specific, by some potential barrier mechanism, to
high angular momenta. (2) Since these bound states
seemed linked to the angular momentum selection rules
of the chromoharmonic potential model, it could be that,
adopting a more realistic potential, these bound states
could completely disappear in the continuum: since the
angular momentum selection rules would not hold
anymore, these states would couple to the open channels.

The present paper answers these two questions: (1}we
make the calculation for S-wave intercluster angular mo-
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menta, so that there is no angular momentum barrier; (2)
in the S wave, no selection rule forbids the coupling to
the continuum, even for the chromoharmonic potential
model, and we can expect these states to appear in more
general schemes than the particular model that we con-
sider.

A word of caution is necessary concerning the large
van der Waals force induced between neutral color clus-
ters by a chromoconfining potential. We did show that a
color-confining potential r induces a long-distance po-
tential behaving like r . This behavior is too strong
for any positive a and is excluded by the data. For exam-
ple, the phase shift for large orbital angular momentum is
sensitive to the long-distance piece and too strong. Does
this mean that this potential model is completely useless?
There are quantities that are however rather insensitive
to this long-range force: for instance, the phase shifts at
low orbital angular momentum and not too low energy
(see, for example, the work of Maltman and Isgur on the
NN potential). In the present calculation, still more cau-
tion is needed because a large negative tail of the poten-
tial could well give spurious bound states which probably
would not survive in more realistic schemes. But we have
reasons to think that such bound states are not found
within our approximation. The interaction in the trun-
cated model is effectively cut off at a distance of some
mesonic radii, suppressing the effect of the van der Waals
force.

We have been informed of a whole current of work on
multiquark systems, based on the so-called flip-flop string
models. In these models, resonances quite similar to the
present ones are found. We will discuss at the end of the
paper the relation of this type of model to our work.

The paper is planned as follows. In Sec. II we set up
our chromopotential model. We demonstrate the posi-
tivity of the potential in Appendix B. In Sec. III we write
down the Hamiltonian for the diquonium system as a ma-
trix in color space. The general theory of multichannel
scattering applies to our problem. However, there are
some unusual aspects as compared to the usual diffusion

by a potential, and in Secs. IV and V we discuss in detail
the scattering in our system. In Sec. IV we expose the
time-dependent formalism and we argue the conjecture
that usual scattering theory applies to our system. In
Sec. V we expose our truncation method to make the nu-
merical calculation of the diffusion eigenstates and of the
S matrix. In Sec. VI we expose the method to account
for the quark permutations; the two-Hilbert-space for-
malism introduced in Sec. IV allows to define the S ma-
trix in this case. In Sec. VII we take an explicit meson-
meson basis. In Sec. VIII we particularize to the har-
monic potential: we show how the calculation of the T
matrix, and hence the S matrix, reduces then to the inver-
sion of a matrix of finite dimension. Finally in Sec. IX we
make explicit calculations and show our numerical re-
sults. In Sec. X we conclude with a discussion on the
scope and limits of the model.

II. THE CHROMOPOTENTIAL CONFINING MODEL

The model that we consider is the chromopotential
confining model, i.e.,

T= g (2. 1}

where A,; (a = 1, . . . , N 1}—are the matrices A,
'

[—(A, ')'] of the generators of SU(N), acting on the color
of the quark i [antiquark i], normalized by trA, 'A, =25,b.
The coefficient N/2(—N 1) in—V is chosen in such a
way that V(r ) is the potential between the quark and the
antiquark in a meson, qq in a color singlet.

If we consider qq in the color state [N —1I, we have
V= —[1/(N 1)]V—(r), giving a long-range repulsive
force between q and q, a kind of anticonfinement. This
effect does not seem to have a physical meaning. More-
over, the Hamiltonian is not bounded from below; i.e.,
the energy spectrum extends to —00,

This difficulty is completely solved if we postulate that
the Hilbert space & where the Hamiltonian H is defined
is the subspace of the color-singlet states. This postulate
is legitimate since (2.1) is invariant under SU(N). In this
subspace, for a confining potential of the form
V(r) = ~r ~, 0 (a ~ 2, the potential V is positiue (see Ap-
pendix A), and H will in general be bounded from below.

We then will define the chromopotential model by the
Hamiltonian H given by (2.1), restricted to the space &
of the neutral color states.

The model gives confinement between color clusters
coupled in a color singlet, and, on the contrary, absence
of confinement between neutral clusters. However, there
is a residual van der Waals force, physically too strong,
but decreasing fast enough to allow one to apply the stan-
dard scattering theory to hadrons.

We will below consider the simplest model of this type,
taking equal masses and the harmonic-oscillator potential

V(r)= r
4

(2.2)

For the meson channel, the Hamiltonian is then the
harmonic-oscillator Hamiltonian H =p /m +m co r /4,
with excitation energy co.

We study here the qualitatiUe properties of the system

qqq q (diquonium) in the chromopotential model. We do
not consider the spin-dependent part of the interaction.
The symmetries of spin isospin come out by the Pauli
principle, when we consider states symmetric or antisym-
metric under space and color. However, as we will see,
the effect turns out to be small: we obtain similar results
for both cases.

The calculation method can be summarized as fol-
lows. Let us take as an example the states that are sym-
metric under quark exchange that write
q'= pC &

+ (Pg) C I, with the color wave functions

C, =(qq), (q'q ')~ and CI =(qq ')&(q'q)&, and P is the spa-
tial operator of quark permutations. We will take the
functions g with a limited number of meson excitations
(qq ) and (q'q '), but with arbitrary functions of the rela-
tive coordinate. The truncated Schrodinger equation is



42 NARROW RESONANCES IN THE DIQUONIUM SYSTEM 3125

then obtained by the condition & 5+ ~H E—
~
4 &

=D, where
5%' varies in our subspace. We look then for the solutions
having the form of an ingoing wave plus a diffused wave;
the diffused wave gives then the S matrix for the different
processes.

