
PHYSICAL REVIEW D VOLUME 42, NUMBER 9 1 NOVEMBER 1990

Quantum correlations in high-energy multihadron distributions
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We have used the Jaiswal and Mehta formulation as a model of hadronic multiplicity distribu-
tions to evaluate the joint forward-backward multiplicity distribution P(N~, N&) in hadronic in-

teractions, where the underlying field includes a mixture of a coherent component and Gaussian
noise. This allows us to investigate the effect of the quantum correlation length in rapidity on the
strength of the forward-backward correlation, the validity of the binomial distribution for fixed

NF+N&, and the Koba-Nielsen-Olesen distribution. The resultant parameters indicated that for
the NA22 and CERN ISR regions, the relative noise content rises slowly with energy, while the
correlation length also increases with the total width of the rapidity window.

I. INTRODUCTION

Recently there has been continuing interest in the sto-
chastic nature of the multiplicity distribution in hadronic
production at high energies. The statistics of the rnany-
hadron system have been introduced into the phenome-
nology at various stages of data interpretation. ' Re-
cent consideration of "intermittency" and its interpre-
tation is a perfect example of demonstrating the
differences in approaches between "dynamics" and statis-
tics. Eventually, the fundamental motivation of all the
approaches should be not only to investigate the underly-
ing dynamics, but also to understand the nature of the
statistics of strongly interacting systems.

Generally speaking, in a "dynamical" approach one as-
sumes that the hadronic production process is so energet-
ic and chaotic that the system can essentially be de-
scribed classically. Good examples are the string dynam-
ics used in the Lund FRITIOF model, ' dual topological
unitarization, "' and the geometrical picture in impact-
parameter smearing' (IPS) models. Quantum-
mechanical relations enter through the unitarity condi-
tion and the final-state interaction of hadronization. Oth-
er quantum-mechanical aspects, related to the correlation
and fluctuation of the production process, are more
difficult to incorporate into these classical considerations.

The existence of quantum-mechanical effects in ha-
dronic production processes are demonstrated beyond
doubt with the observation of the Bose-Einstein effect in
the final state of like pions. ' Since soft-pion production
is a dominant production process, and since the wave
function of soft pions may overlap substantially, a quan-
tum stochastic description of the production processes
should be considered seriously. It is otherwise difficult
to estimate possible systematic biases in many production
mechanisms which are intrinsically semiclassically orient-
ed.

In the "statistical" approach, the production process is
formulated essentially as a quantum or classical stochas-
tic system. ' To start with, however, there is no a priori
assumption that the strongly interacting dynamics is clas-

sical at high energy and high density. Correlations and
fluctuations of the probability distribution may therefore
be strongly influenced by the overlap of the amplitudes. '

By retaining the quantum-mechanical formulation, one
hopes to understand when, and if, classical stochastic for-
mulations such as the string dynamics, or geometry pic-
ture can be good approximations of the system. Distinc-
tions between the classical and quantum-mechanical
characteristics may not depend crucially on the detailed
dynamics of the soft-hadron system. The situation for
hadron physics is similar but more uncertain than that in
the early stages in quantum optics. ' ' (For extensive re-
views of these aspects of quantum optics, we refer to the
excellent reviews by Saleh' and Perina' . )

Quantum statistical properties of a coherent signal
mixing with Gaussian stochastic noise has been investi-
gated since the 1960s. Most of the work in this area
was done by researchers who were interested in the
characteristics of quantum statistics in photoelectron
counting. Fowler and %einer later introduced the same
formalism to high-energy hadronic interactions, and sug-
gested a strong analogy between the time t and the rapidi-
ty y. ' A similar formulation was also developed by
Gyulassy for nuclear collisions. However, differences
exist between the hadron and photon systems. For exam-
ple, unlike photons, some of the final-state pions are
charged. ' The statistics of the hadronic system are
also evaluated eventwise, with energy and other conserva-
tion laws playing a role. The statistics of the hadronic
finite system may therefore be different than the usual
stationary problem in quantum optics.

Recently Fowler et al. have used the factorial cumu-
lant in conjunction with the hadronic leading-particle
effect to study phenomenology in hadronic multiparticle
production. Their result demonstrates the usefulness of
the statistical approach. In order to digest and convey in
a more concrete way the results of these types of analysis,
it is desirable to go beyond the factorial curnulant and
construct joint hadronic multiplicity distributions be-
tween different regions. This is in fact not an easy task.
Even in quantum optics, there are only a few analytic ex-
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pressions for the probability distributions.
In order to bridge the gap between the semiclassical

dynamics and the quantum statistics approaches, it is
necessary to investigate in more detail the specific under-
lying structure of the typical quantum statistical ap-
proach such as the models used by Fowler et al. On one
hand, an analysis along this line allows us to expand the
predicative power of the quantum statistical approach
beyond the factorial cumulant and the forward-backward
correlation slope parameter. On the other hand, it also
suggests a specific direction in extending classical models
to incorporate possible quantum statistical effects. What
we shall present here is an explicit translation of the
quantum statistical formulation, which is often used in
quantum optics, to the study of hadronic multiplicity dis-
tributions. We shall adopt specifically the Lorentzian
spectrum as the quantum optical correlation function.
Some of the basic properties of this correlation function
can be found explicitly in quantum optics, and are adopt-
ed directly for hadronic physics. Much of the phenome-
nological analysis of the hadronic distributions discussed
below is, however, beyond the common scope of quantum
optics.

