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On the decay mode Z = Hgg
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We present analytic results for the matrix elements relevant for a process with one Z boson, one

Higgs boson, and two gluons as external particles to lowest order in perturbation theory. These re-

sults are used to study Higgs-boson production associated with two gluon jets through Z decay. We
find I (Z~Hgg)/I (Z~all) &5X10 ' for MH ~24 GeV and m, 77 GeV. Z~Hgg turns out to
be more than 4 orders of magnitude suppressed as compared to the Born process Z ~Hqq indepen-

dently of possible angular cuts on the two jets.

I. INTRODUCTION

The existence of a neutral Higgs boson H is a funda-
mental assumption within the minimal standard model of
electroweak interactions, and its discovery would provide
crucial evidence in favor of this theory. The standard
model predicts the vacuum expectation value of the
Higgs particle to be equal to 2 ' Gz ' =246 GeV, but
leaves its mass practically undetermined, which renders it
diScult to look for it.

One of the central objectives of Z factories, such as the
Large Electron-Positron Collider (LEP) at CERN or the
SLAC Linear Collider (SLC) consists in the search for the
Higgs boson in the window M~~Mz. Recently, the
ALEPH Collaboration at CERN has obtained the experi-
mental bound Mtt ~24 GeV (Ref. 1) by looking for
Higgs-boson production in Z-boson decay through the
Bjorken process Z~Hf f, where f denotes a lepton or a
quark. This reaction can be realized already on the Born
level and is, therefore, expected to be a copious source of
Higgs bosons.

After fragmentation, the parton-level process Z~Hgg
leads to the same class of final states as Z~Hqq: one lep-
tonically or hadronically decaying Higgs boson and two
jets. To lowest order it proceeds through the set of trian-
gle and box diagrams depicted in Fig. 1. Intuitively, be-
cause of the strong suppression factor (a, /n ), one would
expect the channel Z~Hgg not to be competitive with
Z~Hqq. In a recent publication, however, it has been
claimed that the mechanism Z~Hgg significantly contrib-
utes to Z~H+jet+jet for Mz 40 GeV and is even
dominant for Mz ~ 50 GeV.

In this paper we repeat the ca1culation and find,
in disagreement with Ref. 3, that I'(Z ~Hgg ) /
I (Z~Hqq) (10 for MIt + 24 GeV and m, ~ 77 GeV.
For a fixed value of the Higgs-boson energy E~, the
respective diff'erential decay rates d I (Z ~HJj )/
(dE&d cos8") turn out to have almost the same depen-
dence on the angle between the two jets 0, so that the
ratio cannot be appreciably improved by the application
of kinematical cuts. As Ref. 3 does not provide an ana-
lytic representation of the solutions, we are not in the po-
sition to determine the source of this discrepancy.

The outline of this paper is as follows. In Sec. II and
the appendixes, we list closed analytic expressions for the
ZHgg vertex to lowest order and work out the leading be-
havior for both light and heavy virtual quarks. In Sec.
III we apply these results to the process Z~Hgg. %e
derive a simple approximation formula for the integrated
decay width I (Z~Hgg), assuming idealized quark
masses, i.e., m, ~ao and me =0 (qAt), which is correct
within 25%, that is, less than the uncertainty introduced
by the strong coupling constant 5a, /a2=50%. Quanti-
tatively, the bulk of Z~H+jet+jet events is seen to
originate from the parton-level process Z~Hqq, while
Z~Hgg plays the role of a small second-order QCD
correction.

II. ZHgg VERTEX
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FIG. 1. Feynman diagrams pertinent to the ZHgg vertex in

lowest order.

To lowest order the ZHgg coupling is generated by one
triangle diagram in connection with a ZZH vertex and
three box diagrams as illustrated in Fig. 1. From color
conservation it is obvious that the two gluons form a
color singlet, if they are both in the initial or final state,
or that they carry the same color, if one is incoming and
the other is outgoing, so that the SU(3) group structure
reduces to a Kronecker symbol 5'". As a consequence of
charge-conjugation invariance, the Z boson couples only
axially to the internal quark, so that the contribution
from a mass-degenerate weak isodoublet of quarks van-
ishes. Applying the reduction algorithm developed in
Ref. 4 and repeatedly using Shouten's identity
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g e '~ =0, where the square brackets symbolize an-

tisymmetrization, we find, for the T matrix element of in-

terest,

momenta of the two gluons and the Z boson, respectively,
and e'(q&), e (qz), e(p) are their polarization four-vectors.
We take all momenta to be ingoing and define

i 5=&'2z GF e'(q, )E&(qz )e„(p)5'
s=(q, +q2), t =(q, +p), u =(q2+p)

