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We present a new method for calculating the twist-4 contributions to the hadron structure func-
tions. This new method leads to a clear space-time picture of twist-4 short-distance contributions
and makes manifest the preservation of the underlying gauge invariance. The use of our new

method results in a significant reduction in labor relative to past calculations of higher-twist contri-
butions. In our new approach, the twist-4 short-distance contributions to the hadronic structure
functions arise from the complete imaginary part of a photon-parton forward-scattering amplitude,
and, hence, they can be given a simple parton-model interpretation. Possible tests of such twist-4
contributions are also discussed.

I. INTRODUCTION

The parton model' has provided us with a simple and
intuitive description of scaling phenomena of many
high-energy scattering processes. With the leading-twist
logg corrections, the QCD-improved parton model
gives even better predictions of high-energy experimental
data. Furthermore, the twist-4, or inverse-power 1/Q
corrections in inelastic processes will make precision tests
of QCD, the strong-interaction theory. This problem has
been discussed by many authors. Three complete and
consistent analyses of twist-4, or inverse-power 1/Q
corrections to deeply inelastic lepton-hadron scattering
have been carried out. Jaffe and Soldate (JS) used
operator-product-expansion (OPE) methods to relate the
inverse-power corrections to the target matrix elements
of certain classes of twist-4 local operators. Ellis, Fur-
manski, and Petronzio (EFP) used graphical methods to
express the inverse-power corrections in terms of certain
generalized quark-gluon correlation functions. Jaffe
later recasted the result of OPE analysis in the language
of the parton model. All these analyses are technically
very complicated. Particularly, it is not clear after a very
long and complicated derivation that the twist-4 short-
distance contributions to the hadron structure functions
can be related to some simple physical proton-parton
processes. In this paper, we shall introduce a new
method (a new physical concept —the special propagator)
to separate the di6'erent-twist contributions of a Feynman
diagram. This new method leads to a clear space-time
picture of twist-4 short-distance contributions and makes
manifest the preservation of underlying gauge invariance.
Using this method, we shall give another complete
analysis of the inverse-power corrections. Our new ap-
proach not only reproduces the result of EFP, but also
gives the result of simple parton-model interpretation. In
particular, the use of our new method results in a
significant reduction in labor relative to past calculations
of higher-twist contributions.

In deeply inelastic lepton-hadron scattering, the strong
interaction is governed by the hadronic tensor 8'" (p, q)

1
g~ yv

2 q
2

X
eg"= p"p'+ —(p"q "+q "p") ,'g"' . ——

pq
(2)

The longitudinal and transverse structure functions
FL(xB,Q ) and Fr(xB, Q ) are related to the standard
structure functions by

2(xB~Q ) xBFT(xB~Q

F, (xB,Q )= 2[FT(xB,Q ) —Ft (xB,Q )]—.

To calculate the twist-4 corrections to these structure
functions, one should calculate the twist-4 contributions
to the tensor W""(p,q), and then use Eq. (1) to extract the
corresponding contributions to the longitudinal and
transverse structure functions.

Before introducing our new method, let us study why
the standard Feynman-diagram approach for calculating
the twist-4 corrections is very complicated. In EFP's
standard Feynman-diagram approach, they expand the
virtual-phonon —hadron forward scattering amplitude in
terms of Feynman diagrams, as shown in Fig. 2. At any
given order of the strong coupling constant g, they in-
clude only diagrams whose strong quark-gluon interac-
tion vertices can be met to the same point when the two
photon-quark interaction vertices are shrunk to a single
point. Such expansion is obviously a direct extension of
OPE calculation. At any given twist, calculating the

where p is the total momentum of the target and q is the
momentum of the virtual phonon. The tensor W'""(p, q)
is defined as the imaginary part of the virtual-
photon-hadron forward-scattering amplitude, as illus-
trated in Fig. 1. Because of electromagnetic gauge invari-
ance, the tensor W"'(p, q) can be decomposed as '

g '(p, q) =eg'Ft (xB,Q')+etr"FT(xB, Q'),
where Q2= —q2, xB =Q2/2p q, and the invariant tensors
eg'" and eP" are defined as
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FIG. 1. The virtual-photon-hadron forward-scattering am-
plitude.

leading contribution to the hadron structure functions is
to pick up the leading short-distance strong-interaction
part from these Feynman diagrams (i.e., to calculate the
corresponding coefficient function in OPE language). In
EFP's approach, they give a consistent factorization
scheme to separate the bottom photon-parton scattering
parts from corresponding top target matrix elements. All
bottom parts are well defined and calculable. After per-
forming such a factorization, however, one will find a po-

tential difficulty involved in such a approach. That is, the
top parts of three diagrams in Fig. 2 are different from
each other, and the individual bottom part does not con-
serve the electromagnetic gauge invariance. Because the
short-distance coefficient functions and the long-distance
target matrix elements should separately conserve gauge
invariance, we should expect a nontrivial mixture of con-
tributions to the coefficient functions from different dia-
grams in Fig. 2, and, hence, a possible distortion of the
photon-parton scattering picture of the twist-4 short-
distance contributions.

The key in EFP's approach is to use equations of
motion to relate the two- and three-parton target matrix
elements [the top parts of diagrams in Figs. 2(a) and 2(b)]
to the four-parton target matrix element. After a long,
clever, and very complicated derivation, EFP did find the
gauge-invariant 1/Q corrections to the structure func-
tions. Their result can be written as

Fi(xs, Q )= T, (xs)+04 1

2= 1 5(xz —xs ) —5(x, —xs ) 1Fr(xs, Q )=
z 4T, (xs) —xs f dxzdx, T, (xz, x, ) +0

X2 X)
(4)

(For simplicity, we show only the leading I /Q contribution without including the leading-twist contribution in the for-
mulas of structure functions here. We shall consider only the limit of zero target mass in this paper. The dependence
on target mass will not change our conclusion. ) In this formula the x, and xz are light-cone momentum fractions of
parton rnomenta k& and k2, see Fig. 2, and T& and T2 are the four-parton correlation functions. They are defined on
the light-cone as

T, (xs ) =—f e (pi Tg(0)y, dy&DT(0)D)(A, )g(A, )ip ),
Tz(xz, xl ) =

4 f z
e ' ' e ' (pj Tf(0)7 ~ Y+r(ri)Dr( 9)0(~)~p ),

(2m )'

where the DT'(A, ) is the transverse component of the co-
variant derivative and the I, is the light-cone coordinate.
The final result of EFP is very compact, and depends
only on one four-parton target matrix element. However,
after mixing contributions from the two- and three-
parton correlation functions with the four-parton correla-
tion function, it is not clear if the twist-4 short-distance
contributions have a simple parton-model interpreta-
tion. '

In EFP's approach, the mixing of the multiparton tar-
get matrix elements makes the calculation of high-twist
contributions very nontrivial, and the mixing makes the
parton picture unclear. The reason for this kind of mix-
ing is actually due to the factorization procedure. The
factorization procedure introduced by EFP is a consistent
procedure to separate the spinor trace and the sum of
Lorentz indices between the top and bottom parts. But
this is not a procedure to completely factorize the short-
distance interaction part from the long-distance part, be-
cause the top parts obtained after performing such a fac-
torization still include some short-distance hard interac-

(b)

FIG. 2. Feyn man-diagram expansion of the virtual-
photon —hadron forward-scattering amplitude used in EFP's ap-
proach.
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tion pieces. The key in our new method is to exclusively
use the Feynman diagram technique to explicitly separate
the short-distance interaction part from the correspond-
ing long-distance matrix element order by order
(twist by twist) T.o be able to pick up the short-distance
contribution from a given Feynman diagram, we shall in-
troduce a new physical concept —the special propagator,
which is a part of a normal propagator, but does not
propagate. Using the concept of special propagator, we
find that the total twist-4 short-distance contributions to
the hadron structure functions arise from the complete
imaginary part of a photon-parton forward scattering
amplitude, and, hence, they can be given a simple
parton-model interpretation.