In this paper we shall investigate the multiplicity dis-
tribution in a single region and their correlations in
different regions. In order to avoid excessive numerical
details and to focus on the essentials, we shall ignore the
differences between the hadronic and photon production
processes. Instead we shall emphasize the global proper-
ties of the correlation which are not often addressed in
quantum optics, but are examined frequently in hadronic
physics. This includes features such as the Koba-
Nielsen-Olesen (KNO) distributions, forward-backward
correlation, and the effective cluster size.

In the following, we shall briefly review the basic for-
mulation of the multiplicity distribution in order to ex-
tend the distributions usually measured in hadron phys-
ics. What has been available in the literature up to now
is only the low-order factorial cumulant of the overall
distribution. The generalization to the probability ampli-
tude discussed in this paper is conceptually very simple.
What we shall present here is the numerical evaluation of
the joint forward-backward probability distribution
P(NF, Ns ). As a result we are able to compare the multi-

plicity distribution of N&=N++Nz directly with the
data. We are also able to examine more explicitly the
dependence of (Ns)F on NF. The resultant total y 's

compare rather favorably with experimental data at
NA22 (Ref. 35) and CERN ISR (Refs. 36 and 37) energies
and are as good as other current phenomenological repre-
sentations. Our present study therefore lays the ground-
work for further studies that should eventually be carried
out for a more comprehensive formulation of a quantum
stochastic process, similar to what has been reported by
Fowler et al.

II. BASIC FORMULATION OF THE DISTRIBUTION

A. Multiplicity distribution for a single region

Multiplicity distributions are sensitive to coherence
length and degree of freedom of the underlying stochastic

P„=f, e P(W)dW .

Here 8'is the integrated intensity over the interval in y,

8'= I y y, (2)

and P( W) is the probability density of the random vari-
able O'. We shall now assume that conservation laws do
not play an important role. Thus I(y ) is approximately a
constant, independent of y. Furthermore, I(y) may be
described by a random field V(y ),

I(y) =
I
V(y)I' . (3)

Characteristics of the stochasticity of the filed V(y) shall
be described in detail. At this moment, it is only neces-
sary to notice that the probability P„should be averaged
over an ensemble of V(y), thus

-w
e

nl ensemble
(4)

In a quantum statistical approach, the radiating field

V(y ) may have a coherent and a chaotic part expressed
through

V(y) = V, (y)+ V„(y) .

Here the coherent field V, (y ),

(5)

V, (y) = Voe (6)

has constant magnitude Vo and a random phase P [which
eventually drop out of I(y ), and is therefore taken as real
for our purpose]. V, (y) leads to a fiat rapidity distribu-
tion. This is true if the system is in an eigenstate of the
boost operator in y. We are therefore making the as-
sumption of stationarity in rapidity y. On the other
hand, the random field V„(y) is defined as a complex
Gaussian function through its first two moments

( V„(y ) ),„„b„=0
and

process. Back in 1959, Mandel analyzed photon multipli-
city distributions in terms of effective number of cells per
unit time interval. ' The multiplicity distribution of a
Gaussian light can then be approximated by negative bi-
nomials without the detailed nature of the correlation
spectrum. In order to study in more detail the shape of
the multiplicity distributions and the correlation between
different time intervals, it is, however, necessary to speci-
fy the explicit functional form of the spectrum function.
Partial coherence also has to be included. In this paper,
we shall confine ourselves to the class of the quantum-
mechanical system with a Lorentzian spectrum of corre-
lation. This is because the Lorentzian spectrum is one of
the most natural spectrum of correlation. Detailed
analysis of the moments of the distribution was also stud-
ied by Jaiswal and Mehta (JM).

Traditionally in the JM formulation, the probability of
n particles being registered in an interval (y „y2 ), is given
b 26
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( V„(y)'V„(y+y')),„„„,=r(y ) . (8) The uncorrelated random coeIIicients C satisfying

All the higher-order correlation functions can be ex-
pressed through the second-order correlation function
I (y ). Here I (y ) is an assumed to be given theoretically.
It is a field correlation and cannot be measured directly.
The validity of a specific choice of I (y ) is tested indirect-
ly through the analysis of the correlation in the intensity
I(y ) reflected in analyses of multiplicity distribution or
in Bose-Einstein effects. We shall later on specifically
take I (y ) to be Lorentzian, i.e.,

(C.*C„)=x.fi. „
then possess a complex Gaussian distribution

Ic I'
P(tc j)= g exp

m m

so that

( Pn ~ensemble

(13)

(14)

I (y„y2)=I Oe
' ' ' e (9)

8'"= g fd Re(C )d Im(C )P((C j), e
nf

V(y)= gC P (y), (10)