X+I T ~"(q„q2,p, m ),
q

(2.1) z =p, h =(q, +q2+p), N=tu zh —.

where it is summed over the color indices a, b = 1, . . . , 8,
and the quark flavors q. GF is the Fermi constant, a, is
the strong coupling constant, and I =+—,

' is the third
component of the weak isospin. q, ,qz, p are the four-

I

The mass-shell conditions read q &
=q

&
=0, z =Mz,

and h =MH. Momentum conservation leads to the
identity s + t + u =z +h. The polarization tensor
T ~"(q„q2,p, m) has the decomposition

T ~"(q„q2,p, m)= e~"~q—
2 qze—~"~ q, q2 F&(t, u, z, h, m )

— e~"~—
q& q~~e —"~ q, qz F, (u, r, z, h, m )

+ p + q2 e" q2 [q, F 2(t, u, zh, m') +p F, (t, u, z, h, m )]
S

+ p + q, e "~ q, [q,~F, (u, t, z, h, m')+p F,(u, r, z, h, m')]
S

+ E ~"~p q2 e~"~—
q~ p +q ~

e "~
q2 p +g ~e"~ 'q& q2 p, F4(t, u, z, h, m ), (2.2)

=0. (2.3)

The property F4(u, t, z, h, m ) = F4(t, u, z, h,—m ) guaran-
tees Bose symmetry:

T~ "(q2,q~, p, m)= T ~"(q~, q2, p, m) . (2.4)

Incidentally, F3(u, t, z, h, m )=F3(t,u, z, h, m ) also holds.
Let us now concentrate on extreme quark masses. Us-

ing the large-m expansions of the form factors calculat-
ed in Appendix B and Shouten's identity, we may write
the heavy-quark contribution as

T ~"(q„q2,p, m)= — —1
1 s z

6m s z +1+2 I

where we use the convention e ' =1. Herein we have
already dropped terms proportional to q &, q~2, or p", ap-
pealing to the transversality conditions for the vector bo-
sons, q, e'(q, ) =q2 e (q2) =p e(p) =0. The form factors
F, (t, u, z, h, m ) (i =1, . . . , 4) are listed in Appendix B.
Gauge invariance with respect to the gluons manifests it-
self in

q, T ~"(q„q2,p, m)=q~&T ~"(q„qz,p, m)

I

expected to be fairly insensitive to heavy quarks.
The contribution from a light quark circulating in the

box is suppressed by a factor of m; one power stems
from the Higgs-boson coupling and another one from the
trace. Both features are absent in the case of the
triangle-type graph, and taking the limit m ~0 yields

2 s —z
T ~"(q„q2,p, O)= ——

s s —z+i&z rz
X (q, +q z )"e ~~

q & q2 (2.6)

In the approximation that the top quark is ultraheavy
and all other quarks are massless, this is already the full
answer. It is amazing that the main effect arises from the
only term in the whole set of form factors, which is bare
of logarithms and Spence functions, namely, the first
term in Eq. (B3).

III. DECAY WIDTH FOR Z —+Hgg

Let ( ~

V'~ ) denote the absolute squared of the invari-
ant decay amplitude 'T after averaging over the initial po-
larizations and summing over the final ones and over
color. The differential decay rate is then given by

X(q, +q )"e2~~ q, q2 +0 1

2 2v'z
(3.1)

(2.5)

That is, the leading terms from the triangle and box dia-
grams are both proportional to 1/m, but apart from
finite-width effects, they cancel each other, leaving behind
terms of 0 ( I /m ). For this reason, the ZHgg coupling is

where dxps denotes the phase-space element, 2&z stands
for the flux factor, and the supplementary factor of —,

'

takes care of the fact that there are two identical particles
in the final state. Depending on the experimental setup,
it may be requested to consider the decay width as
differential with respect to the Higgs-boson energy E and
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2$—l~c~1-
( v'z E)—

s =z+h —2v'zE,

t =v'z E — (v'z E) ——2 2$

1 —c

' 1/2

(3.2)

u=z+h —s —t .