Understanding exactly how the lower-order diagram
[e.g., one in Fig. 2(a)] gives high-twist contribution is the
key to separate different-twist contributions of each dia-
gram in Fig. 2. In the ¹ A =0 gauge, the leading contri-
bution from a diagram with n loop partons (those in Fig.
2) is to the twist-n short-distance coefficient function
when we let all loop parton momenta entering the bottom
part of the diagram be on-shell and collinear. The dia-
gram can obviously give a high-twist contribution if the
loop parton momenta entering the bottom part are not
taken to be on shell and collinear. We find that for any
diagram shown in Fig. 2, the effect due to the noncol-
linear components of loop momenta entering the bottom
part of the diagram is to replace the gluon operators in
the higher-order diagrams by corresponding covariant
derivatives. For example, the leading contribution due
to the nonlinear component of loop momentum k enter-
ing the bottom part of the diagram in Fig. 2(a) is to re-
place the gluon operator in the top part of the diagram in
Fig. 2(b) by corresponding covariant derivative. Similar-
ly, the next-to-leading contribution from the diagram in
Fig. 2(a} plus the leading contribution from the diagram
in Fig. 2(b), due to the noncollinear components of loop
parton momenta entering the bottom parts, is to replace
the gluon operators in the top part of the diagram in Fig.
2(c) by corresponding covariant derivatives.

However, even all loop parton momenta entering the
bottom part are set to be on shell and collinear, the dia-
gram can still give higher-twist contributions. This is ac-
tually caused by two facts. One of them is that the loop
propagators that are defined to be included into the top
part of the diagram have the "contact" terms, which offer
no space separation along the light-cone coordinate [see
Eq. (14)]. The other is the existence of nonvanishing in-
trinsic transverse momenta of the loop propagators. By
studying how the simplest diagram shown in Fig. 2(a) can
give a high-twist contribution, as an example, one can see
the existence of the above two facts and understand in
general how a low-order diagram can give a high-twist
contribution. After approximating the loop momentum
k entering the bottom part to be xp, and parametrizing
the virtual-photon momentum q as in Eq. (9), the bottom
part of the diagram in Fig. 2(a) must be proportional to
y-n or y-p. When the term proportional to y n contract-
ed with the top part, we get the normal leading twist-2
contribution. When the term proportional to y-p con-
tracted with the top part, we will get the high-twist con-

tribution. As a definition, the top part includes the two
loop propagators of momentum k. In terms of the gen-
eral decomposition of momentum k in Eq. (6), it is clear
that the collinear part of the loop momentum does not
give the high-twist contribution because y (xp)y p=O.
When y p contracted with the loop propagator iy k/k,
there are two possible nonvanishing terms. One of them
is proportional to i y n /(2k n ), which is indeed the "con-
tact" term [see Eq. (14)] defined as the special propaga-
tor; and the other depends explicitly on kT. Because of
Eq. (15}it is clear that the second term can be combined
with the first term to preserve the color gauge invariance.
Because the contact term offers no space separation along
the light-cone coordinates, the combination of a contact
term and a directly connected quark-gluon vertex should
be included into the bottom short-distance interaction
part. From simple dimensional analysis, one can see that
moving every one combination of a special propagator
and a directly connected vertex is to move one unit of di-
mension [1/energy] from a top part to a corresponding
bottom part. The new short-distance bottom part thus
contributes to one twist higher structure functions. By
moving two such combinations from the top to the bot-
tom part, we can get the twist-4 contribution included in
the diagram shown in Fig. 2(a).

In Sec. II, we shall show the existence of the contact
term, and introduce a new concept —the special propaga-
tor. The special propagator is a propagator that does not
propagate. It is defined to be equal to the contact term of
a corresponding normal propagator. The special propa-
gator offers no space separation along the light-cone
coordinates of two interaction points connected by the
propagator. Using the property of the special propaga-
tor, we shall introduce a method to separate the short-
distance photon-parton hard interaction part from the
long-distance target matrix elements. Using the method
introduced in Sec. II, we shall give a complete list of
technical steps to calculate the leading twist-4 contribu-
tions to the hadron structure functions in Sec. III. Fol-
lowing these technical steps, we shall compute the twist-4
contributions. For the completion, we shall also discuss
the four-quark case which is much simpler than the
quark-gluon case. Finally, in Sec. IV we shall summarize
the physical concepts and new technique used in our new
approach. We shall also discuss the possible extension of
our method and discuss the possible application of this
I /Q corrections to the effective hadron structure func-
tions of a big nucleus.

II. THK SPECIAL PROPAGATORS

In this section we shall show explicitly how a low-order
diagram [e.g. , one in Fig. 2(a)] can give the high-twist
contribution. By introducing a new concept —the special
propagator, we shall show how to separate the short-
distance and long-distance contributions of a diagram.
We then introduce a method to pick up the high-twist
contribution from a low-order diagram twist by twist.

Introducing an auxiliary lightlike vector n, we fix the
gauge as n 3=0, where 3 is the gluon field. In terms of
the auxiliary vector n, we may decompose any parton
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momentum k as

k +kk"=xpl" + n" +kP,2k.n

where

=k "+ nI'
2k-n (6)

q"= —xBp"+ n" .
2xBp n

(9)

It follows that q = —Q and x~ = Q /2p q.
Having the gauge and the frame fixed, we can write the

leading photon-hadron forward scattering amplitude [the
diagram in Fig. 2(a)] as

d4kM""= S"
(2n)

(10)

where the subscript 2 indicates the process having two
loop partons, the square brackets indicate the trace over
spinor indices, S is a bottom part defined not to include
the loop propagators of momentum k, and f' is the corre-
sponding top part given by

f'(k)= fd z e'"'(p~g(0)g(z)~p ) . (11)

Similarly, we can write down the amplitudes for the pro-
cesses shown in Figs. 2(b) and 2(c) (see next section).