C, (a,a,a, ,a, )=—$
1

Cs(a~, a,a, ,a, )

1 1
5 6 ——6 6a a , a ,a N a a a ,a

(3.2)

III. DIQUONIUM

C, =(qq ), (q'q '), , Cs = [(qq )s(q'q ')s], . (3.1)

Explicitly, we have, calling a a color index,

We note the two quarks q, q' and the two antiquarks

q, q
'. In color space, of dimension X, the subspace of

the neutral states [singlets under SU(N)] is of dimension
2. A quark-antiquark system decomposes into two irre-
ducible representations [N j [N j

=
[ 1 j g [ N 1 j, a—nd

then the coupling of two quark-antiquark pairs gives the
singlet [ 1 j [ 1 j, plus a singlet contained in

[N 1 j I3 [N— 1 j. —
We will call C, , Cs (8=N —1 for N =3} the color

base thus obtained:

Instead of the coupling scheme (qq }(q'q '), we could
take (qq ')(q'q ), or the diquark-antidiquark (qq')(q q ').
Although a single basis is enough, another color state
plays an important role in the calculations: namely,

Cl =(qq '»(q'q)i . (3.3)

C=—'C+ N' 'C.
N ' N

(3.4)

The matrix elements of the color operators entering in
V are the following, in the basis (C„Cs ):

C& and C] have the property of factorizing into two
singlets (meson-meson states) between which the interac-
tion is not confining (we assume N ~ 3; if N =2 there is a
third state (qq'), (q q '), of this type, of baryon-
antibaryon structure). In our basis, C', is given by

=+A, A, ,

C& C8 C) C8 C) C8

C,

C8
&N' —1

2

+N —1
2

N
4
N

C,

Cg

N —1—2 Ci

C8

—2

N —2—2
+N 1—

2
N

We can now write down the Hamiltonian in the basis
C, , C8. It is useful to introduce the intercluster poten-
tials

V~= V(r )+ V(r, , ), VM. = V(r, )+ V(r, ),
VD = V(r )+ V(r, ),

we have the following expression for the Hamiltonian:

where M and M' design the two meson-meson clusterings

(qq )(q'q ') and (qq ')(q'q ), and D designs the diquark-
antidiquark clustering (qq')(q q ').

The color matrix elements of V are

&c, civic, &=v

&c,civic, &=, v —, v
N —1 N —1

H=g

+
V~ —

VD 2 VD

V'N' —1 N' —1

VM
—

VD

+N —1

N 2

N —1
(3.6)

& c, ~v~c, &=, (
—v + v„,) .

N —1

Writing down the wave function 'P=+&C&+4'8CS un-
der the matrix form

(3.7)

We see that if we restrict to the color states
C, =(qq)&(q'q '},, we have the Hamiltonian of two
mesons without interaction. One can estimate, by the
effective potential method, the effect of the coupling to
the states C8. One finds, at large distance, the following
meson-meson potential (van der Waals force):
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2

V,s(R)- ——,[(p.p') —(2—a)(R p)(R p')]'~R~

(3.8)

where p and p' are the meson internal coordinates, and R
I

is the distance between the mesons. We have assumed
V(r)-c~r~ . Thus, the residual potential falls a power 4
relative to the confining potential.

One can rewrite the Hamiltonian under the interesting
form

2 2 P
+— (0, 1)W~

2m, 2

N

N —1

't/N 1—
N

1

'}/N 1—
1

+N 1—
D

N —1

(3.9)

where the combinations of potentials

8'M = —
VM + VM + VD, WM = VM

—
VM + VD

(3.10)
~a= VM+ VM

—
VD

correspond each of them to effective U(1) interactions, for
example 8'M corresponds to a positive charge for q and q
and a negative charge for q' and q ', etc.

Form (3.9) is useful to make clear the positiuity, since
the W's are positive [for instance, for V(r}=~r~,
0 (a ~ 2, see Appendix B], and to make explicit the
asymptotic states.

We expect as asymptotic states the cluster decomposi-
tions such that each cluster is in a color-singlet represen-
tation, i.e. , the meson-meson states (qq), (q'q ')„and
(qq '), (q'q ), . We can see this from (3.9) and (3.10) in the
following way: in the channel (qq )(q'q ') W~ is large and
8'M and 8'D remain bounded. Since the energy is finite,
the coefficient of $V~ in (3.9) must vanish: this imposes
the color state (o)=C, . In this color state, the mean
value of the brackets is (W~+ WD)/2= V~, and the
Hamiltonian reduces to the one of two noninteracting
meson s:

H~= g +V(r )+ V(r, , ) .
pi

i
(3.11)

In the same way, in the channel (qq ')(q'q}, if W~ is
large, and WM, 8'D bounded, the color state must be

1

N

N

(C', is obtained from Ci by transposition of the quarks or
the antiquarks). The mean value of the brackets is then
( WM+ WD )/2= VM, and we have again the Hamiltonian
of two noninteracting mesons:

HM = g +V(r, )+V(r, ) .
pi

(3.12)
i

Finally, when N &2, the matrix multiplying WD is of

I

rank 2 and positive definite, so that the clusters
(qq')(q q ') remain confined for any color state. Howev-
er, if N=2, we have then a new asymptotic baryon-
antibaryon channel (baryon=N quarks in a color-singlet
state).

IV. SCATTERING

The aim of this section is to convince the reader that
our scattering problem is correctly set, in spite of the fact
that the interaction we start from is confining. Indeed,
the physical mechanism at work here is more subtle than
in usual scattering theory, where the existence of the
wave operators 0+— follows simply from the fact that
wave packets escape the region of influence of the poten-
tial.

We will now (1) describe the scattering in a qualitative
way, (2) state a mathematical conjecture, which we be-
lieve to hold, that allows us to apply the usual scattering
theory to our problem, and (3) give intuitive physical ar-
guments that support our conjecture.

(1) From the preceding remarks on the asymptotic
meson-meson states, we see that, for t~+ ~, the evolu-
tion becomes asymptotically close to an evolution
without interaction, in the sense that a state e ' '4 be-—i(T+ VM)t —t ( T+ VM, )t
comes close to (e g)C, +(e g')C', for
certain functions f,g'EL (}R' ), where }R' corresponds
to the spatial coordinates of the four quarks involved.
One can then describe the scattering process as fol1ows.
We have in the past a state of two mesons (qq ) and (q'q ')
far away from one another, described by
(e u g,„)C, at t~ —oo which, by the evolution—i(T+ VM)t
operator e ' ' becomes (e g,„,)C,—i(T+ VM, )t+(e g,'„,)C', at t ~+ oo. The function
represents a final state that results from elastic scattering
and from internal excitations of the two mesons we have
started from, while t/r,'„, represents a final state with quark
rearrangement.