Alternatively, to compute the total width, it is more con-
venient to integrate over the Mandelstam variables t and
u using

the angle between the two gluon jets, c =cosO, in the
center-of-mass system. An adequate phase-space param-
etrization reads

1 (z t) —(z —u)
6477 z s (u —t)

&h &E&'
2&z

heavy and the others being massless, the integration can
be performed analytically and yields

62 5/2

I 0(Z ~Hgg ) =
3072m

X(1—8r+8r r— —12r lnr), r =—,h

z

(3.4)

where terms of the order I z/z have been neglected.
Note that we may disregard the details of the fragmenta-
tion as long as we do not specify the jets, because the
probability for the hadronization of the gluons totals
100%.

For completeness, we also list the Born results for the
decay mode Z~Hqq. In view of m, ~ 77 GeV) Mz/2,
only the five light-quark flavors can be present in the final
state. In the massless-quark approximation, the Higgs bo-
son can be emitted only from the Z boson and

dP= 1
dtdu, h ~t +z, u ~z+h —t .zh

128m. z

& l&l') =4G'y( V'+ ~')z'''
(s —z)'+zr', ' (3.5)

(3.3)

In the approximation of the top quark being infinitely

where V =2I~ —4sin OII, Q~, A~=2I&, and ea denotes
the weak mixing angle. Up to terms of the order I z/z,
we find, for the integrated width (r =h /z),

G2 5/2

I 0(ZHqq ) = 3 g ( Vq+ Aq )64~', ~,
47 5 2 r 3 r+5r ——r +—— 1 ——r+ —lnr
12 4 6 2 4

2

+ 5 —2r+—
' 1/2

v'r
m —6 arcsin

2
(3.6)

In the numerical analysis we set Mz=91. 15 GeV,
I Z=2. 55 GeV, sin 8~=0.23, m, =0.5 GeV, m, =1.6
GeV, m& =5 GeV, m, =100 GeV, and assume mass de-
generacy in the ud doublet. For a, (p ) we employ the
representation in the modified minimal-subtraction (MS)
scheme as of Eq. (6) in Ref. 8 with AM~s=240 MeV, and
we choose p=Mz, which yields a, (Mz )/ n =0.038.

Figure 2 compares the contributions from the individu-
al channels Z~Hqq (dashed line) and Z~Hgg (solid
line) to the diff'erentiai decay rate d 21 (Z ~HJj') /
(dEHd cos8~ ), for MH =60 GeV at the fixed value
EH=63 GeV as a function of the angle defined by the
two jets 0 in the center-of-mass system. The angular
distributions being essentially parallel, the gluonic pro-
cess generates a homogeneous background which is down
by more than 4 orders of magnitude. The pure box con-
tribution (dot-dashed line) amounts to less than 0.1% of
the complete prediction for Z~Hgg. This is qualitative-
ly well understood, as the box amplitude is suppressed for
both light and heavy quarks, whereas the triangle ampli-
tude converges towards a finite value for m ~0. On the
other hand, this explains why there is only a minor sup-
port from a light-quark doublet even if the mass splitting
is substantial, as applies typically to the cs doublet. Be-

Z ~ Hqq (5 light flavours)
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FlG. 2. Angular distribution of the partial decay rates
d I (Z~Hjj)/(dEHd cosO,,-}, from Z~Hqq (dashed line) and
Z~Hgg (solid line) for MH=60 GeV at EH=63 GeV. For
comparison, also the contribution from the box diagrams alone
(dot-dashed line) and the approximation mq =0 (q = u, d, c,s, b),
m, ~ oo, I z =0 (dotted line) are shown.
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cause of the cancellation of the leading terms for m ~ ap

from the triangle and box graphs, the full result depends
only insignificantly on the top-quark mass. Consequent-
ly, it is fair to say that the whole process is essentially in-
duced by the nonsaturated bottom quark alone. The
correctness of this picture is nicely confirmed by the fact
that the extreme quark mass approximation (dotted line)
deviates by less than 25% from the exact answer.

Figure 3 displays the Higgs-boson-mass dependence of
the total rate I (Z~Hgg) (solid line), together with the
idealized quark mass approximation I p(Z~Hgg) (dotted
line}. For increasing MH the decay is more and more
phase-space suppressed and does not happen at all for
MH =Mz. We are dealing with a truly rare Z-boson de-

M„[cevj

FIG. 3. Exact result (solid line) and approximation of ideal-
ized quark masses and narrow Z-boson width (dotted line) for
the integrated decay rate I (Z~Hgg) as a function of MH.