In principle, the imaginary part of the amplitude M~2"

given in Eq. (10) can give a contribution to the structure
functions at any twist equal to or larger than two. The
leading twist-2 contribution is obtained when the loop
momentum k entering the bottom part S 4'(k) is equal to
its collinear component. The diagram can give a high-
twist contribution when the k in S" (k) has a nonlinear
component. One can pick up the high-twist contribution
due to the noncollinear component of the loop momen-
tum entering the bottom part S"'(k) by expanding the
bottom at k"=xp":
S" (k)= S""(xp)

aS~",„,. 1 a'S~"
ak. , „, 2 ak akt', „,

p =n =p.kz-=n. k~=0, k 2=0.
In terms of plus and minus notation,

k+=k n, k =kP,
where p„=p„/p n In. Eq. (6), x =k n/p n as the
longitudinal-momentum fraction carried by a parton of
momentum k in the infinite-momentum frame. We
parametrize the virtual-photon momentum q as

The diScult part of calculating the high-twist contri-
bution is to pick up the short-distance contribution from
the top part 1(k). Substituting Eq. (12) into (10), all
high-order terms will contribute to high-twist structure
functions. The treatment of these terms is straightfor-
ward and will be given in the next section. The first term,
however, can give not only leading twist-2 contributions,
but also high-twist contributions. To find the high-twist
contribution from the first term is nontrivial. It is the
main task of this section and includes all basic ideas in-

volved in our new approach.
After performing the collinear expansion of the bottom

part S, every term in the expansion must be proportional
to y n and/or y p. Clearly, the S"'(xp) [the first term in

Eq. (12)] can be proportional to y.n or y p. When
S""(xp) contracted with the top part f'(k), the term pro-
portional to y n gives the normal leading twist-2 contri-
bution. As we shall show in the following paragraphs,
the term proportional to y p results in the high-twist con-
tribution. If we apply EFP's factorization scheme to
separate the bottom part S ""(xp) from the top part f'(k),
the target matrix element [f'(k)y.p] will include a high-
twist short-distance contribution. We then have the corn-
plicated mixing problem. What we shall do here is in-

clude all possible high-twist short-distance contributions
into the bottom part first, and then apply EFP's factori-
zation scheme to separate the short-distance bottom part
at a given twist from corresponding long-distance top
part.

To study how the target matrix element f'(k) contract-
ed with y p can give a high-twist short-distance contribu-
tion is to study (iy klk )y pand/. or y p(iy k/k )

When f'(k} is contracted with y p, as shown in Fig. 3, it
is clear that the collinear part of y k does not contribute
because y (xp)y p=0. In terms of the general decompo-
sition of momentum k in Eq. (6), we find that (1)
[1(k)y p] will not be equal to zero if the loop parton has
an intrinsic transverse momentum (i.e., k&%0); more im-

portantly, (2} [T(k)y p] does not vanish even though

kr =0, because of the existence of a term iy n /(2k n) in

the loop propagator i y k/k This term. is the "contact"
term that offers no space separation along the light-cone
coordinate and plays a key role in our new approach.

The "contact" term of a normal propagator is a term
that does not propagate along the light-cone coordinate.
The existence of such a term in a normal propagator can
be demonstrated by studying the light-cone coordinate
dependence of a propagator of momentum k propagating
from a vertex at light-cane coordinate k.n to another ver-
tex at g.n. For example, for a quark propagator of
momentum k,

X(k —xp) (k —xp}~+ (12)

As we shall show in Sec. III, the effect of high-order
terms in the above expansion is to replace the gluon field
operators in the higher-order diagrams by the corre-
sponding covariant derivatives. That is, the high-twist
contribution due to the noncollinear component of k
entering the bottom part can be easily taken care of.

FICs. 3. The cut vertex to pick up the high-twist contribu-
tion.
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iyk iyk iyn (13)

we consider transformation

1

2m

—ik (yi —A )+ jy k
dk e

k +lE
ly+ y-k= 5(g+ —A+) +0(q+ —A+)
2k+ 2 +

—i (kT/2k+ )(g+ —
A, + )

Xe (14)

where we have used the plus and minus notation defined
in Eq. (8) for simplicity. The k in Eq. (14) is defined in
Eq. (6} and is equal to the on-shell part of momentum k.
Equation (14) shows clearly that every quark propagator
has a contact term (the 5-function term). Similarly, as
shown in Eq. (27), every gluon propagator has a contact
term also. To identify the contact term, we introduce a
new concept —the special propagator which is defined to
be equal to the contact part of a normal propagator, and
is symbolized by the normal propagator with a short bar
[see, e.g. , Fig. 4(a)]. For a normal quark propagator of
momentum k, F (k) =i y k/k, the corresponding special
propagator is equal to F,(k)=iy n/2k n. Because this
kind of contact term offers no space separation along the
light-cone coordinate, clearly, such term in the loop
propagators and the vertices (in the top matrix element)
linking directly by these terms should be included into
the short-distance photon-parton interaction part
(coefficient function part). For example, the quark-gluon
vertex and the special quark propagator in Fig. 4(a),
which is just one part of the diagram shown in Fig. 3,
should be included into the short-distance coefficient
functions. The new top part is now a three-parton target
matrix element. From the simple dimensional analysis,
we conclude that because of the existence of the contact
term in the loop propagator, [f'(k)y p] can give a high-
twist short-distance contribution.

To see how the intrinsic transverse momentum kT of
the loop parton can result in the high-twist short-distance
contribution, we again consider [f'(k)y p] shown in Fig.
3. After subtracting the diagram in Fig. 4(a} from the di-
agram in Fig. 3 (subtracting off the effect of the contact
term), the left loop quark propagator of momentum k is
now equal to iy k/k . It follows that the leftover top
part is no longer equal to the two-parton matrix element
defined in Eq. (11). When this leftover top part contract-
ed with the y.p, we obtain

That is, the diagram in Fig. 3 is equal to the diagram in
Fig. 4(a) plus the diagram in Fig. 4(b). As we shall show
in the following paragraphs the two diagrams in Fig. 4
can be combined together. The effect of the second dia-
gram is to replace the gluon field operator in the top part
of the first diagram by correspondin covariant deriva-
tive. Therefore, we conclude that [ (k)y p] shown in
Fig. 3 gives a high-twist contribution.

We now show that the effect of the diagram in Fig. 4(b)
is to replace the gluon field operator in the top part of the
diagram in Fig. 4(a) by the corresponding covariant
derivative. Using Eq. (15), we can write the contribution
of diagrams in Fig. 4 as

M, =f [2 (k, k, )f' (k, k, )],d4k d4k,

(2m. ) (2n }

d4k
Mb= f [s (k, k)(k xp) f—' (k)],

(2m)

(16)

kg

where f'(k) is given in Eq. (11) and f' (k, k&) is defined
as

f"(k,k, )=f d'zd'z, e' ' 'e' '"

&«p l&(0)( —gr'a (z))P(z, )Ip &, (17)

where B is a color index in the adjoint representation and
is the color matrix and is normalized by

Tr(r r ) = ,'5 A—s in .Eq. (17), we shall always include
the color factor and the strong coupling constant of the
bottom part of the diagram into the top matrix elements.
Because the bottom parts s in Fig. 4 depend only on col-
linear components of the loop momenta (the special prop-
agator depends only on the collinear component), we can
rewrite Eq. (16) as

M, =f dx dx, [s (xp, x,p)f' (x,x&)],

M, =f dx [s (xp, xp) f' (x )],

y
y p

k k

y-ky. k
y'p

T

(k xp) (iy )
— y.p,Iyk . iy n

k2 2k n
(v —xp)

(15)

where we have used y.ky. k=0 and y py-n y.p
=2p ny.p. From Eq. (15), clearly, the effect of the non-
vanishing loop transverse momentum in the left quark
propagator is equal to the diagram shown in Fig. 4(b).