There are many dynamical models of the hadronic in-
teraction in which the coherent and chaotic fields can be
interpreted. For example, the hadronic field V(y ) can be
the resultant hadronic field of an elemental current. In
this model of nuclear interferometry, a coherent field
represents the collective effect of the current elements in
different regions of space-time, while the chaotic field
represents the incoherent contributions of the local
currents at different space-time points. A physical inter-
pretation along these lines may then lead to a space-time
profile of the hadron. Alternatively, in a string type of
model such as a Schwinger (1+1)-dimensional quantum-
electrodynamics model or the symmetrical Lund model,
in the limit of high energy, the bound states of a charge
pair are created as coherent states obeying a Poisson dis-
tribution in P„. Its corresponding rapidity distribution is
also a constant. Thus, the underlying field can be de-
scribed by V, (y). Specify construction of the corre-
sponding V„(y ) in a string-type model remains an open
question, which we are presently investigating. There are
many possible sources of stochasticity. For example, the
recent extension of the Lund model to incorporate hard-
gluon scattering leads to a considerable amount of sto-
chasticity in the otherwise coherent field. In the first ap-
proximation, the overall field may become a superposi-
tion of the coherent and chaotic fields of partial coher-
ence, as we describe in this paper. Instead of working at
just the nature of the correlation function I (y), we shall
choose a Lorentzian form often used in quantum optics
for the correlation of the chaotic field V„(y ). The
theoretical and statistical rationale for such a choice can
be found in many references. '

Even with this well-known expression for I (y ), it
remains very difficult to construct the probability distri-
bution functions P„analytically or numerically. We shall
therefore outline a specific procedure in this paper. Let
us expand the wave field V„and V, in an orthonormal
base IP

With this base, 8'is simply given by

Iv= v', I+ y(IC. I'+c."'c"+c'"'c )

= y I c.+c.'"I', (17)

the ( C j average can then be integrated analytically.
We get

P„= g gP„(N, Sm)5 gn n-
In I m

(18)

N = 1/(1+A, ),
S.=C.lo'X. /( I+).),

(19)

PPcLD(N, S, k ) =exp S (N/k )"
1+N/k (1+N/k)" +"

kS /N
1+N/k

Here L„' is the generalized Laguerre polynomial of or-
der k —1. Expressing P„alternatively in terms of the
generating function G(s ), we get

G(x ) = g (1—x )"P„
0

1=exp( —x(n, ) ) ff 1+xA.

&n, &If I'x')l
X exp

(y2 —y, )(1+xA, )

where P„"is Glauber-Lachs distribution in quantum op-
tics and is also often referred as the partially coherent
laser distribution' (PCLD} with k =1,

P (N, S)=P (N, S,k =1)
(20)

V, (y}=g C' 'P (y),
where

(21)

where P are the orthonormal eigenfunctions of the in-

tegral equation

f r(y' y»)0 (y')—dy'=~ 0 (y»). (12)

(n, ) =(y, —y, )VO . (22)

Thus the JM formulation can be considered as the convo-
lution of an infinite number of GL distributions. The ex-
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istence of this relationship is not accidental. It followed
from the fact that the statistical measure of our function-
al basis for the chaotic field is assumed to be Gaussian.
As a consequence, the coherent part of the field, which is
a constant field under the statistical average, leads to a
displaced Gaussian distribution. Since the Karhunen-
Loeve basis of expansion t P (y ) ) diagonalizes the corre-
lation spectrum function, the expansion coeScients I C I
are all statistically independent. However, the combined
contributions of all the components lead to a flat and sta-
tionary chaotic correlation spectrum.

The requirement of the Lorentzian spectrum shape
demands a specific statistical weight for each eigenfunc-
tion. In this sense, the overall probability distribution P„
can be evaluated most easily in this fashion. On the other
hand, since P„ is only an overall convolution, it is difFicult
to characterize uniquely the difference between JM for-
mulation and many other models that are constructed
with or without any assumption on correlation. The real
feature of JM model as compared to other models is
therefore based on the correlation between different phys-
ical regions that we shall discuss in the next section.

B. Factorial cumulants

r(y ) =e (31)

the integration can be carried out. Explicit evaluation is
given in the work of Jaiswal and Mehta. For example,
for the interval 5 =y2 —y»

Bi =8) =1,
B2=(e '~+2p —1)/(2p'),

B,=2(e ~+P 1)/(P'—),

(32)

(33)

(34)

where

where I"(y) is a slowly varying function of y. co„, the
mean frequency of the random component, is taken to
coincide with the frequency co, of the coherent field. This
assumption has been made quite often in many phenome-
nological analyses of Bose-Einstein correlation function'
and is consistent with experimental data. As we shall
demonstrate later, this assumption is also consistent with
the multiplicity analysis presented in the later section.
We do not have any strong theoretical justification for
this choice except its simplicity. For the important spe-
cial case of a Lorentzian autocorrelation function