The two-Hilbert-space formalism is well adapted to
this situation, mostly when one wants to take into ac-
count the symmetry between (qq)(q'q ') and (qq ')(q'q ),
as we will see in Sec. VI. We have the physical space



NARROW RESONANCES IN THE DIQUONIUM SYSTEM 3127

%=L (R' )SC of the wave functions qqq q with two

color components (hence IL' ), with the Hamiltonian H
defined above. We have the asymptotic space
&O=L (R' )eL (R' ), corresponding to the Hamiltoni-
an

Ho = ( T + VM }((}( T + VM ) (4.1)

direct sum of (3.11) and (3.12). And we have the applica-
tion to identify a state in &o to some state in %:

I: ( Q, g') E&O~QC, +p' CI E% .

The wave operators II: &0~%, defined by

(4.2)

(4.3)

will transform a (generalized) basis of eigenvectors of Ho
in a basis (up to the bound states) of eigenvectors of H.
The isometry of the operators 0—+ is ensured by the
asymptotic unitarity of the operator J:

llm //Je
'

%'//=//4//o ('eE&o) .
)~+co

(4.4)

And the S matrix &o~&o is given by

S=Q *0+ . (4.5)

(2) The preceding description is based on the following
mathematical conjecture, that we think to hold, that al-
lows us to apply the scattering theory to our problem:

Conjecture: For N ~ 3, and for a class of confining po-
tentials that include V(r)= ~r~, 0&a&2, (i) the limits
(4.3) exist in the strong sense, (ii) formula (4.4) holds, and
(iii) 0+Ho=A %o=%„where %, is the orthogonal
subspace in & of the subspace of the eigenstates of H.

(Note that for N =2, one would have to add the
baryon-antibaryon channels. )

(3) Let us now give physical arguments that support
the three parts of our conjecture.

(i) Let us first see why the limit (4.3) should exist. In
usual scattering theory, this limit exists because the wave
packets asymptotically escape the region of influence of
the potential. In our case the interaction is confining and
we cannot invoke this argument. However, all we need
here is that, when two mesons (qq) and (q'q ') of spatial
wave function g are far enough from one another, the
complete evolution e ' '(PC, ) should be close enough to

the free evolution (e
'

g)C, [the case of the two
mesons (qq ') and (q'q ) would be similar]. However, the
nondiagonal terms of H in the basis (C, , Cs) [Eq. (3.7}]
will generate a component Cs in e ' '(gC&), and these
terms decrease slowly (or do not decrease at all in the
harmonic-oscillator model) with the meson-meson dis-
tance R. However, because of the high energy due to the
confining force between the colored states (qq ) and
(q'q '), this component C8 will have a high-frequency
dependence on time, a frequency that will increase with
the distance R because of the confining character of the
interaction. The final result will be an incoherence of
phase in the building up of the component C8 from the

—i(T+ VM)t
main term (e P)C&, that will keep this com-
ponent all the more small as R is large.

More precisely, one finds that, for the component C, of
e ' '(PC, ), the free evolution at large R is corrected by a
potential decreasing like R [cf. Eq. (3.8)] or R in
the harmonic model. However, in potential scattering
theory, the wave operators exist for potentials decreas-
ing faster than the Coulomb potential R

(ii) On the other hand, formula (4 4) could seem
surprising, since the components C, and C', are not or-
thogonal. However, (4.4) holds because the spatial wave
functions g and P', describing meson-meson states
(qq)(q'q ') and (qq ')(q'q }, become orthogonal when the
mesons become far apart, so that in gC, +f'CI the
nonorthogonality of C, and C', does not prevent the two
terms from becoming orthogonal.

(iii) Concerning this part of the conjecture, let us sim-

ply note that it does not exclude the presence of bound
states in the continuum spectrum, as it is desirable. '
Let us recall that such states appear in the harmonic
model, as we have pointed out in Sec. I and in Appendix
A.

V. TRUNCATION METHOD

by imposing the condition

(fiq'iH —Ziq ) =0, (5.2)

where O' EA ' and 5%" varies in & '.
These equations are complicated by the nonorthogonal-

ity of 1(jC& and p' CI, and this reflects in the fact that the
orthogonal projection operator

After these considerations to convince the reader (and
ourselves) that our scattering problem is correctly set, we
now will give a method to solve it.

First, we will have to replace the Hilbert space % by a
truncated Hilbert space &', and the Hamiltonian H by
its projection H' in &'. We will take for %' the set of
states lltC&+11'CI, where f contains a limited number of
excitations of the mesons (qq) and (q'q '), but with arbi
trary wave functions in the relatiue coordinates, and we
will do the same for g' for the mesons (qq ') and (q'q )

This choice seems the simplest, but it has for us anoth-
er fundamental advantage. The most interesting result of
our calculations will be to establish the existence of reso-
nances in our system. Our choice of test functions in the
Uariational calculation ensures us that the resonances that
we find are not artifacts of the method.

Indeed, a dangerous method (not to use) to look for
resonances in a system would be to introduce in & ' a set
of normalized wave functions able to describe these reso-
nances in the vanishing width limit, plus some states in
which they can decay. With such a method, one cannot
be sure that the resonances found are not an artifact of
the calculation method. We are not using such a method:
we only introduce meson-meson states in which the system

qqq q can apparently decay without any problem.
After these words of caution, we write down the trun-

cated Schrodinger equation

(5.1)
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(5.3)

is complicated, and so is H'=HHII. In the truncation
method we parametrize VE& '

by 4 =J4 [see Eq. (4.2)],
where 4= (g, g'), and g and g' are described above, form
the truncated asymptotic space &0. The orthogonal pro-
jector

the overlap matrix of C, and C', :

1
1

NJ*J=
1

1
N

(5.14)

ilo. &o~& o (5.4)

is very simple by construction, and commutes with Hp.
By the variational method (or directly using
IloJ'II=IIOJ'), we obtain the Schrodinger equation un-
der the form

II (J'HJ EJ'J—)4=0, (5.5)

Thus, the equation

(J'HJ EJ'J)—4 =0, 4 E&o, (5.6)

where J'HJ and J*J are operators in &o is the best
adapted to the truncation method. A solution 4=(li, g')
of Eq. (5.6) gives a solution %=J4=PC, +f'CI of
H%=E%.