(b)

FIG. 4. Sample diagrams with the cut vertex shown in Fig. 3
that give the leading short-distance high-twist contribution.
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where

d4k
T (x)=f 5 x-

(2n. ) p'n
(k —xp} T(k),

(k —xp) T(k)=co k T(k)

=co f d z e' '(p ~f(0)(i() )P(z)~p ) .

k-n
p. n

ki n
X5 x, — f'(k, k, ) .

p n

dk dk
T (xx&)=f 5 x-

(2m } (2'�)

(19)

4
ikzg

(2n }

k.n

p n

Using Eq. (20), and the identity

i A,xg42~' p.n
n

(21)

By introducing a projecting operator u .=g —p n .,
we find

where A. is a light-cone coordinate along the n direction
and is scaled by a factor 1/p n, we can rewrite Eq. (19) as

T'( )e=ru', f e' *
p 0(0)((0')0 p),27T p n

(22)
de] dl(, ('g(X X( ) le(.X (T (X,X( 1 e 1

2m' 27T
$(0) —gr Ag p'n

Since

N A
pn

=A~
pn

and

1=f dx, 5(x x, )=—fax, f "e'"'" "",

()(0)D' 0 le),p'n p'n
(24)

where the D is a covariant derivative, and is given by
(iB gHAg )—

Similarly, by applying the same technique to the right
loop propagator of the diagram in Fig. 3, we find that the
diagram in Fig. 3 is equal to the diagram in Fig. 5. The
top part is a four-parton target matrix element given in
Eq. (45), and the bottom part is the leading nontrivial
high-twist short-distance contribution given by
[T(k)y p]. Obviously, by applying our technique again
between the new bottom and top parts, we can factorize
out the short-distance contribution at even higher twists.

Based on the above example, we conclude that when
y.n is contracted with a loop quark-propagator of the top
target matrix element, it picks up the leading-twist long-
distance contribution of the matrix element; when y.p is
contracted with a loop quark-propagator of the matrix
element, it turns the loop propagator effectively into a

M, and Mb in Eq. (18) can be combined together as

M, +Mb =fdx dx([s (xpex(p)aP~. f' (x,x()], (23)

where f' (x,x, ) is, instead of Eq. (22), now given by

d'r) d g ('g(X X) ) le(.X
(T X,X( e e

2m 2'

k,
P

7P
FICx. 5. The cut diagram that gives the leading short-distance

twist-4 contribution.

special propagator and pulls down the special propagator
and a directly connected quark-gluon vertex from the top
matrix element into the corresponding bottom photon-
parton interaction part to give the leading nontrivial
high-twist short-distance contribution. The inclusion of
one quark-gluon vertex and a special quark propagator
into the bottom part increases the dimension of the bot-
tom part by one unit of [1/energy], and thus makes the
new bottom part contribute to the short-distance
coeScient functions at one twist higher.

Because (1) every term in the collinear expanded bot-
tom part is proportional to y n and/or y p, (2) the y p
turns the loop quark propagator effectively into a special
propagator, and (3) the y n gives no effect on the special
propagator (y ny n=0), we find that to obtain a higher-
twist short-distance contribution from a lower-order dia-
gram is to move a certain number of combinations of the
special propagator and the connected vertex into the bot-
tom part of the diagram; for example, the leading non-
trivial high-twist short-distance contribution of the dia-
gram in Fig. 2(a) is equal to the leading contribution of
the diagram in Fig. 6(a). More detail will be given in the
next section.

Now let us briefly discuss the special gluon propagator,
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G, ~(k). In our twist-4 calculation, we need only the one
property of the special gluon propagator that the G, ~(k)
is proportional to n n~. However, it will play an impor-
tant role in a calculation of coeKcient functions at even
higher twists. In the light-cone gauge, the gluon propa-
gator of momentum k is given by

G ~(k)= I ~(k),
k

where the I ~(k) is given by

g(k) ii k n +n=g (26)

In terms of the general decomposition of parton momen-
tum k given in Eq. (6), we can rewrite the gluon propaga-
tor as

a
G ~(k) = I ~(k) = I ~(k )+i

k k (k n)
(27)

III. POWER CORRECTIONS
TO THE STRUCTURE FUNCTIONS

In this section we shall use the method developed in
the last section to separate the contributions from
different twists, and to calculate the twist-4 contributions
(i.e., the leading inverse-power corrections) to the hadron
structure functions. After factorizing the short-distance
interaction from corresponding long-distance physics, we
find that the twist-4 short-distance interaction part can be
expressed in terms of some simple photon-parton scatter-
ing processes. The long-distance part is given by a well-
defined target matrix element.

To get complete twist-4 contributions, we should pick
up all 1/Q contributions not only from diagrams shown
in Fig. 2 but also from the four-quark process shown in
Fig. 7(a). The treatment of this four-quark process is

I

By comparing Eq. (27) with Eq. (13) and carrying out the
transformation shown in Eq. (14), we find that the special
gluon propagator should be

G, ~(k)=in n~/(k n)

because it does not propagate. We also find that, similar
to the role of the special quark propagator, the combina-
tion of the special gluon propagator and the connected
vertex (trigluon vertex or gluon-quark-antiquark vertex)
carries one unit of twist.

Mi3'=f, [S",'(k„k, )f' (k„k, )],
d k~ d k,
(2n ) (2n)

(28)

d 'kz d'k
M~4' =

(2m) (2m) (2m)

X[S ~(~k„k, k, )T i'(k„k, k, )], (29)

where the three-parton top matrix element T (k2, ki ) is
defined in Eq. (17), and the four-parton top matrix ele-
ment is given by

straightforward and will be given at the end of this sec-
tion. The special treatment of quark-gluon process is the
main task of this paper.

Our technical steps for picking up the complete 1/Q
contributions from diagrams in Fig. 2 are (1) to find the
1/Q contribution caused by the noncollinear com-
ponents of loop momenta entering the bottom parts (this
step can be done by simply expanding the loop momenta
in bottom parts at the values of their collinear com-
ponents), (2) to show that the effect of all nonleading
terms in the collinear expansion is to replace the gluon
field operators in the top target matrix elements by corre-
sponding covariant derivatives, (3) to show that when the
leading terms in the expansion of the bottom parts are
contracted with corresponding top parts, they give both
leading-twist and high-twist contributions, (4) to show
that after carefully separating the short-distance and
long-distance contributions from the leading terms of
lower-order diagrams, the high-twist contribution from
the lower-order diagrams are indeed equal to the contri-
bution of some higher-order diagrams not explicitly in-
cluded in Fig. 2, (5) to show that the complete 1/Q
short-distance contribution can be expressed in terms of
some simple photon-parton scattering process, and final-

ly, (6) to calculate all those short-distance photon-parton
scattering processes to get complete twist-4 contribution.

Following our technical steps given above, we now
show that the effect of all nonleading terms in the col-
linear expansion of lower-order bottom parts is to replace
the gluon field operators in the higher-order top target
matrix elements by corresponding covariant derivatives.
Similar to Eq. (10), we can write the leading photon-
hadron forward scattering amplitudes from the diagrams
shown in Figs. 2(b) and 2(c) as

f' ~(kz, k, k, )=f d z2d z d z, e ' 'e ' e ' '(p~g(0}( —gr Ag(z2})( —gr Az~(z)}f(z, )~p), (30}

where we have included all color factors and strong cou-
pling constants of the bottom part into the top part. To
pick up the high-twist contributions caused by non-
collinear components of loop momenta in the bottom
parts, we expand the loop momenta in the bottom parts
at the values of their collinear components. To pick up
the twist-4 contribution, we expand S" (k) up to the
second order shown in Eq. (12), and expand S" (kz, k, }
and S"ii(kz, k, ki) as

l

S" (k~, k, )= 5""(x~p,x,p)

BS"
+

ok~2
(k2 —xzp)~

k2 2p) k& =alp

as~
+

Bk~]
(k, —x,p)~+ . . .

k2 =&2p, k
l

=&
l p

(31)
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S &p(ki, k, ki)=S i'p(x2P, XP,xiP)+ ' ' ' (32) BS"
ak k =xp

=S" (xp, xp),

Using the identity

ak. y.k yk " yk(iy ) (33)

1 0 S"'
2 Bk ilk

as~
()k~p k = p, k = p

=S ""(xp,xp, xp),

=S "Px2p, x2p, x,p),

as ~"
—S ~p(x2p&x ip, x ip) .