H(x)=lnG(1 —x)= g ( —x)"pk/k!
k=1

Substituting the definition of A, of Eq. (21) into the
above equation, and integrating over the parameter space
of the C, we obtain

p& =(k —1)!(n„)"Bk+k!(n„)" '(n, )Bk

Bk = f dy ir'"'(y
1 y 1 »

(23)

(24)

Instead of evaluating the probability distribution P„
directly, it is advantageous to investigate directly the
properties of the functional space spanned by the ortho-
normal base through the factorial cumulants. ' Nu-
merical analysis is, however, often needed for a successful
implementation of the procedure, because the difficulties
in manipulating overlapping integrals of the orthonormal
functions. To avoid the difficulties, it is convenient to
start with the factorial cumulant generating function
H(x ) given by the relation

p=rb,

C. Limiting cases

1. Chaotic limit

In the case of a totally chaotic source [ V, (y ) =0] and
the Lorentzian correlation profile for V„(y), an analytic
expression of the generating function G(x ) is given by

]

G(x)=e~ cosh(z)+ ——+—sinh(z)
1 P z

2 z P
(3&)

Lower-order moments are relatively easy to calculate,
and are available in the literature. Explicit expressions
and properties of the higher orders are, however, rather
involved. Our detailed evaluations and discussions up to
the eighth ps moments are reported elsewhere in a
different article. '

(25) where

(, ) =(y, —y, )Vo',

(n„)=(y —y, )I (0),
(26)

(27)

where the iterative kernel of the integral equation,
I'"'(y, ,y2 ) satisfies

z=(p(n„)x+p )' '

A detailed derivation of this expression can be found in
Ref. 42. It is worth mentioning that in the limit of van-
ishing 5 the above expression takes the form

r'"'(y»y2) = f 'r(y
1 y )r'" "(y y~)dy, k ~ 2,

(2&)

(29)

G(x) = 1

1+ (n„)x (36)

(yl y2)r(y, ,y, )=r,e " ' 'r(y, —y, ), (30)

We shall now take the correlation function as stationary
with the I (r) given by

Thus for a very small rapidity window, the limit of the P„
distribution is a negative binomial (NB) of k =1. This is
to be compared with the limit of the classical processes,
where the P„ is constructed from the Poisson distribution
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as the fundamental subprocess. P„ then tends to a Pois-
son distribution instead.

2. Total coherent limit

In the limit of vanishing chaotic component, (n„)=0,
each component of P. contributes as a Poisson distribu-
tion. Since the convolution of Poisson distributions is
again a Poisson distribution, the overall distribution of
P„ is Poissionian for any given (n, ).

3. Limit of vanishing rapidity window

Bk =1—
—,'kp+ A(p ),

Bk =1—
—,'(k —l)p+ A(p ) .

(37)

Substituting the above expression into Eq. (23), we obtain

With coherent component present, a closed expression
for P„ is not known. We can, however, examine the lim-

iting case of a very small p. To the first order of p, it is
possible to show that, for k & 1,

&n, &

H(x)= —x(n„)—x(n, )+ g (
—x(n„))" —(1—

—,'kP)+ [1—
—,'(k —1)P]

k ' (n) (38)

The summation can be easily performed; we then get

&n, &x

1+(n„) P 1+(n„)

p (&n, &+&n, &)x'

(1+&n„&)
(39)

4. p= ~ limit

Thus the limit distribution for the situation of a vanish-
ing rapidity window y is very similar to a PCLD distribu-
tion.

P (NF, Ntt ) =
NF NB~F -W ~g -WF e B

CTFeAT IVY oPT ensemble
(41)

mulant. It is rather difficult to apply the formulation to
the actual joint probability distributions or correlation
parameters measured in hadronic physics. We shall
therefore review some of the basic ingredients of the JM
formulation to indicate how the formulation is applied
directly to the joint probability distributions and various
correlation measures. Let us first divide the region
(y„y2) into a forward region F (O,y2) and a backward
region 8 (y „0). For NF particles in the forward region,
and Nz particles in the backward region, the joint distri-
bution P(NF, Ntt ) is then given by

In the limit of a finite correlation length but a very
large rapidity window one obtains the limit p=ao. In
this situation the moment generating function G(x ) can
be approximated by

where

WF= f I(y)dy, Wti= f I(y)dy .
0

(42)

G(x)=exp ——((n„)+(nc))x +A(P ) . (40)
The formulation in Sec. II A is a special case of the above
equation. For example, convolution of the forward and
backward regions leads to the overall distribution

The corresponding P„distribution is also a Poisson dis-
tribution, and the KNO function g(z)=5(z —1). Since
this behavior is opposite to what is observed empirical-
ly, ' we may conclude that either the correlation length
I lr=b, rip is increasing with I' so that p does not tend
to infinity, or other fluctuation factors such as inelasticity
or impact parameter may become the dominating factor
of the overall P„distribution.

