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Singlet axial-vector current and the "proton-spin" question
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As a preliminary we consider the phenomenology of the European Muon Collaboration experi-
mental result without assuming SU(3) invariance. The most reliable conclusion is that the singlet
axial-vector current matrix element is rather small. We calculate this matrix element in a variety of
chiral-soliton models in which the axial anomaly equation is satisfied. There are a number of
subtleties which we explore. It turns out that reasonable chiral models including only pseudoscalar
fields give a zero matrix element. Taking "short-distance" effects consistently into account via the
inclusion of vector mesons or explicit quarks does give a small nonzero result. The situation is

closely analogous to the prediction of a nonzero result for the nonelectromagnetic part of the
neutron-proton mass difference in these chiral models.

I. INTRODUCI'ION AND SUMMARY

The recent European Muon Collaboration (EMC) ex-
periment' has caused a sensation by measuring the pro-
ton form factor at zero-mornenturn transfer of a certain
linear combination of the diagonal quark axial-vector
currents uy„y5u, dy„y5d, and sy„y5s. The main reason
is that combining their result with ordinary- and [using
SU(3)] strange-baryon P-decay results leads to an approx-
imately zero value for the singlet J„=iu y„y5u
+idy„y5d+isy„y5s matrix element. In turn, this irn-
plies that the quark-spin contribution —

—,
' f d x J, to the

proton angular momentum approximately vanishes. This
then would rule out the naive nonrelativistic quark model
in which the spin of the proton is completely given by
combining quark spins. Another interesting apparent irn-
plication of this analysis is that the strange-quark opera-
tor sy„y~s has a nontrivial matrix element in the proton
state.

Properly, there is already a sizable body of literature
on this problem. Most approaches are based on the par-
ton or perturbative-QCD pictures. There it is quite natu-
ral that quark orbital contributions as well as gluonic
contributions to the proton angular mornenturn should
exist. However, it is not easy to calculate them from this
viewpoint.

Another approach to this problem, on which we shall
focus in the present paper, is based on the soliton or
Skyrme description of the proton. This method em-
phasizes the role of spontaneously broken chiral symme-
try and treats the proton as a collective excitation. Re-

markably, the simplest version of the SU(3) Skyrme mod-
el predicts the desired result: zero for the axial-vector
singlet matrix element. Even though the simple Skyrrne
model provides only a rough description of most nucleon
properties, it can be improved so that the present result
suggests that it may be a desirable "zeroth-order" model.

The initial treatment of the SU(3) Skyrme model im-
plied that it gave a relatively large sy„y5smatrix element
in agreement with experiment plus SU(3) invariance.
However, a more detailed treatment showed that the
predicted sy„y&s matrix element is really small. Fur-
thermore, it has been pointed out that it is possible for
SU(3) to be badly broken for the present purpose
without badly disturbing the relatively good SU(3) pre-
dictions in the Cabibbo scheme. With this background,
we have started things off by presenting a rnodel-
independent phenomenology (see Sec. II) in which SU(3)
invariance is not assumed. The net result is that the
EMC experiment still implies that the axial-vector singlet
matrix element vanishes (with a somewhat large error),
but that the sy„y~s matrix element is not necessarily
large.

Thus we will specialize our discussion to calculating
the proton matrix element of the axial-vector singlet
current J„in various chiral models. J„is of course the
famous "U( 1 )-problem" current whose divergence
possesses the Adler-Bell-Jackiw anomaly. A discussion
of the way in which the anomalous divergence equation
of J„canbe realized as an operator relation in the
chiral-Lagrangian framework was given some years ago.
We will employ this rnechanisrn, which involves a kind of
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g' dominance of the gluon anomaly, in all our models.
This provides a reasonable, particular solution of the U(1)
problem. In the more complicated of our models, addi-
tional U(3)L XU(3)~ chiral sy-mmetric terms may be add-
ed; these do not formally change the anomaly equation,
but they may alter the relevant dynamics. This is re-
viewed in Sec. III, and the Goldberger-Treiman-type for-
mula which follows from the anomaly equation is also
noted and briefly discussed.