Bk i ki=x2p, ki =xip

(34)

and the definitions of the top and bottom parts, we find Using Eq. (34},we can rewrite the amplitudes as

M~"= fdx[S""(xp)f'(x)]+fdx[S""(xp,xp)P (x)]+f dx[S "exp, xp, xp)&' (x)]+ ' ' ' (35)

Ml"= f dx dx, [g~"(x2p,x,p)f"(x2,x, )]+f dx2dx, [S"&(x2p,x2p, x,p)f'z (x2,x, )]

+ fdx, dx, [S~p(x2p, xip, x)p)~ ) (xi,xi)]+

M4"= f dxzdx dx&[S ~&(x2p, xp, x&p)f' (xz,x,xi)]+

(36)

(37)

where 1' (x) and f' (x2,x i ) are given in Eq. (19) or (22), and

f'( )x=f 5 x-a4k

(2n. }
1'(k),

p n
(3&)

f' ~(x)= f 5 x-d k

(2m }

k n
(k —xp) (k xp)~f'(k), —

p n
(39)

kz. nd k2 d k,f'z (xz, x, )=f 5 x2—
(2~)4 (2m)4 p n

k, n

p n
(kz x2p)~f' (k2,—k, ), (40)

k2. n k) nf', ~( x, 2x)= f 5 x2 — 5 x, — (k, —x,p) f'~(k~, k, ),
(2~)' (2~)'

(41)

d k2 d4k d k& k n21i (x2,x,x, )=f 5 x2 — 5 x—
(2~}4 (2~)4 (2~)4 p n

k) n
5 x, — f' ~(ki, k, k, ) .

pn ' pn
(42)

By introducing the projecting operator co ., using the identity given in Eq. (21), and following the derivation from Eq.
(20) to Eq. (23), we find that the effect of the second term in Eq. (35) is to replace the gluon field operator in the first
term in Eq. (36) by a corresponding covariant derivative, and the effect of the third term in Eq. (35) plus the second and
third terms in Eq. (36) is to replace the gluon field operators in the leading term in Eq. (37) by corresponding covariant
derivatives. Therefore, we have

M —M +M +I +2 3 4

= fdx[S~"( pxf}'( )x]+f dx2dx, [S"(x2p, x,pko 1' (x~,x, )]

+ fdxidx dx)[S ~p(x2p, xp, x)pko~a)P' (x2, ,x,x))]+ (43)
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where T (x2,x, ) is given in Eq. (24), and

t(x)= f e'~*(p Ptohb p),

T ~(x„x,x, )

i co(x —x) i g(x —x ) i A,x2 1 e 1

2' 277 2'

(44}

X p g(0)D D~ g ppn pnp n

(45)

After taking care of the high-twist contribution caused
by noncollinear components of loop parton momenta
entering the bottom parts, we now calculate the possible
high-twist contributions from the top parts T, due to the
contact terms and the nonvanishing intrinsic transverse
components of loop parton momenta in the loop propa-
gators. That is, we are going to find the possible twist-4
contribution from the first two terms in the right-hand
side of Eq. (43).

As we discussed in the last section, the expanded bot-
tom parts S" have typically two terms, one of them is
proportional to y n, and the other proportional to y p.
We will get higher-twist short-distance contribution if the
top part 1contracted with the y p term. This is because
y p contracted with one-loop quark propagator will pull
a special propagator and a directly connected quark-
gluon vertex into the bottom short-distance part, and in-
crease the bottom part by one unit of dimension [I/ener-
gy], and thus one unit of twist. The new top long-
distance part has then an extra operator —a covariant
derivative. Therefore, the way to obtain twist-4 short-
distance contribution from fdx [S"'(xp) f'( )]xis to
move two combinations of the special quark propagator
and the connected quark-gluon vertex from f'( )xinto the
bottom part S""(xp) [see diagrams shown in Figs. 6(a)
and 6(c)]; and to obtain twist-4 short-distance contribu-
tion from fdx2dx&[S"'(xzp, x,p)co f' (x2,x, )] is to
move one combination of the special quark propagator
and the connected quark-gluon vertex from T (x2,x~)
into the corresponding bottom part [see diagrams shown
in Fig. 6(b)]. Because of the special gluon propagator, in
principle, the diagrams shown in Figs. 6(d) and 7(b) can
also give twist-4 short-distance contribution. The dia-
grams shown in Fig. 7(b) actually supplement to the
four-quark process shown in Fig. 7(a).

We find that the diagrams shown in Figs. 6(c) and 6(d)
vanish. The diagrams in Fig. 6(c) vanish because they
have a common factor y-n y z-y. n =0, where the two y.n

are from two special quark propagators and the middle
y & is from the quark-gluon vertex, where we have used a
fact that the y matrix at the vertex cannot have a "—"
component due to the projection operator co, i.e., due to
the gauge that we choose. The diagrams in Fig. 6(d) van-
ish because they have a common factor y n y-n=O,
where one y.n is from a quark-gluon vertex connected to
a special gluon propagator and the other is from a special
quark propagator or from the cut of a quark line. That
is, only four diagrams shown in Figs. 2(c), 6(a), and 6(b)
give nonvanishing twist-4 short-distance contributions to
hadron scattering functions. The four-quark process will
be discussed later.

We now show explicitly how the nonvanishing dia-
grams shown in Figs. 6(a) and 6(b) can be deriued from
the first two terms in the right-hand side of Eq. (43).

In the expanded bottom parts S"",every quark propa-
gator has two terms. One of them is proportional to y n
and the other is proportional to y p. For example, the
quark propagator in S ""(xp) is proportional to
(x —x~)y p+(Q /2xsp n )y n. Therefore, every ex-
panded bottom part should be proportional to y.n
and/or y.p. To get the imaginary part of the forward
scattering amplitude is to cut the quark propagator in the
expanded bottom parts. We find that the cut quark
propagator is proportional to y n. For example, when
we cut the propagator in S ""(xp), we have

&((xp+q)')=(x /Q')5(x —x ) .

Because of the 5(x —xii }, we have y (xp+q) ~ y n, and
thus the cut quark propagator is proportional to y n.