D. Joint multiplicity distributions in disjoint regions

F,B

NF NB8'F W W~

,
e '

,
e

F g NF Ng ensemble

X 5( NF +Na Ns)—
(WF+ Wq)

e
I

—w —wF B

ensemble

P(Ns) g P(NF, Ntt )5(NF+Ntt —Ns)

(43)

In order to explore the inherent properties of correla-
tion in P„, we need to further divide the physical region
of interest in different regions. This enables us to study
the global correlations between these regions. The formal
structure of the N-fold joint photon distribution with
Gaussian light was first studied by Bedard. Later on
Mehta and Mista extended the formulation to partial
coherent sources. However, the resultant expressions
for partial coherent sources are confined to a factorial cu-

Since

WF+ W~ = f I(y)dy,
O' I

P(Ns) is the same as P„given previously in Eq. (1). In
quantum optics, there have been analogous formulations
for photon counting by multiple detectors. These discus-
sions were traditionally along the lines of the moment
generating functions of P„. From these complicated
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P' —'(y ) = C [exp(ik' +'y )—+exp( i—k )y—)]/2,
2Pb,

f3 +(k —'6 )m y

(44)

(45)

where C is chosen for appropriate normalization. k' +—'

satisfies the self-consistency equation'

(+) k(+)$ /2m y (46)

analyses relatively few insights can be obtained for the
purpose of investigation of hadron multiplicity distribu-
tions. It is therefore necessary to consider an alternative
approach of constructing the amplitudes and the proba-
bility directly. In order to do this, we need to construct
the eigenfunctions P (y ) and the eigenvalues A, of Eq.
(12).' They are states with definite parity,

Two quantities are commonly used to characterize the
nature of the correlation within the joint distribution
function P(NF, N~). The first is the forward-backward
correlation for a fixed NF. Let us introduce the condi-
tional probability distribution PF(Na INF ):

PF(Na INF ) =P(N~, Nii ) g P(NF, Na ) .
B

(48)

Various moments of PF(Na INF ) can then be evaluated.
For example,

(Ns)F —yN/PF(NaINF) .
B

(49)

Empirically it is found that for a substantial region of NF,
the above equation is approximately a linear function of
NF. ' ' Thus we may write

=+[tan(x' +—))]—+',
X

(47) (Ns)F —a+bNF . (50)

where the + sign corresponds to eigenfunctions with the
+ parity in Eq. (44). The above equations indicate that
the higher-order terms of Eq. (15) contribute progressive
less to the overall probability distributions and the associ-
ated cumulants. Their determination is limited by the
statistics and uncertainties in the experimental data.
Starting from the largest value of A, k we have experirnent-
ed with the convergence of the expansion in Eq. (15) to
determine the minimum number of Gaussian terms that
are needed to determine the probability P„. This is done
by comparing the resultant (Ns ) and the cumulants pk
up to the fourth order and requiring agreement with the
theoretical prediction of Eq. (23) to 5%. (The value of
the smallest eigenvalue A, k reached about 0.0001.) We
notice that the number of the eigenfunctions that
significantly contribute to P„ is related to (n ). With in-

creasing (n ), more and more eigenfunctions are needed.
Typically the smallest eigenvalue we have used in this
work is taken as 10 . Once an appropriate number of
terms is determined, it is a straightforward matter to per-
forrn a Gaussian ensemble average over the functional
space to build a sample of P(N~, Nli). Possible systemat-
ic and statistical errors are also estimated in sample
Monte Carlo runs with increasing numbers of eigenvalues
and sample size. A typical number of eigenfunctions up
to 80 was used for the NA22 data with a Monte Carlo
simulation with 50000 trials. (Here a trial is identified by
an individual set of random [C I. ) In other words, the
underlying hadronic field for NA22 is represented by a
Gaussian ensemble of 80 eigenfunctions. %ith each
Gaussian component of I C I generated in a Monte Car-
lo program, the resultant stochastic field, and its integrat-
ed intensity 8'is a stochastic variable changing from trial
to trial. Furthermore, the stochastic variables WF and

Ws are Poisson transformed according to Eq. (41) to give
a complete table of the associated joint forward-
backward multiplicity distributions. The accumulated
ensemble of all the tables is the final joint probability dis-
tribution P(NF, N~). Its properties are compared with

experimental data in Sec. III. At higher collider (UA5)
energies, a typical number of eigenfunctions used for 546
GeV increases to more than 100.

The slope parameter b is often given empirically in the
literature.

Another interesting subject is the properties of the con-
ditional probability distribution of NF with a fixed
Ns=NF+NB. The purpose of such consideration is to
compare a quantum statistical model having inherent
correlations with classical models without correlations
(leading to random partitions and binomial distributions
of a single particle}. We start with the conditional distri-
bution with a fixed Ns,

P(NF, Nii =Ns NF)—
g P(N~, Nq )5(NF+N~ Ns )—51

F,B

For a classical random partition of individual particles,
the corresponding distribution is a binomial (BN} distri-
bution

~s(NF INs ) =Ps"(NF I Ns )

Ns (53)

and a reduced second moment C,(r (which characterizes
the eff'ective size of clustering ' ),

4Ds
eff

s

with Ds being the disPersion of NF with fixed Ns:

(54)

For the case of the production of single particle with ran-
dom partition between a symmetrical forward and back-

f (1 f ) 5(NF +N~—Ns ), —
NB!NF!