Among the solutions of the truncated Schrodinger
equation we will now look for the ingoing and outgoing
solutions by a Lippmann-Schwinger equation

@+=NO—[Ho —(E+iO)] 'V(E)4+,

where

(5.7)

V (E)=J'HJ Ho —
(J'J——1)E (5.&)

and 4p is an eigenstate of Hp Hp4 p
=E+p. Note that

J"JW I because C, and C', are not orthogonal.
Finally, we will use a T-matrix formalism, defining

T(z) by the equation

with

T(z) = V(z) —V(z) T(z)1

Hp —z
(5.9)

V(z) =(J*HJ Ho) —(J*J——1)z . (5.10)

0-+, =0-4,-, H, C, =E,C, ,

are given by

(5.11)

(5.12)

and the S matrix is given by

(e, ~S~+, ) =5J, —2ivr5(E~ E, )(4, ~
T(E, +iO)—~4, ) .

(5.13)

From (5.10) we see that we need the expressions J*J
and J*HJ. We have J*%=((C&~4),(CI ~+) ). J*J is

As we will see below, in the harmonic oscillator ca-se, V(z)
is, after truncation, an operator offinite rank and we will
be able to compute T(z) from Eq. (5.9) by the inversion
of a matrix of finite dimension.

When we have T(z), the (generalized) wave functions
ofH

The calculation of J'HJ reduces then to the calculation
of the color matrix elements of H between the states C&

and CI. Using (3.4) and (3.7) we obtain

1
1

N
J*HJ =

1
1

X

Pt
X2

1—8'D

(5.15)

where WD = V~+ VM. —VD.
Of course, Hp is given by

p2 VM

2m,
(5.16)

VI. PERMUTATION SYMMETRY

We will make all the calculations for equal masses
m =m . This is an important simplification, since then
the Hamiltonian H is invariant by quark permutations,
and one can treat separately the symmetric and antisym-
metric sectors. This is the reason why we have intro-
duced the two-Hilbert-space formalism, as it allows us to
easily do this job. Let us call P the permutation opera-
tor in &, and P the permutation operator acting only on
the spatial coordinates. Since the permutation of color in-
terchanges C, and C'„we have

P(QC, +f'C', ) =(PQ')C, +(PP)C', .

Let us consider the evolution

e ' '[QC, +(Pg)CI ]

(6.1)

(6.2)

of a symmetric (or antisymmetric) state. Asymptotically,
we have two states

(6.3)

that evolve according to diferent free Hamiltonians. We
face then a difficulty to define the S matrix: in which
space should it act? The problem is solved, in second
quantization, by the introduction of asymptotic creation
and annihilation operators.

In the two-Hilbert-space formalism, it will be enough
to introduce the permutation operator Po in the asymp-
totic space &o, defined by Po(g, g') =(Pg', Pg). One has,
manifestly, PJ =JPo, and Po commutes with Ho, since
PVMP = Vst. Then, in (4.3), the operator e' 'Je
respects the symmetry. All the formulas from (4.3) to
(5.13) remain valid replacing &o and A by their
anti(symmetric) subspaces. In particular, Eq. (4.5) defines
the S matrix as an operator in the (anti)symmetric sub-
space of &p.
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We can identity the subspace of Ao of symmetry

g =+1 to the space L (IR' ) by the isomorphism

1

2
(6.4)

Then, the asymptotic evolution of states of a given sym-
metry can be identified to the evolution of states
(qq )(q'q ') with the nonsymmetric Hamiltonian T+ VM.
The S matrix acts on such states (qq )(q'q ') with conser-
vation of the energy T+ VM.

Using (6.4) we can now rewrite Eqs. (4.2) and
(5.14)—(5.16):

4(r~ rM rD)=X .( M)4. ( q, qq
—) (7.4)

that correspond to the two types of meson-meson states
plus the (qq')(q q ') clustering.

The states
~
a, r ) of wave functions

(I(), (r, r, , )6( rM —r ), where rM is the relative coordinateqq' q'q '

between the mesons, form an orthonormal basis in the
space of the spatia1 functions of the qqq q system. We
will represent these functions + by the series
)Il, (r) = (a, r~% ) of functions in L (R }. We have, there-
fore,

JQ= —[QC) +g(Pg)CI )],1

2
(6.5)

Any operator A takes the form

( A 4 ), = g A „)II, (7.5)

J*J=1+ P

2

J'HJ= 1+ Q + VM+ ~ WD,N . 2m, . N

(6.6)

(6.7)

a'

where the A„. are one-particle operators, acting on
L(R)

In particular, the truncated Schrodinger equation ob-
tained from (5.1) will write

Pl&o= g 2
+VI

2m
(6.8}

2

+E, %,(r)+ g V„(E)%,.(r) =E)II,(r),
2m

(7.6)

2

V(z)= g + WD
—zgP PI

N, , 2m,
(6.9)

One can then compute the scattering eigenstates of H and
the S matrix by the formulas (5.9)—(5.13). Explicitly, the
interaction operator V(z) defined by (5.10) is given by

where the operator V(E) is given by (6.9).
To compute the T matrix and hence the S matrix from

(5.9), we need to compute V(z), given by (5.10), with
(6.6)—(6.8) or more explicitly by (6.9).

The Hamiltonian without interaction (6.8) (i.e., for two
free mesons in the color state C, } will be

VII. MESON-MESON BASIS

After these generalities we will now make explicit cal-
culations. First, to be more explicit, we have seen that
the symmetric and antisymmetric states %~, , ~

under the
exchange q~q',

piHo= X +VM
2m;

and we will have simply

2

(Ho)P), = +E,
2m

(7.7)

(7.8)

0 (, , )
=g(rM, rM, rD )C, +((('j(rM. , rl, rD )C', (7.1)

P& P2+ + V(r, )+ V(r2) P, (r„rz)=E,P, (r„rz)
m m

(7.2)

decouple, and that, by the identification (6.4), that allows
us to write (6.5)—(6.9) in each separate sector, it is enough
to consider the wave function f(r~, rl, rD), since
g'(rM, rM, rD ) =g(rM, rM, rD ), as we read from (7.1).

We now introduce an orthonormal basis ((), of eigen-
states of the internal Hamiltonian of two mesons:

since m is the reduced mass of the two mesons and E, is
their internal excitation energy.