After taking a cut through the quark propagator in
S ""(xp), we find that the bottom part is now proportion-
al y"y.ny'. The superscripts p and v can be any one of
the following combinations, p ~p, p "n', n~p, n"n",
and d" =p "n "+n~p '—g", where d"" is a transverse
tensor. Because of the properties of the p and n given in
Eq. (7), it is clear that the cut bottom part can be only
proportional to y n when the indices p and v are trans-
verse, or proportional to y p when the indices are both
equal to — (e.g. , y"=y =y P). Because of the ex-
istence of a term proportional to y p, the first term in Eq.
(43) will give a high-twist contribution. Since the y p is
directly contracted with both loop propagators in this
case, the y p will pull two special propagators and two
directly connected quark-gluon vertices from the top part
T(x} into the bottom part S""(xp), as shown in Fig. 5.
Because the special propagator is proportional to y.n,
and y.n y.n=O, we find the twist-4 contribution from
the first term in Eq. (43):

f dx[S"'(xp)T(x)] = f dx~dx dx, [S~~h(xqp, xp, x)p), co~ co}rT (x2,x,x, )],„;„4,twist 4
(46)

which is the leading contribution of the diagram shown
in Fig. 6(a). The top part f' ~(x2,x,x, ) is defined in
Eq. (45), and the short-distance bottom part
S &(xzp, xp, x,p), is given by the leading contribution of

I

the bottom part of the diagram in Fig. 6(a).
It is also straightforward to get the diagrams shown in

Fig. 6(b) from the second term in Eq. (43). Notice that
the second term in Eq. (43) does not vanish only when the
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y in the bottom part 9" (X2p, x&p) is equal to its trans-
verse component. The y cannot be equal to y p because
of the projection operator ~ .. The term vanishes when
the y is equal to y.n because one of the propagators in
the bottom part has to be proportional to y n after taking
the cut. It follows that one of the two-loop quark propa-
gators of the top part f' (xz, x, ) has to be next to y P.
Therefore, a special propagator and a directly connected
quark-gluon vertex should be included into the bottom
short-distance part. From simple dimensional analysis, X f (Xp, X,X i )] (47)

the leading nonvanishing piece of the second term in Eq.
(43) contributes to the twist-4 structure functions. It is
actually given by the leading contribution of the dia-
grams in Fig. 6(b). That is, after taking the cut,

dx2dx
~

S Q~p, x ~p Qp

Cfx2dx dx i [ S p(x+7, Xp, Xip)bCO Cgp

/

P
kq

P

/

P P

(a}

P P

(b)

P P
kq

4

P

FIG. 6. A complete set of two-quark —two-gluon Feynman diagrams with special propagators that contribute to leading short-
distance twist-4 coeScient functions.



JIANWEI QIU 42

~III II~ 0

(a)

(b)

FIG. 7. A complete set of four-quark Feynman diagrams that
contribute to leading short-distance twist-4 coe5cient functions.

where the top part 1' ~(xz, x,x, ) is given in Eq. (45), and
the short-distance bottom part S",&(X2p, xp, x,p)t, is given

by the leading contribution of the bottom parts of the di-

agrams in Fig. 6(b).
We can now combine all nonvanishing twist-4 short-

distance contributions together by substituting Eqs. (46)
and (47) into Eq. (43),

M"'~,„;,«= f dx, dx dx, [S",&(xzp, xp, x,p)co cog

XT ~(X2,x,x, )],„;„~, (48)

where the short-distance bottom part S "&(X2p,xp, x,p)
now includes all four bottom parts of the diagrams shown
in Figs. 2(c), 6(a), and 6(b).

Based on our derivation of the twist-4 short-distance
contribution, it is clear that the complete twist-4 short-
distance contributions (not including four-quark process)
arise only from the two-photon, two-quark, and two-
gluon tree diagrams [shown in Figs. 2(c) and 6], which
form a complete set of Feynman diagrams of the photon-
quark-gluon forward scattering amplitude at order of g;
and, the corresponding long-distance part is given by one
target matrix element of a well-defined operator [given in
Eq. (45)]. Hence, there is no mixing problem, and as we
shall show shortly, the short-distance part and long-
distance part conserve the gauge invariance explicitly.
We shall now apply EFP's factorization scheme to
separate the spinor trace and Lorentz sum between the
top and the bottom parts, and to pick up the twist-4
short-distance contribution.

To decouple the spinor trace over top and bottom
parts, we expand the top part f"'~( X2, x, x, ) in the stan-
dard basis of gamma matrices. For the case of massless
quarks, we obtain

(X2,X,X~)=y,C"(X„X,X, )+y,y,C& i'(X„X,X, ) .

(49)

Substituting Eq. (49) into Eq. (48), we find

M""~,„;st 4= f dx2dx dx&[S"& (xzpxpx&p)c0 .co&CT' (xzx, x, )+S "& (X2pxpx&p)co .@PIC~ (X2,xx&)}tgggg4 j

(50)

where

S"&~(X2p,xp, x,p) = [S"&(x2p,xp, x,p)y ],
C~ ~(X2,x,x, )=—,'[y~1 ~(X2,x,x, )],
S"& (x2p, xp, x,p)=[S "&(xzp, xp, x,p)y, y ],
C' ~(x&,x,x, )= ,'[yc'y, f' ~(x, ,x-,x, )] .

(51)

Equation (50) shows clearly that the spinor trace has been
completely decoupled between top and bottom parts.

To have complete factorization, we need to decouple
all the sums of Lorentz indices in Eq. (50). In general,
the target matrix element C~ ~(xz, x,x, ) can be decom-
posed into terms proportional to combinations of vectors

p and n and a symmetric transverse tensor d, and
C~ (xz, x,x&) into terms proportional to combinations
of vectors p and n and an antisymmetric transverse tensor
e defined below. Obviously, there are a lot of terms.
However, notice that (1) any term with three n vectors

I

(e.g. , n ~n n ~) will give a zero result when it is contracted
with the bottom hard-scattering part, (2) any term pro-
portional to n~ will give either contribution higher than
twist 4 or zero, (3) without nT', any term with two n vec-
tors (e.g., p~n n~) will not contribute, and (4) any term
proportional to p or p~ vanishes because the projection
operator co. We find a very simple efFective result

C~ ~(X2,x,x, ) =C(x2,x,x& )pT'd~&,

C~ (X2,x,x&)=iC(X2,x,x&)p~e ~,
(52)

where

d i'=P nI'+n pI' g i' E—i'=e» P,n. . (53)

Notice that the d ~ and e ~ defined here are the same as
those defined by EFP up to a sign. Using Eq. (52) and
Eq. (50), we obtain a factorized form of the hadronic ten-
sor 8'"" contributing to the twist-4 hadron structure
functions

1

2l

—fdx2dx dxi(cT (xp, x,xi )C(x2, x,xi )+cT (x2,x,xi )C(xp, x,xi )), (54)
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where

o""(xz,x,x, )= .—Discfd ~[S "&(x2p,xp, x,p)y p]),

o""(xz,x,x, )=—DiscIie ~[S "&(x2p,xp, x,p)y~y p]I,
(55)

C(x x x )=f """e""' "'e'"'" ""e '
,'d —i'(p~T(g(0)y nD (co)Dp(g)f(&))lp&,2~ 2~ 2~'

C(xz, x,x, )=f e ' e
" ' e ' e~—(.p~T(g(0)y. ~y&D (~)&~(ri)P(&))~p) .

2m 2' 2' Si

(56)

This is our final factorized formula for calculating the
leading twist-4 or 1lQ power correction to the hadron
structure functions. It is clear that the short-distance
part is given by the complete imaginary part of a
photon-parton forward scattering amplitude, the target
matrix elements derived here show explicitly gauge in-
variance if one inserts the line integrals of the gluon field

between parton fields in the target matrix elements. The
upper and lower limits of any line integral inserted be-
tween two parton fields are equal to the light-cone coordi-
nates of these two parton fields, respectively. Therefore,

I

o"'(x~,x,x, )= (eP+eg") 5(x —xs) —
2

eP"

in our new derivation, the parton-model interpretation of
the twist-4 short-distance contribution and the underly-
ing gauge invariance are manifestly preserved.