IV. CONCLUSIONS

We have calculated the ZHgg vertex to lowest order
assuming that the gauge bosons are real. As an applica-
tion, we have studied the decay Z~Hgg. We find that it
is essentially insensitive to the top quark, but dominated
by the unbalanced bottom quark (beauty predominance).
It can be considered as a second-order QCD correction to
the Bjorken process Z~Hqq. We obtain DZ +Hgg—) I
I (Z ~all) ( 5 X 10 9 for MH & 24 GeV, which, in view of
an expected yield of 10 Z events per 1 yr of running at
LEP, renders it unlikely for this channel to be of practi-
cal relevance in the near future.

Note added in proof. An erratum' to Ref. 3 has been
published, in which the authors confirm that due to a nu-
merical error the box-diagram contribution to the decay
amplitude of Z~Hgg was overestimated in their original
work.
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APPENDIX A: SCALAR ONE-LOOP INTEGRALS

In this paper we essentially adopt the conventions of Ref. 4, except that we use the Minkowskian metric with
g""=diag(1, —1, —1, —1). We define the scalar one-loop integrals of interest as

4

Cp(s„s2, ss, m )= —I I(q —m +ie)[(q+p, ) —m +ie][(q+ps) —m +ie]]le
(Al)

4

Dp(st, s2, s3,s4, s5, s&, m )= f [(q m+i—e)[(q+p&) —m +ie][(q+p, ) m+ie][—(q+p4) m+ie—]]le
where p4 =p, +pz+p3, ps =p, +p2, p6 =pz+p3, and s; =p; (i = 1, . . . , 6). For m ))max, is; i we may expand:

1
Cp(si, sp, ss, m )

2 =
2m

1+ g s+0
12m; —] 25 m

(A2}
1 Si Sj

Dp(s& s2 s3 s4 ss s6 m )=
4

1+
& g s +0

6m 10m; ] m

For positive A. =A(s, ,sz, ss ) =s, +s2+ss —2(s, s2 +s, s5+s2ss), the exact result for the three-point function reads'

1 —b,—Li2
a, —b;

—1 —b
+Li2

a, —b,

1b;= — s, —gs {ij=1,2, 5) .
jwi

1+b,
Cp(s»s2, s»m )= — g Li2

—] 2 s a'+b'

where Li2 denotes the dilogarithm' and
' 1/2

—1+b;—Li2
a, +b,

(A3)

Pl l E'

a = 1 —4
s;
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From I =0 this simplifies to

1
Co(s 1 s2 ss 0)=

i = 1,2, 5

For s, =s2 =0 we obtain

Li2
1+b, 1+b,-

+lE
1 —b I

(—b;~ b—; ) (A4)

a~+1
Co(o, o,ss, m )= — ln

2$5 ay 1

which is logarithmically divergent for m ~0:

(A5)

Co(o, o, s&, m )= — ln, m «~s&~ .
2$5 7' —16

(A6)

We do not attempt to derive a general expression for Do(s„s2,S3,S4,s, ,s6, m ), but take advantage of the masslessness of
the gluons. Thereby we do not encounter any infrared complications. It is convenient to introduce the following basic in-

tegrals for real a, b, c:

dx 1 . a+b . bI(a, b, c)= ln(ax+b)=ln(ac+b)ln 1 ———Li2 1— +Li2 1—
0 X C c ac+b ac+b

J(a, b, c)= J in[ax(1 x) b+—ie]—dx
0 X C

(A7)

=in[ac(1 c) b—+ie—]ln 1 —— —Li2 +Liz
1 . c —1 . c
C C Q+ C Q+

c —1—Li2 c —a
+Li2

c —a

where

1 b —lEa~= — lk 1 —4
2 a

' 1/2

Here it is understood that c is assigned a small imaginary part if 0 (c & 1. With this notation we obtain

Do(o, z, o, h, t, u, m )= [J(z,m, r+ )+J(h, m, r+ )
—J(t, m, r+ ) J(u, m—, r+ )],2=2

Xr

where
1/2

(A8)

$
r = 1+4—(m i e)— 1+r

+

The following symmetry relations hold:

Do(o, h, o,z, t, u, m )=Do(o, z, o, h, u, t, m )=Do(o, z, o, h, t, u, m, ) .