(52)

where f is the probability that an individual hadron fall
into the forward region (f=

—,
' for symmetrical regions. )

This BN distribution can be characterized by

(NF ls = g NFPs(NpINs)
F
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ward region f= ,'.—Weget (NF ) =Ns/2, and naturally,

the size of the cluster [Eq. (53)],

C,ff=1 .

Similarly, for particles being created in clusters of size 2,
the forward-backward distribution is

Ns /2!
P"'(N, ~N, ) =

(N, /2)~(N, /2)~

X 5(NF +Ns Ns )—,
(55)

C,ff=2 .

The above situation can be refined to include a finite
correlation length of clustering in the probability P„
along the rapidity axis. A center cluster may then be par-
tially in the forward and partially in the backward region.
C,ff then need not be an integer.

In the quantum statistical formulation of Eqs. (4) and
(43), not only is the effective cluster size greater than I,
C ff is also a function of N& . In a previous analysis of the
UA5 data, the values of C,ff indicated the need of using
clusters of size between 2 and 3. Thus the quantum sta-
tistical approach with a finite correlation length suggests
an effective cluster size somewhat different from the clas-
sical approach where the correlation length of the field
was ignored.

As we shall discuss in the following section, the unique
description of the P(NF, Ns) distribution for the entire
region, as well as for the correlations between different
regions provides much better determination of the pa-
rameters needed in our formulation.

III. PHKNOMENOLOGICAL ANALYSIS

In this section we shall explore the nature of the multi-
plicity distribution within the freedom of the three pa-
rameters mentioned earlier. We shall restrict ourselves to
the non-single-diffractive (NSD) multiplicity distributions
of the NA22 and the ISR data, in order to explore the na-
ture of the multiplicity distributions implicitly construct-
ed through quantum statistical correlation. Many poten-
tially important considerations such as the conservation
of charge and the inelasticity fluctuations are ignored in
the present formulation. Throughout this section, we
shall abbreviate X& by n, whenever there is no ambiguity.
We start by adopting a procedure similar to the recent
work of Fowler et al. In this procedure, the first pa-
rameter (n ) is fixed easily by the experimental value.
We then require that AM& calculated through Eq. (23) also
agree with the experimental values. Since there are alto-
gether three free parameters, one more condition is need-
ed. For a given correlation parameter P, we shall then
calculate the forward-backward slope b. Since the b is
rather sensitive to P, all the parameters are uniquely
determined. This in turn determines the entire joint dis-
tribution P(NF, Ns ).

Notice that we have not compared higher moments pk
of the multiplicity distribution P(n ). Unless the JM rep-
resentation in general has the correct form, the require-
ment that (n ) and p2 taking the experimental value

would not guarantee a correct overall distribution in
P(n ).

A. P(Nz ) distribution

The phenomenological representation used here con-
tains three parameters: the strength of a coherent com-
ponent (N, ), the strength of a chaotic component (N„),
and a reduced correlation length P of the chaotic com-
ponent. In other words, the probability distributions are
characterized by three parameters: the overall average
multiplicity

(ns) =(n, )+(n„),

chaoticity

(")
(ns)

characterizing the noise content, and the relative correla-
tion length

P=rb,

of the chaotic component. Once these three parameters
are determined, we have a unique description of the
P(NF, Ns ) distribution for the entire region, as well as for
the correlations between different regions. Thus the total
multiplicity distributions for a fixed rapidity window, and
the joint multiplicity distributions between different win-
dows are completely specified. We are now in a position
to determine these parameters from the experimental
data. Given a set of experimental values of P(n), from
NA22 or ISR pp data, ' the values of ( n )'" ' and p, ~&~'

lead to a constraint between the chaoticity parameter p
and the correlation parameter P. Figure I shows these

0.30

0,25

& 62 GeV

0.20

0.15

0.10

0.05

0.00
0

P

FIG. 1. Relationships between chaoticity p and P that lead to
the correct values of (n~),„~ and I@2,„ I. Curves from top to
bottom correspond to the ISR energies of 62, 52, 44, and 30
GeV (Refs. 36 and 37) and the NA22 energy of 22 GeV (Ref.
35).
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0.17
0.13
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1.0
1.0
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X /&DF

2.4/10
2.4/10

8/11'
9/15
8/16

17/16

not included.'n =2 data point no



42 QUANTUM CORRELATIONS IN HIGH-ENERGY MULTIHADRON. . . 3033

6 0 t « t

I

» i t

I

t & r r

I

«r &

I

r & t i

I

I r 8 ( I I

5.5
7 I-

5.0

4.5

4.0

R

V

6;

5

3.5 NA22

I I i & f I

0 2 4 6 8 10 12
3 I I I I I I I I I I I

0 2 4

30 GeV p = 0.078
i I I I I I I I I I I I I I

6 8 10 12

FIG. 3. Using the same parametrization as given in Fig. 2 for
the joint forward-backward probability distribution P(NF, N& ),
(Ns ) is shown as a function of NF at the NA22 energy for (a)
P= 1 and for (b) P=4.