We shall now calculate the cr""(xz, x,x, ) and
cr ""(x2,x,x, } from the short-distance photon-parton in-
teractions. Using the same normalization of EFP, and
our definition of special quark propagators, we calculate
all four photon-parton Feynman diagrams [shown in
Figs. 2(c), 6(a), and 6(b)] with all possible cuts, and we
find

5(x~ —xs) —5(x( —xs)
Xp X]

(57}

cr ""(x2,x,x, ) =— z(ep"+eg")5(x —xs) z eP
5(x2 —xs )

—5(x, —xs )

X2 X)

where eg" and ep are given in Eq. (2). In Eq. (57) the
color factor and strong coupling constant g are included
into the target matrix elements by definition. For simpli-
city, we also absorb the quark charge eq into the target
matrix elements. As we expect, o""and 0"' in Eq. (57}
show explicit electromagnetic gauge invariance. Intro-

(5g)

ducing a new definition of target matrix elements

CL (x2,x,x ) ) =C(x2,x&x ) ) C(x2&x&x) )

Ca (xq&x&x, )=C (x2,x,x 1 )+C(x~&x&x 1 ),
we find the leading inverse-power correction to the ha-
dronic tensor W" (xs, Q ) as

g ~"(x&,Q~) ~,„,„4= (eP+eg")fdx 5(x —xs )f dx&dx2CI (xq, x, x
~ )

8

2xB
eP fdx )dx2

5(x2 —xs ) —5(x|—xz ) f dx CR(xz x x&) .
X2 X)

(59)

[Here the sum over quark fiavor has been assumed to be absorbed into the target matrix elements Cz (x2,x,x, ) and
Ca (xz, x,x

&
).] Comparing the above result with Eq. (1), we obtain the corresponding twist-4 correction to the structure

functions:

8
FL(xs&Q )— 2

dx 5(x —xs)fdx)dx2CL(xq&x&x)) & (60)

8 2XB 5(x2 —x~ ) —5(x, —xs )
FT(xs, Q ) = fdx 5(x —x~ )fdx, dxzCI (xz, x,x, ) — fdx, dxz f dx Cz(x2, x,x, ) .

X2 X]

(61)
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This final result is exactly the same as the result of EFP,
shown in Eq. (3), if we define

T, (x) 2—f dx, dx2CL (x2,x,x, ),
T~(x»x])=2f d» C~(x»x x]»

see Eqs. (6.43) and (6.44) of EFP. Therefore, we can
conclude that by introducing the special propagators to
separate short-distance and long-distance contributions
at a given twist, we obtain the same leading inverse-
power correction to the hadronic structure functions
with the gauge invariance and parton-model interpreta-
tion manifestly preserved.

For completeness, we include the leading inverse-
power corrections from the four-quark process (shown in

Fig. 7). The diagrams shown in Fig. 7(b) actually vanish
for the same reason that the diagrams in Fig. 6(d) vanish.
The diagrams in Fig. 7(a) have been widely discussed.
This process contributes to the twist-4 and even higher-
twist structure functions. To pick up the twist-4 contri-
butions, we expand the loop momenta in the bottom part
at the values equal to their collinear components first,
then use EFP's factorization scheme to separate the spi-
nor trace and Lorentz sums between the bottom part and
the top part. We get the same result as that obtained by
EFP. We quote the result below:

Wq'(xa, g )~,„;„4=ey"fdx~dx dx, (o (»2,»,x, )C (x~,»,x])+oq(»2, »,x])C (xi,x,x])),
where subscript q stands for the four-quark process, and the four-quark target matrix elements are given by

C (x2,x,x, )=f e ' e ' e '
—,', g (p~T[[p(0)y nr l((co)][/(r))y nr p(A)]]~p),

C (xz, x,x, }=f e ' e ' e '
—,', g (p~T[[g(0)y ny&r 1((e])][/(i})y nysr p(A, )]]~p) .

(63)

(64)

The coefficient functions o q(x2, x,x, ) and o (»z, »,x] ) are '

Xg
o (x2,x,x, )= (b(y2, y„x)+h(xz, x„x)—5(y2, »„x)—5(»2,y„x)},q I \ 4g2

where

(65)

1
6(»2, »,x] ) =

Xp X)

5(x2 —xz )
—5(x —xs ) 5(x] —xz ) —5(x —x]] )

P) =x x), P'2 =x X2 (66)

and

oq(»2 ~txytx ] ) cTq(»2, »y» ] ) (67)

IV. DISCUSSION

We have presented a new method for calculating the
twist-4 contributions to the hadron structure functions.
As expected, the result of our calculation reproduces the
well-known inverse-power corrections to hadron struc-
ture functions. However, this new method leads to a
clear space-time picture of the twist-4 short-distance con-
tributions, and enables us to separate the different twist
short-distance contribution from a given Feynman dia-
gram. This new approach makes manifest the preserva-
tion of the underlying gauge invariance, and gives a sim-
ple parton-model interpretation of the twist-4 short-
distance contributions. The use of the special propaga-
tors results in a significant reduction in labor relative to
past calculations of higher-twist contributions. In this
section we shall summarize the new method for calculat-
ing high-twist short-distance contributions, and discuss
other possible applications of the space-time picture of

Equations (58) and (63) are our final results for the lead-
ing 1/g power corrections to the hadron structure func-
tions.

the twist-4 effect. We shall also discuss the possible test
of such 1/g corrections to the effective parton structure
functions in a big nucleus.

Our new method is based on the space-time picture of
twist-4 short-distance contributions. The concept of a
special propagator is a key to isolate the short-distance
effect from the remaining long-distance target matrix ele-
ments. The special propagator not only picks up the
"contact" piece of a normal propagator, but also links
the effects of the intrinsic transverse components of the
loop momenta to the covariant derivatives in the target
matrix element to make the color gauge invariant mani-
fest. In summary, we have the following rules for calcu-
lating the high-twist contribution to hadron structure
functions: (1) to find all possible tree Feynman diagrams
of a photon-parton forward scattering amplitude with the
number of partons being equal to the number of the twist,
and all coupling constants and the color factor being in-
cluded into corresponding target matrix elements; (2) to
replace all propagators, which will not be shrunk to a
point as one shrinks the two photon-quark vertices to-
gether, by corresponding special propagators; (3) to fac-
torize all spinor and Lorentz indices between the
photon-parton processes and corresponding target matrix
elements by following EFP's procedure; (4) to calculate
all these tree photon-parton diagrams to obtain the
short-distance contributions, as do the contributions to
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hadron structure functions.
A remark is in order on the usage of such special prop-

agators. Normally, we do not have to worry about the
gauge invariance if we include and calculate a/l Feynman
diagrams of a physical process at any given order of cou-
pling constant (e.g., the complete imaginary part of a
photon-parton forward scattering amplitude in this pa-
per). However, the question here is if the replacement of
the special propagators preserves gauge invariance prop-
erty of the process, i.e., if the vertex involving a vector
boson (photon or gluon) and quarks with special propaga-
tors still preserves the Ward identity such as

k'
(k' —k)

2k n

yk'ykyn yn
2k n 2k n

(69)

and the right-hand side of Eq. (68):

yk' yn
2k n

(70)

To have Eq. (68) satisfied, we need to show that

y k y n/2k n in the expression of left-hand side is equal
to one. In general, y k y n/2k n is not necessarily equal
to one. However, in the calculations of the short-distance
contributions at a given twist, it is always effectively
equal to one for the following reason. When calculating a
real diagram, see the typical diagram shown in Fig. 8, we
need to multiply y y k, to the right side of
y k y n/2k n As we. discussed earlier, in the gauge we
choose, the y must be equal to yT or y n. In the col-
linear expanded bottom part, y k& is equal to y x&p.
Using y p y n y p =2p. n y p, we conclude that

y k y n/2k n is eff'ectively equal to one in the calcula-
tion of the complete diagrams. Therefore, the replace-
ment of the special fermion propagator will not break the
gauge invariance of the corresponding physical process.
Our explicit calculation in the twist-4 case supports clear-

(k' —k)„[F(k')I "(k',k)F (k)]= —[F(k') —F(k)], (68)

where F(k) and I'"(k', k) are fermion propagator (quark
propagator) and vertex function, respectively. The
answer is yes in our calculation of the high-twist short-
distance contributions. This can be demonstrated by
considering the typical diagram shown in Fig. 8. From
the vertex of quark and vector boson (wave line) in Fig. 8,
we obtain the left-hand side of Eq. (68),

h I.