The other operators of the problem, (6.6), (6.7), and
(6.9), inuolve the permutation operator of the spatial coor
dinates P. This operator exchanges rM and r~, and
leaves rD invariant:

PrMP =r~, PrDP =ra (7.9}

(to make economy of signs we take for P the exchange of
antiquarks). On the other hand, the arguments r and

qqr, , of P, are independent combinations of rM. and rD.q'q '

Writing (}(, with rM and rD, we have
and it will be convenient to introduce the intercluster
coordinates P'p. (rM)4. (r~ ro)='p. (rM )4.(r~ o) (7.10)

I'q +r Iq I
q q q'

M

and therefore

(P)II), = g (P, (rM, ro)5(rM —r)~%', .(rM. )(l, .(r))t, ro)) .
Iq+I, Iq I' I I'q' q q qq q'q'

M I (7.3)

a'

(7.1 1)

rq+I'q 1 I, I' +I'
qq

2 2
The operator P„ is then an integral operator whose ker-

nel, taking into account
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dr dr, , =8 drM drD,
qq q'q '

is given by

P„.(r, r') =8fdrDP, (r', rD }*&,(r, rD ) .

VIII. HARMONIC-OSCILLATOR MODEL

(7.12)

(7.13)

2 2 2 2
Pi P~ Pq q PqqX=+ +AD= + + +ma) rD,

2m, 2m m m

(8.6)

where we have taken out the center of mass. From (7.4)
we obtain for the operators X„'

2 2
p mao

m 4
(8.1)

We now chose the potential (2.2), so that, for a meson,
we have the harmonic-oscillator Hamiltonian 2 22 I

aa aa 2m a (8.7)

with excitation energy co.
From this expression, with P, given by (8.3), and using

A. Meson-meson basis and permutation operator

2 2
Pqq + Pqq-

m m

2 2
PM' PD

2m 2m
(8.8)

Since ))I), (rM, rD ) is then the product of a Gaussian (fac-
torizable in rM and rD) and a polynomial, the kernel
(7.13) is of ftnite rank. This simplifies enormously the
calculations. Following this advantage, we diminish the
rank by taking factorized functions (t, (rM, rD). This is
indeed possible since (7.2) is also separable in two oscilla-
tors corresponding to the variables (r(+r2)/2. Finally,
our functions (t), will be defined as follows. We will call
u, an orthonormal basis of the three-dimensional har-
monic oscillator,

we have

P P
X(/j )(1j ) 5Q 5jj +5jj up ui~

2m 2m

2

+5;,' u +mco r u'P 2 2

2m
(8.9)

We then multiply this expression by (8.5). We find the
final result

m co+ r u =Eu
2m 2 I l I (8.2)

2 2

V(z)(;)(;J )= 5' ~u; &(u;~+~u; &(u;~

and the functions p, (r, r, , ) or (t, (rM, rD ) will be givenqq' q'q '

by [the index a is now replaced by the double index (i,j)]
2

+ u,
p +m(u'r' —z u, ~u, &(u,

~

2m

1
~(',J)(rM' rD } u'(rM'} j(rD } '

8
(8.3)

(8.10)

E, =E;+E ~E,„. (8.4)

These particular combinations of different meson-
meson internal states of fixed total excitation energy (note
the high degenerescence of the harmonic oscillator) re-
sults in a partial diagonalization of the S matrix, and a
reduction of the size of the matrices that enter in the cal-
culation.

From (8.3) and (7.13), the permutation operator P,
entering in (6.6), (6.7), (6.9), reduces to

') =5 iu &(u (8.5)

And we can now proceed to the calculation of the T ma-
trix.

B. Calculation of the interaction operator V (E)

We will now compute the expression V(z) [Eq. (6.9)],
needed to compute the T matrix through (5.9) and (5.10).
Let us first compute the interaction operator (6.9). Let us
write down

E(, )=E, +E
As pointed out above, we further make a truncation in

the number of internal meson excitations below a certain
given energy

C. Calculation of the T matrix:
inversion of a finite dimension matrix

We need now to solve the equation for T(z) [Eq. (5.9)]
that, taking into account the expression (7.8) for Ho,
takes the form

T(z)„=V(z)„.—g V(z)„- 1

P'+E „z
2m

T(z) -, .

(8.11)

We will first give here the general lines of the calcula-
tion to show that it reduces to the inuersion of a matrix of
ftnite dimension We will th.en proceed to the explicit cal-
culations in Sec. IX.

Let us write the operator V(z)„., given by (8.10) under
the general form

V(z)„.= gu(z))), .~uk &(u& ~,
kk'

(8.12}

where the coefficients u (z)k'k are given by (8.10) by
decomposing

2

~u, & .
2m
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Looking for T(z)„under the form

T(z)g, = gt(z)&k luk)(uI, I

kk'
(8.13)

whose solution is

t(z)=[1+u(z)r(z)] 'u(z) . (8.17)

we see that (8.11) will be satisfied if the coeKcients t (z)),'k

satisfy the equations:

t( )'„'„=u( )'„'„—g g v( )'„" ( ) t( )"'„, (8.14)
bb' qq'

where

From (8.10) and for a and a' fixed, the indices k and k'
have only a finite number of values for which u (z)k'k %0.
The operator V(z)„. is offinite rank W.e see that by our
truncation, as described in Sec. V, to a finite number of
meson excitations (limited E, ), the calculation of t(z) by
Eq. (8.17) reduces to the inuersion of a matrix offtnite di
mension.

I

1)z)gg 5 '(QQ

+E, —z
2m

(8.15) D. S matrix

The eigenfunctions of the free Hamiltonian Ho are,
from (7.8),

t(z) =v(z) —u(z)r(z)t(z) (8.16)

The structure of Eq. (8.14) is very simple if we group the
indices a (itself a double index) and k, and we consider

I

u(z)kk, t(z)k'k, and r(z)&'k as elements of some matrices
u (z), t (z), and r (z). We have the matrix equation

(8.18)

From (5.12), (7.5), (7.8), and (8.13), the corresponding
scattering waves are given by

Iuq ) t (E iO)qq'( uq Ie'"'&y,)Il+—, ),=J 4&, ),
—g g

+E, (E+iO—)
2m

(8.19)

and the S matrix is given by

(4, ), ISIS, ), ) =5, ,(2') 5(k' —k) —2iqr5(E' —E)(e'"'IT(E+i0), , Ie'"')

=5,,, (2qr)'5(k' k) 2i—qr5(E—' E) g ( e'" —'I uq ) t (E +i 0)q q
( uq I

e'"'),
qq'

(8.20)

IX. CALCULATIONS AND RESULTS

Let us now give the results. In the chromoharmonic
model, the angular mornenta between clusters LM, LM,
and LD are separately conserved. We are going to study
the sector LM=LM. =LD=0, that contains the ground-
state meson-meson states (LM =Lo =0) in the S wave