In the limit m ~0, logarithmic divergences occur:

(A9)

Do(o, z, o, h, t, u, m )=—Jo z, m, —+Jo h, m, ——Jo t, m, ——Jo u, m, — (A 10)

where

b —ie
Jo(a, b, c)=ln ln

c
1+—b +i e ——ln

a . 1 2

C 2

1 1 ie . 1 . c—+—b +——Li2 +is-
a c a 1+c/a a

(A 1 1)

Moreover, we find

1 —x
D, (O, O, z, h, s, u, m')= I(s, O, x ) I t —h, s, —

sux
' '

1 —0.'
X+ X+I z —u, o, +—I z —u, o,a

X+—I t —h, s,

1 —x—J(s,m, x+)+J h, m,
1 —a

X++J zm,

x+ X+—J u, m, +J h, m, —(x+~x ) (A12)
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where A. =A.(s,z, h):

x = 1+4 (m i—e)
N

Su

1/2 —u . s+z —h+&A,X+= —(1+x), a=
t —u +v'k '

2s

u t—+&X,

2$

This involves 54 Spence functions of distinct arguments [not counting Liz(1) =m /6] and exhibits the symmetry proper-
ty

Do(0, 0, h, z, s, u, m )=Do(0,0,z, h, s, u, m ), (A13)

which is, however, somewhat hidden in our representation. The small-m expansion of Do(0, 0,z, h, s, u, m ) is slightly
messy, and we do not list it here, but only mention that it is also logarithmically divergent.

APPENDIX B: FORM FACTORS

We write the form factors as a superposition of triangle and box contributions:

F;(t, u, z, h, m )=m T, (s, m )+B;(t,u, z, h, m )
s —z+t zr, (i =1, . . . , 4), (B1)

where we allow for a finite width I z in the Z-boson propagator. For convenience, we introduce the following short-
hand notation for the scalar one-loop integrals presented in Appendix A:

Co(v)=CO(0, 0, v, m ) (v =s, t, u, z, h),

C&(s)=CO(s, z, h, m ),
Do(t, u)=DO(O, z, O, h, t, u, m ),
D, (s, v)=DO(0, 0,z, h, s, v, m ) (v =t, u) .

(B2)

There is only one nonvanishing triangle term, which can be read off from the general result for the Zgg vertex derived
in Ref. 12:

2 1
T, (s, m )=— — +2CO(s)

m
(B3}

For the box terms we obtain

B,(,u, z, h, m') = — sCo(s) — —+ [zCO(z)+hCO(h)]2 2 h —s+t 2 h —s+t
s N s

+2 —+—tCO(t)+2 —+ uCO(u) — 2+ C&(s)
1 t 1 h —s (t —u)(z —u)
s N s N

h —s+ 4m —s 1 —u
N

t2
D, (s, u)+ 4m + D, (s, t)+ 4m +—Do(t, u)

s

Bz(t, u, z, h, m ) =——2(t + u) [sCO(s) —zCO(z) —hCO(h)] —2 1+2t tCO(t)+2 1 2u uCO(—u)
1 z u z u z u

+2 t —u +(z —u) 2+ (t —u)
N

C, (s)— 4(z —u )m —su 1 —2u D, (s, u)

4(z —u)m +st 1+2t
N

D, (s, t) .— 1+4 m Do(t, u},
(B4)

B3(t,u, z, h, m )=——2 1+s [sCO(s) —zCo(z) —hCO(h)]
1 t+u

—2 1+2—tC (t) —2 1+2 uC (u)+2s 2+ C (s)
st su (t —u)
N N

—s 4m +u 1+22 su

N
D, (s, u) —s 4m +t 1+2— D, (s, t) — 1+4—m Do(t, u),2 st $
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Bz(t, u, z, h, m )=—[tCO(t) —uCo(u)+(u t—)C~(s)]— 1+ D&(s, u) + 1+—D&(s, t) .

m T, (s, m )= +01 1

6m m4

Note that B3 is symmetric and B4 is antisymmetric with respect to t and u. It is remarkable that the final result does
not contain any two-point functions Bo.

The leading terms for m ~ read

m4
u —h 1

m B&(t, uz, h, m )= +0
6sm

m B2(t, u, z, h, m )=— 1

6m m4
(B5)

m B3(t,u, z, h, m )=0 1

m'

m B4(t, u, z, h, m )=0 1

m4

For m =0 only the triangle contribution survives:

m T(sm ) (B6)
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