FIG. 5. Given the same parameters as in Fig. 4, the corre-
sponding (Nz ) is shown as a function of NF at the ISR ener-
gies: (a) 30GeV, (b) 44 GeV, (c) 52 GeV, and (d) 62 GeV.

rizes the values of y /ND„ for some of the typical values
of p. More detailed comparison with the experimental
P(n) shall be presented later for specific values of p
determined through the forward-backward correlation
slope parameter b.

B. Forward-backward correlation

As we mentioned earlier, to determine more
specifically the parameters, it is necessary to use correla-
tion properties between the forward and backward re-
gions. Figure 3 plots the (Ns) as a function of NF at
NA22 energy, for the same parametrization as given in
Fig. 2 [P= l, p =0.048 in (a), and P=4, p =0.078 in (b)].

Notice that for the whole region of NF the (Nit )F depen-
dence is almost a straight line. Thus the value of b allows
us to select a correlation parameter p and a chaoticity pa-
rameter p. The forward-backward slope can therefore be
used as a possible tool to discriminate solutions that can-
not be obtained by examining the overall KNO plots
alone. Similar analysis can also be applied to the ISR
data. Figures 4(a)-4(d) present the comparisons between
P(n ) and experimental data. We notice that for all the
energies, the y /NDF are acceptable (except possibly the
n =2 components, P2 has therefore been excluded). Simi-
larly, Figs. 5(a)—5(d) present the (Nz)F dependence on
NF. The role of the forward-backward correlation can be
clearly seen. Figures 6 summarize the dependence of the

0.2

0.1

30 GeV
(~)

4 GeV
(b)

0 0

0.2

eV

0.0
10 40 0 10 20 30 40

FIG. 4. Explicit values of the P„as a function of n at the ISR energies: (a) 30 GeV, (b) 44 GeV, (c) 52 GeV, and (d) 62 GeV with
the correlation parameter p arbitrary taken to be p= 1, and the associated values of the chaoticity parameter p as labeled.
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FIG. 6. Forward-backward slope d(Ns ) /dNF is shown as a
function of the correlation parameter P at different energies as
labeled: (a) 22 GeV, (b) 30GeV, (c) 44 GeV, (d) 52 GeV, and (e)
62 GeV. The estimated experimental data point (with error bar)
on each curve can be used to determine the corresponding value
of the corresponding correlation length P.

forward-backward slope as a function of the correlation
parameter p. In this figure, we also indicated how the ex-
perimental values of the forward-backward slopes can be
used to determine the values of p for the NA22 and ISR
data. Notice that the values of P is close to 1 for all the
energies.

Even though precise values for the forward-backward
parameters are not available for NSD data, the value of
the slope parameters presented here are quite consistent
to typical values obtained in the NA22 and ISR region.
We also notice that in the recent NA22 analysis, the
slope parameter is a sensitive function of the selection of
charge of the final state. This indicates that charge con-
sideration plays an important role in correlation. Further
extension of our present analysis to the charge space is
needed.

0.6

Ps(xF INs) =Ps(NF l&g )/B~(N~INz) as a function of
xF=NF/N~ with fixed N~=5 for p= 1 at NA22 Energy.

D. Correlation and energy dependence

The energy dependence in the KNO distribution
P(z ) = ( n )P„, z =n /( n ), is traditionally of interest.
Empirically, the KNO function is a slowly widening
function of 8'. Notice that the reduced factorial cumu-
lants

pk pk/(Ns )

are functions of p and p, and are independent of ( Ns ) .
The widening of the KNO function should therefore be
rejected either through an increase in p or an increase in
p. Figure 9 plots the value of p determined earlier as a
function of 8'. It indicates that not only are the absolute
values of the (n„) of the chaotic components and the
( n, ) of the coherent components increasing, the relative
amount of the chaotic component p is also slowly increas-

C. Effective clustering and binomial distribution

In order to demonstrate the forward-backward correla-
tion, we have also evaluated a quantity

1.5 t i »
~

i, i i

~

r i i t

~

i r

14

Ps(xFINs) cPs(NF Ns)/BN(NFINs)

with

XF
x5

(56)

(57)

M

a

1.3
62 GeV

52 GeV

44 GeV

30 GeV

22 GeV

where c is the normalization constant so that
Ps( ,' IN~)=1. Figure 7 plots P~—(xF IN~) at NA22 energy
with p=1 and fixed N~=5. Since Ps(xFIN~)%1, the
corresponding P~(NF INs) is not a binomial distribution.
The deviation of Ps(x~IN&) from 1 also varies as a func-
tion of Xz. This dependence is summarized in Fig. 8,
where we have plotted C,s (defined by 4D+/N~) as a
function Xz. Figure 8 also presents similar dependence
at the ISR energies for the same parametrization (p= 1

used in Fig. 4.)

1.0

0.9 t
1
I

I » & i I i & r & t

5 7.5 10 12.5

Ns

FIG. 8. The effective cluster size, C,ff=4D, /N„as a func-
tion of N~ for P= 1 at different energies as labeled: (a) 22 GeV,
(b) 30 GeV, (c} 44 GeV, (d) 52 GeV, and (e) 62 GeV. The pa-
rameters are as indicated in Figs. 3 and 4.
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FIG. 9. Value of chaoticity parameter p as a function of
center-of-mass energy F.