(Lst =0). This is the simplest sector, and the one where
the resonances, as we have discussed in the Introduction,
are expected to be less probable. This leads one to con-
sider the part of the matrix V(z));J)),'2') with the indices
referring to radial excitations of the harmonic oscillator.
From now on, the indices i,j, . . . label the radial excita-
tions

Ei p
co + 2E co . (9.1)

A. Calculation of V{z)

We simplify the formulas making m =
—,', to have

p /2m =p . Equation (8.2) becomes (p +r2)u, =E,u,
taking cu =2 as meson excitation. We use the functions u,
in momentum space, given by

1/2

L I/2( 2) —
P /2

+(2n + —', )u„—[n (n + ,')]' u„— (9.4)

and obtain the matrix elements v(z)k/" / . The nonvan-
ishing u (z)'kjI)' ~ ' (for given i, j, and i') correspond to the
six following combinations for the indices j', k, and k ':

with the normalization f d p u;(p)u, (p) =52.
Using Eq. (8.2), m =

—,
' and co=2, Eq. (8.10) writes

V(z)(„)(,, )
—— l5,, [p'lu, ') (u, I+ lu, ) (u, lp'(IJ)(l J ) ~ JJ

+(2EJ —z)lu; )(u;I]
—(u, lp'lu, &lu; &(u;II .

One can expand p Iu,') and (u;Ip with the recurrence
relations

p-'u„= —[(n +1)(n + —,')]' u„+)

3
I i+—

2

k =i', k'=i,
- k =i'+1, k'=i
k =i', k'=i+1,

and

k =i',

where we have to ignore the negative values.

(9.5)
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B. Calculation of r(z)

To compute the T matrix (8.13) and (8.14), we need the
matrix elements r(z)k}t". ' ', given by (8.15), that can be
written as

r(z) k/". ~ '
5;;—5/J'R (z E,—E&)—kk. , (9.6)

where R(z)„k are the harmonic-oscillator matrix ele-
ments of the resolvent of p:

R (z)kk = ui,
p z

(9.7)

The recurrence relations (9.4) allow one to compute
u;(p) [that we need for the S matrix (8.20)], starting from

uo(p)= e
1

(9.8)

5k —
&, i '+ (2"

[(k 1)(k
&

)] R (z}k (9.9)

Using the analogous relation in k'[R (z}kk =R (z)k k], we
find

2 — 2

R (z)00= —f dp
p —z

2 &ue
du

v'm 0 u —z

(9.10)

where the subindices 00 refer to the channel with no radi-
al excitation within the asymptotic mesons.

The imaginary part of R (E+iO)00 is simply given by

ImR (E +i 0)oo=2)/n 8(E)&Ee (9.11)

and the real part is given by a principal part, that we can
easily calculate by the formula

R (E +i 0)00= —2e g E"E
"

1 1

On! 2n —1

+ 2i &n&Ee, E ).0,
2)/vr')/ Ee—, E & 0—,

(9.12)

except for E &0 too large, since there are compensations
in the series. In this case we can however use the integral
(9.10), since it does not have singularities in this region.

C. Truncation and numerical results

We will finally truncate to a fixed number of meson ex-
citations N,„„;i.e., we will restrain the indices by the
conditions

J —Nexct —~ & — exct (9.13)

From the matrix elements of V(z) and r (z) discussed
above, in Secs. IX A and IX B, we can now obtain the T
matrix from the matrix inversion (8.17).

Moreover, one obtains, from (9.4) a recurrence relation
for R (z)kk,

[k (k + —,
' )]' R (z)k i,

E,—E+tI /2ib(E) if)E)
E,—E —iI /2

(9.14)

For the two close resonances ( r) = + 1 at E =3.9 ) we

For N,„„=O, the channel is a =(i,j)=(0,0), and the
dimension of the matrix to be inverted is 2. For N,„„=1,
the channels are (i,j)=(0,0), (0, 1),(1,0), and the dimen-
sion of the matrix is 9. For N,„„=2,the channels are
(i,j)=(0,0), (0, 1),(1,0), (0,2), (1,1),(2, 0) and the matrix
dimension is 24.

We have made the calculation in these three approxi-
mations, in the symmetric and the antisymmetric cases
(7.1), r) =+1. The situation seems superficially similar in
both cases, as we can see in Figs. 1 and 2, where we plot
sin 50 and sin50cos50 as functions of the energy (the sub-
index 0 indicates the channel with ground-state asymp-
totic mesons, i.e. , no radial excitations). In Figs. 3—5 we
plot the Argand diagrams, of which Figs. 1 and 2 are pro-
jections.

For N, „„=O, we do not find any resonance. For
N,„„=1,we find a narrow resonance just below 2', i.e.
below the first radial excitation level N =1. The energy
scale is such that we have substracted two ground-state
meson masses. The resonance is quite narrow: for a
meson level spacing co of about 500 MeV, I is of the or-
der of 10 MeV. For N,„„=2this resonance remains,
slightly shifted, and a new inelastic resonance appears
just below 4', the energy of the N =2 radial excitation.
This seems to indicate that the first resonance is a bound
state of (qq))v, with (qq)b o, a kind of "molecular
state. " Similarly, the second resonance will be a bound
state of (qq)iv, with (qq))v 0 and of (qq))v, with

(qq )x=)
Note that besides these resonances we find a broad

ground-state threshold effect (the threshold correspond-
ing to the ground-state mesons channel} on the phase
shifts, corresponding to attraction (g=+I) or repulsion
(r) = —1), as we see in Figs. 1 and 2.

We find however an important difference between the
cases g=+1 and g= —1. Indeed, for g=+1, the region
of the second peak shows in fact two resonances, as we
see by studying the total phase shift. In Figs. 1—5 we
have plotted the elastic amplitude. To exhibit more
clearly all the resonances, even the inelastic ones, we have
plotted in Figs. 6-8 the total phase shift —,

' phase det(S).
We see that near 4', for g= —,the phase shift takes the
value n. /2 and we have a single resonance, while for
g = + we have two resonances, since the phase shift takes
the values 3m /2 and n. /2. It is interesting to discuss the
falling down of the total phase shift after the threshold in
the light of Levinson's theorem: in potential theory, the
fall down of n~ is related to the presence of n bound
states. This is evidence of the fact that these resonances
can be understood as bound states of the particles
defining the threshold.