FIG. 9. A possible process, deep-inelastic lepton-nucleus
scattering, that may test the short-distance twist-4 contribution.

ly this conclusion. Similarly, we find that the Ward iden-
tity involving the three gluon vertex and special gluon
propagators is also satisfied in the leading high-twist cal-
culation.

We shall now discuss the possible test of the leading
inverse-power corrections to the effective hadron struc-
ture functions. The experimental test of such l/Q
inverse-power corrections is difficult because of lack of
knowledge of the multiparton target matrix elements, or
multiparton correlation functions. However, in the rest
of this paper, we shall suggest a possibility to test the
effect of such inverse-power corrections in effective had-
ron structure functions of a big nucleus.

In the infinite-momentum frame, we view the target
nucleus as a collection of uncorrelated nucleons with
weakly correlated sea distributions. 9 The parton struc-
ture functions in a nucleus can then be approximated as a
sum of parton structure functions of individual nucleons
inside the nucleus plus a correction term due to the weak-
ly correlated sea distributions. To estimate the correc-
tion term, we should calculate the interaction involving
partons from two or more nucleons. The leading contri-
bution clearly comes from the recombination effect in-
volving two nucleons, ' which contributes a correction
to the leading-twist structure functions. But, because the
leading twist component of this effect is calculated and
included in the parton evolution equations, and because
of the lack of knowledge of input structure function at a
given Qo needed when solving the evolution equations, it
is difficult to make precision test of this recombination
effect. However, if we assume the gluon and quark in this
four-parton twist-4 process are from two diferent nu-
cleons as shown in Fig. 9, and take the limits k2 ~k &, we
find that the target matrix element C (x2,x,x

&
) in Eq. (56)

can be decoupled into the product of a quark number
density of one nucleon, a gluon number density of anoth-
er nucleon, and a correlation function to have these two
partons at the same impact parameter, and C(xz, x,x, ) in
Eq. (56) is zero. In this special case, the leading inverse-

k—k

k'—
k'

kq

FIG. 8. A sample diagram used to show that the special
propagator conserves the graphical %ard identity.

FIG. 10. The "real" photon-parton scattering process that
contributes to leading twist-4 coefficient functions.
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k—k, 0000000000000000000000 i ture functions. This process gives a positive-definite con-
tribution to the effective parton structure functions in a
big nucleus. The second term is equal to

FIG. 11. The "interference" photon-parton scattering pro-
cess that contributes to leading twist-4 coefFicient functions.

power correction that we have just calculated in this pa-
per can be related to the leading-twist sing1e-parton num-

ber densities of different nucleons. The hard-interaction
part a"" in Eq. (57} can be then understood as a hard in-
teraction between the virtual photon and a quark in the
presence of a gluon. The correction to the effective nu-

clear structure functions due to this special leading
twist-4 contribution can be evaluated without going
through the complication of input structure functions.
Therefore, at a given Qo, the precise behavior of this par-
ticular leading twist-4 contribution to the effective struc-
ture functions of a big nucleus could give us some better
knowledge about the effective input nuclear parton struc-
ture functions needed to solve the modified evolution
equations to get the effective nuclear structure function,
including recombination effects at any given large Q . In
addition, because of the small-Q dependence of both ex-
perimental data of the European Muon Collaboration
effect" and theoretical prediction, the precise behavior
of this special leading inverse-power correction is even
more interesting.

To understand the behavior of this special power
correction, we go back to the hard-interaction part of this
power correction in Eq. (57). The o" in Eq. (57) has two
terms. The first term comes from a real physical process
(shown in Fig. 10}after subtracting the lower-twist effect,
which is included in the lower-twist structure function or
included in the modified evolution equations of the struc-

&(xp —x~) —5(x, —x~)e"
Q X2 X) x2 xi

2xg
eP5'(x, —xz ), (71)
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and is from the interference between the amplitudes of
order g and of order g shown in Fig. 11. This interfer-
ence can only happen when the quark and gluon from
two different nucleons are at the same impact parameter
in a big nucleus, and the momentum fraction carried out
by the quark or gluon should be small so that
I/xp ~L,ttm Ip, where L,tt is the effective distance be-
tween two nucleons inside a nucleus. After taking into
account the shape of parton number densities as a func-
tion of momentum fraction x, we find that the contribu-
tion of the interference term is always negative. There-
fore, we have an interesting physical picture of this
inverse-power correction. At a given value of x~, if the
first term in Eq. (61) is larger than the second term, we
have an antishadowing effect; otherwise, we have a sha-
dowing effect. The detailed analysis of this application
will be the subject of another work.

'Present address.
R. P. Feynman, Photon-Hadron Interactions (Benjamin, New

York, 1972); J. Kogut and L. Susskind, Phys. Rep. 8, 76
(1973).

For a general review, see E. Reya, Phys. Rep. 68, 195 (1981);A.
H. Mueller, ibid. 73, 237 (1981); G. Altarelli, ibid. 81, 1

(1982).
A. De Rujula, H. Georgi, and H. D. Politzer, Ann. Phys.

(N.Y.) 103, 315 (1977); H. D. Politzer, Nucl. Phys. 8172, 349
(1980); S. P. Luttrell and S. Wada, ibid. 8197, 290 {1982);S.
Wada, ibid. B202, 201 (1982); S. J. Brodsky, E. L. Berger, and
G. P. Lepage, in Proceedings of the Workshop on Drell Yan-
Processes, Batavia, Illinois, 1982 (Fermilab, Batavia, 1983), p.
187; references quoted by authors of Refs. 4-6.

4R. L. Jaffe and M. Soldate, Phys. Lett. 1058, 467 (1981);Phys.
Rev. D 26, 49 (1982).

5R. K. Ellis, %. Furmanski, and R. Petronzio, Nucl. Phys.

B207, 1 (1982); 8212, 29 (1983).
R. L. Jaffe, Nucl. Phys. 8229, 205 (1983).

7G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. 8175,
27 (1980).

J. L. Miramontes and J. Sanchez Guillen gave a similar con-
clusion with a di8'erent definition of the special propagator in

Santiago Report No. USFT/20 (unpublished), which was

quoted in Phys. Rev. D 30, 46 (1984).
9J. Qiu, Nucl. Phys. B291, 746 (1987); E. L. Berger and J. Qiu,

in Nuclear Chrornodynarnics, proceeding of the Topical
Conference, Argonne, Illinois, 1988, edited by J. Qiu and D.
Sivers (World Scientific, Singapore, 1988).

~OA. H. Mueller and J. Qiu, Nucl. Phys. B268, 427 (1986); L. V.
Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1

(1983).
"J.Ashman et a/. , Phys. Lett. B 202, 603 (1988).