IV. CONCLUSION

In this paper we have presented a phenomenological
representation of the hadronic multiplicity data in the
framework of a quantum statistical system with correla-
tion. Our basic formulation is essentially the same as the
Jaiswal-Mehta formulation developed earlier in quantum
optics. However, the explicit evaluation of the multiplici-
ty distribution for a single window and the joint multipli-
city distributions for two regions are new. In fact, this is
one of a very few quantum statistical models where the
global joint multiplicity distributions are calculated ex-
plicitly. These global probability distributions have also
been compared directly with the experimental data in a
detailed phenomenological analysis (instead of an indirect
comparison through the factorial cumulants ).

The phenomenological representation used here con-
tains three parameters: the strength of a coherent com-
ponent ( N, ), the strength of a chaotic component ( N„),
and a reduced correlation length P. Both the total multi-
plicity distributions for a fixed rapidity window and the
joint multiplicity distributions between different windows
are completely specified. Since joint multiplicity distribu-
tions are in general not available from experiment, we
have calculated only the total multiplicity distribution
(nonsingle diffractive) for the whole rapidity window, the
forward-backward correlation slope parameter, and the
effective size of the cluster (of random partition between
the forward and backward region).

Within the Jaiswal-Mehta framework of quantum sta-
tistical formulation for a Lorentzian correlation spec-
trum, the overall distribution P„appears to be quite con-
sistent with experimental data. However, this compar-
ison of P„does not determine uniquely the three parame-

ing as a function of the total energy W. On the other
hand, the relative correlation parameter P remains more
or less a constant. Since the total width of the rapidity
plateau 6 is increasing as a function of W, the absolute
correlation length I /r =6 /P is also increasing as a func-
tinn nf Avn~nm ~a ~y r

ters that are needed to specify a phenomenological repre-
sentation. We noticed that, as long as a combination of
(n, ), (n„), and P lead to the experimental values of
( n ) and p2, it is possible to obtain without difficulties the
experimental P„with a reasonable g /NDF. This sug-
gests that the Jaiswal-Mehta formulation provides a good
starting point as a quantum statistical description of the
hadronic production processes.

In general, the forward-backward slope parameter b is
sensitive to the nature of correlation. The same is true in
the Jaiswal-Mehta formulation. By requiring a phenome-
nological JM representation to possess a reasonable
forward-backward slope, P can be determined to be close
to 1 throughout the region of NA22 to ISR energies. The
corresponding values of p on the other hand is slowly in-
creasing with (n ). Preliminary studies at the collider
energy indicate that this feature continues. At Collider
energies, the values of (n ) are much larger than at the
ISR energies. This makes the convergence of the eigen-
functions expansion of Eq. (l) very slow, and the numeri-
cal evaluations of the high-P„region much more difficult.
Detailed analysis will be reported later.

A comprehensive analysis is under way to evaluate the
present formulation of the multiplicity distribution as a
function of the rapidity window. Notice that for the JM
formulation to be attractive and economical, one should
be able to use a single correlation length to describe
P(NF, Na) for a large width of the window. It should
then replace the use of k of the empirical NB distribution
as a function of the rapidity window. For example, the
widening of the KNO plot for decreasing rapidity win-
dow width should be a retlection of the decrease in P.
Indeed, for P= ao, the present formulation predicts a lim-

iting KNO distribution of a NB with k =1. Our prelimi-
nary analysis of the NA22 data at Y 1 and UA5 data at

1.0 indicates that the multiplicity distribution can be
adequately described prior to the introduction of the fluc-
tuation due to inelasticity. Since these analyses are more
interesting but complicated, we shall refer the discussion
to the recent work of Fowler et al., where the factorial
cumulants are used as the primary tool of analysis.

Even though the formulation reported in this paper has
no difficulty reproducing the NSD multiplicity distribu-
tion for a wide range of energies, various considerations
that we have ignored may eventually change the values of
the final parametrization. This includes, for example, the
inelasticity and leading particle effects, nonstationary
effects, and the consideration of charge and energy.

Throughout this paper we have used amplitude corre-
lations of an effective charged field m.,h. In a more
comprehensive formulation, one needs to introduce at
least two fields, m+ and ~ . Charge conservation should
also be properly incorporated. It would be easier to con-
sider only one type of charge, say the m sector. There
are, however, relatively little data available for a
comprehensive analysis. Data on P„at NA22 and UA1
in the near future will be very helpful for further evalua-
tion of the merit of the quantum statistical approach re-
ported here.

Recently we have generalized the current quantum sta-
tistical formulation for factorial cumulants to include a



3036 CHIA C. SHIH

pT spectrum, and a nonstationary rapidity distribution,
as well as charge correlations. It is, however, still
difBcult to construct the probability distribution explicit-
ly in these generalizations. Work along this line is in pro-
gress.
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