We give in Table I the parameters of the resonances
with co=400 MeV as unit of energy. For the isolated res-
onances (g =+1 at E = 1.9), the parameters E„,I, and P
are fitted to reproduce the phase 5(E) of the det(S) by the
formula
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TABLE I. Results for the resonance masses and widths in

the symmetric and antisymmetric cases from a fit to our results
with the parametrizations (9.14) and (9.15).

E„ ()) (deg) E (90') I (90')

—1
—1

+1
+1
+1

1.9035
3.7419
1.9048
3.8926
3.9023

0.0192
0.0232
0.0173
0.0125
0.0583

12.1
1.0

—1.52
5.02
5.02

1.9014
3.7417
1.9050
3.8819
3.9101

0.0201
0.0232
0.0173
0.0317
0.0410

We also give the values of E and I corresponding to
5(E)=90' and to the slope of 5(E) in this point.

adopt

,
E, E+i —I, /2 E E+i—I /2

det(S) —e is(F) —e

ilgwu)

E, E i I——, /2 E E i I——/2

(9.15)

X. DISCUSSION

One question that arises is the following: will these
narrow resonances survive in a more realistic scheme?
We can make some conjectures:

(1) The departures from the harmonic osc-illator poten
tial will open new channels, since we will not have
anymore the selection rules associated with the interclus-
ter orbital angular momenta. This kind of effects can
make the resonances somewhat wider.

(2) Quark pair creation Th. e decay of the qqqq system
by pair creation will also make the resonances wider.
After pair creation, the system can rearrange itself into
baryon-antibaryon or three mesons. For the lowest reso-
nance, for which we expect a mass of about
4m +2co=2.0—2.4 GeV, i.e., below hh threshold, we
can expect partial widths of the same order as for ordi-
nary mesons, smaller or of the order of 100 MeV. "
Moreover, for a weakly bound state of, say
(qq)))( o(qq)z=„ there will be channels in which each
meson (qq )~ o or (qq )z ) will decay by pair creation,
almost independently of the other one, with widths I p

~k sin2 5()

1.0

i)f1 0 ,

l ()

i

I
i
I

I
I
I

I
I
I
I
I

'I
\
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I

li
Iii
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i I

, I
i I
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I i
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I

Siil () ()S i), ,

FIG. 1. The functions Im[(SOD —1)/2i] = sin 6o(E) and

Re[(SOO —1)/2i] =sin50(E)cos50(E) (60 is the elastic phase
shift) in the symmetric case. The energy scale is such that two
ground-state meson masses are substracted. The dashed, dot-
ted, and solid curves correspond, respectively, to the approxi-
mations N =0, 1, and 2.

FIG. 2. The functions sin 6O(E) and sin50(E)cos60(E) in the
antisymmetric case. The dashed, dotted, and solid curves corre-
spond, respectively, to the approximations N =0, 1, and 2.
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and I,. Then, the total width of our state wi11 be at least
of the order I o+ I,. Then, these states could be as large
as a few hundred MeV.

(3) Spin sp-in forces can shift the states. We have seen
that these diquonium resonances MD appear as bound
states of, say, a radially excited N=1 meson M& and a
ground-state meson Mo. Considered alone, the spin-spin
interaction inside the mesons M, and Mo will not destroy
the resonance, because the binding energy MD M i Mo
does not change. The reason is that we are not consider-
ing a change in the effective interaction between the
mesons. However, the spin-spin interaction will also add
to the effective interaction between Mi and Mo. If this
force is positive enough, it can destroy the binding be-
tween the mesons, and hence the resonance. But this will
not be the case in all spin states and some resonances will
remain. Also, if we consider orbital excitations, we know

that the spin-spin force, being of short range, will not
affect significantly these states.

(4) Uan der Waals forces W. e know that the color-
confining potential induces strong long-range van der
Waals forces, for which there is not empirical evidence.
Could this long-range force be responsible for the states
that we have found? As we have argued in the Introduc-
tion, the answer is likely to be no. The reason is that the
truncated potential (8.10) and (9.3) falls exponentially.
The van der Waals force would appear only in the un-
truncated limit, in which the number of considered states
goes to infinity. The range of the effective potential is of
some mesonic radii, and the resonances, being due to a
weak binding effect, should have a wave function extend-
ing to larger distances, contrarily to what we should ex-
pect from binding due to a long-range potential.

Weinstein and Isgur have made interesting and exten-

1 9(J'S 1.9000

(n = 2)

1.907

1.910

( 1.89

~ (!.()05

{).7

(n = 2) 1 9()l5 1.9000

1.907

1.910

3.7.1S

6

4.'()

FIG. 3. Argand diagram in the symmetric case, in the N =2
approximation.

FIG. 4. Argand diagram in the antisymmetric case, in the
N =2 approximation.
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4S

- 0. 1

FIG. 5. Blow up of the inelastic resonance region of Fig. 4.

FIG. 7. Total phase shift, in the N =2 approximation, in the

antisymmetric case.

sive calculations on qqqq molecules. The type of reso-
nances that we find does not appear in their calculations
in their present form. It would be interesting to see if
they could appear. Their formalism is however different
from ours in the sense that they write down an effective
potential between ground-state mesons. It is not clear
whether our states, that seem to involve the binding of
ground-state mesons with radially excited ones, will not
be lost in their formalism. This point deserves further
research.

Let us now discuss the relation between our work and
the flip-flop string models. The aim of these models is to
suppress the van der Waals force, and this is done at the
price of introducing multibody potentials. In contrast to
the simplicity of the two-body potential model of this pa-

per, there is a multiplicity of flip-flop models, depending
on new parameters, all of them reducing to the same
model in the qq and qqq sectors, but with wide differences
for the other multiquark states. In some cases, these
models present these resonances close to threshold, and
the authors propose the molecular interpretation. The
resonances are present or absent according to the version
of the model. Also depending on the type of model, other
resonances are found, called hidden color resonances
(color-confined states weakly coupled to the asymptotic

states). Both types of resonances are strongly dependent
on the parameters and the symmetry of the states. For
comparison, let us emphasize that our present work
shows the presence of resonances close to threshold in the
two-body potential model with color SU(3), in both the
symmetric and the antisymmetric channels. On the con-
trary, we do not find these so-called hidden color reso-
nances.

Masutani' has made a comparison between the flip-

flop models and the two-body potential model. For the
two-body potential model, he finds a result analogous to
our results in the N =0 approximation, with a threshold
effect, but no resonances. In our higher approximations
(N =1,2), we find on the contrary threshold resonances.
His approximation goes somewhat beyond our approxi-
mation for N=0, since it couples [(qq)s(qq)s]&. This
could reveal a hidden color resonance, but it is not ap-
propriate to show up meson-meson molecules. Our
method does not introduce explicitly the coupling
[(qq )s(qq )8], but couples (qq ),(qq ), excited states.

A phenomenological discussion is out of the scope of
the present paper. In particular, we would need to intro-
duce spin to make a detailed comparison with experimen-
tal data. Let us simply quote two nice candidates for our
phenomenon quoted in the Particle Data Group Tables.

p)l, lic Jct(h)

—phase det(S)1

2

27t

(n =2)

3z/2

II/2

t

3.9 ~ 4.0 ~
I

4. ] N

FIG. 6. Total phase shift in the symmetric case, in the N =2
approximation, showing two resonances close to 3.9'.

FIG. 8. Total phase shift in the symmetric case, in the second

peak region. The solid line corresponds to the parametrization
(9.15) and the dotted line to our calculation. We see the strong
falloff after threshold.
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One is the exotic narrow resonance of 3100 MeV seen in
the modes Ape. +~+, Ap~+~+~, Ape+~ indicating a
I =—', meson. The other one is nonexotic, X or g(2220),
with I =0 and J =even++. This state has been seen in
KK and in gg', suggesting strongly a ssqq state. More-
over, this resonance is rather narrow, I -20 MeV; being
below the AA threshold, it cannot be enlarged by quark
pair creation and decay into a baryon-antibaryon. How-
ever, its width seems small owing to the possible decay of
the two weakly bound mesons in our interpretation.
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APPENDIX A

Let us now consider the harmonic-oscillator model
with equal masses, (2.1) and (8.1). The Hamiltonian de-
pends then only on rM, pl, rM, pM, rD, pD [rM, rM, and2 2 2 2 2 2

rz& are the intercluster coordinates (7.3)] and we have the
separate conservation of the associated orbital angular
momenta LM, LM, LD. Because of these conserving
laws, there are interesting selection rules in this model.
In particular, we did find, using a variational calcula-
tion, bound states for LD )2 in the meson-meson chan-
nel. Let us recall a simpler argument that establishes
such bound states for LD )3.

We project the Hamiltonian (2. 1) and (8.1) on the
C& =(qq)&(q'q ')& state:

2 2 2 2 2pM PM mco 2 pD mco z

2m 2m 2 ' 2m 2

(Al)

3 1 1E (baryonium I 33 I, ) = — —+ V3 co+LD —cvv'2 D v'2

v'3
+(LM+LM, ) cv

2
(A5)

We will have a baryoniurn bound state, if

E(baryonium t33 I, ) & E (meson-meson) (A6)

APPENDIX B

Proposition. One considers arbitrary representations of
a Lie group and their infinitesimal generators
T;, . . . , T„'. We note by ( )0 the mean value taken on
any singlet state contained in their tensor product. Then,
we have, for 0&a ~2,

g +T'T; ~r,
—r

~

&0,
i,j a 0

(Bl)

where r1, . . . , r„are arbitrary points of R".
Proof. Let us consider V(r) =

~r~ and
V(k)= f d"r V(r)e '"'. By a Fourier transformation we

have

g T Tg V(r; —r, )

given, respectively, by (A5) and (A2). From (A5) we see
that this happens indeed if LD )3. This is the
phenomenon that we found in Ref. 4: there are baryoni-
um bound states in the meson meson-continuum if the an
gular momentum is high enough. This selection rule is
specific to the harmonic-oscillator model, due to the
separate conservation in this model of the orbital angular
momenta LM, LM, LD. These states could appear as res-
onances in a more realistic potential model. This
phenomenon seemed to us at the moment related to high
angular momenta. The present study shows however that
narrow resonances appear even in the S wave.

This will give us the meson-meson spectrum

E(meson-meson) =3cv+Locv+Lst cv . (A2)

I,j 0

6 "k
T,'e ' T'e ' V k

(2n )"
We now project the Hamiltonian (2.1)—(8.1} on the

state C3= I(qq')I3](q q '}I3I], that corresponds to the
color coupling corresponding to the "true" baryonium:

1/2 ' 1/2
V(k} is given by

We find

N —1

2N
C—

1

N+1
2N

C8 . (A3) d+e
2

V(k)=c ~k~, c =~" '2 +
I (

—ct/2)
(B3)

H(C3) = PM N mes
2 2

2m 2(N —1) 2

2 2PM' N mes

2m 2(X —1) 2

PD N —2 men
2 2

2m N —1 2
ra

that gives the baryonium spectrum

(A4)

The function V(k) is negative, since c &0 for
0 & a & 2. Since the two matrices in the large parentheses
in (B2) are the Hermitian conjugate of each other, the
mean value of their product is positive. The inequality
(Bl) results then from the integral expression (B2).

Actually, this reasoning is not sufficient. It could apply
to any mean value, on a singlet or a nonsinglet, and the
conclusion would be then clearly wrong, since V(r) ~ 0.

One must take into account that V(r) is not integrable,
so that V(k) is a distribution, defined by the Fourier
transform of temperated distributions. The behavior of
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V(r) for r~ao reflects in the singularity of V(k} for
k=O, and the integral (B2) diverges for k=O. The in-

tegral (B2) must be considered as a formal expression of
the action of the distribution V(k). This distribution can
be defined cutting a domain around k=0, adding a coun-
terterm, and taking the limit of the domain to zero. ' In
general, the counterterm will change the sign of the for-
mal integral.

To make the demonstration complete, it will be enough
to see that, for the mean value on a singlet state, the in-
tegral (B2) converges in fact at k=0 (the counterterm will

ik r,.
vanish). For k=O, the operator g; T e ' reduces to
the generator g; T of the tensorial product representa-
tion, that acting on a singlet gives zero. It follows that

(g; T e '}(g T'e ') vanishes as ~k~, and the
singularity in the integrant is integrable, ~k~

(0&a &2).
This ends the demonstration for 0(a(2. For a=2,

we have

ge;=0 ge, e, ~r,
—r ~'&0 (for 0&a&2) . (B5)

For a & 2, the proposition does not hold, as proved by
Greenberg and Lipkin, ' that have given a counter exam-
ple.

g Ig T,"T& Ir; —r
I

= —2 g ( g T~'r, 2 ~0 .
i,j a 0 a i

(B4)

Note. The argument holds for U(l), i.e., for ordinary
charges
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