There is, of course, no known fundamental reason for
the singlet matrix element to exactly vanish (although it
is naturally small in chiral models). Hence its calculation
is very interesting as a test of our understanding of chiral
models of nucleon structure. [The present relatively large
experimental uncertainty (see Fig. 1) is consistent with a
reasonably small nonzero value for this quantity. ] Now it
turns out that the calculation involves a number of
subtleties which have not always been recognized in the
literature. We point out, in Sec. III, two conditions that
are necessary in any model to get a nonzero axial-vector
singlet matrix element at zero-momentum transfer
(q =0). First, the current J„should not be a pure gra-
dient. If it is, only the induced form factor can exist,
which is irrelevant for the present problem. One propo-
sal for obtaining a nonzero result makes use of a
derivative-type SU(3)-symmetry-breaking term, which
has the desirable feature of splitting the decay constants
F and Fk. But this scheme does not work because the
axial-vector current remains a pure gradient. Even if the
axial-vector current is not a pure gradient, we have the
additional condition that the ri' meson (ri meson in the
two-flavor case) get excited in the nucleon subspace. This
seems to be the difficulty with a proposed scheme which
in effect makes use of an additional chiral-invariant term
which is normally discarded in the Skyrme model. In the
chiral (i.e., zero quark mass) limit, which is appropriate
for discussing the effects of chiral-symmetric terms, the
g' does not get excited as shown in Sec. III. Further-
more, an g-type field does not get excited at the dominant
two-flavor level.

It appears that there is a remarkable similarity between
the calculation of the axial-vector matrix element and the
calculation of the nonelectromagnetic part of the
neutron-proton-mass difference in chiral-soliton models.
A recent paper' demonstrated that the proper calcula-
tion of this quantity also required the excitation of an a-
like meson. In reasonable chiral models involving only
pseudoscalars, this could not be accomplished. It was
necessary to take account of short-distance effects such as
either the introduction of vector mesons or, in some way,
explicit quarks in order to calculate the n-p mass
difference satisfactorily.

We find that the same story repeats itself here. In Sec.
IV we discus" the calculation of the axial-vector matrix
element in a model in which vector mesons have been
added in a somewhat "minimal" although experimentally
realistic way. The same model gave' a good account of
itself for the n-p mass difference. Here both conditions
mentioned above are satisfied —the total current is not a
pure gradient and an g-like meson gets excited. We find
that the matrix element of J„atq =0 is 0.30 (for com-

The relevant quantities for discussing the results of the
EMC "proton-spin" experiment' are the proton matrix
elements of the flavor-conserving quark axial-vector
currents. We define the "diagonal" pseudovector current
of the ath quark q, as

P;„(x)=iq,y„y5q, , (2.1)

where a color sum is implicit, and Pauli's y matrix and
metric conventions are being followed. The correspond-
ing form factors are then

+Popo (&(p')I&;„(0)l&(p))

=iu(p') y„y5H,(q )+ "
y5H, (q ) u (p), (2.2)

where M is the nucleon mass and the momentum
transfer, q„=p„—p„'. The EMC measurement implies,
for the sum of the zero-momentum-transfer form factors
weighted with the square of their electrical charges,

4H, (0)+—,'H2(0)+ —,'H3(0) =0.228+0.057 . (2.3)

Here we have, considering the relatively large error,
neglected some small QCD corrections. Furthermore,
the statistical and systematic uncertainties were com-
bined in quadrature. Note that the EMC experiment
does not provide any information on the induced "form
factors" H, (0). It is natural to ask about the individual

H, (0). To help disentangle these we may use the con-
straint from P-decay and isospin invariance:

K, (0)—H2 (0)=g„=1.25, (2.4)

wherein the uncertainty is negligible compared to that of
(2.3). A third independent linear combination corre-
sponds to the 8th component of an SU(3) octet:

H, (0)+H~(0) —2H3(0):—R . (2.5)

Assuming SU(3) invariance, R may be obtained from the
flavor-changing axial-vector currents which enter in the
Cabibbo theory of semileptonic hyperon decays. This
yields R =3F —D =0.68+0.08, wherein F and D
are conventional parameters. " If one accepts this esti-
mate for (2.5), one finds H

&
(0)=0.74+0.08,

parison the experimental value of the neutron P-decay
matrix element g~ =1.25). The consistency of this value
with experiment requires nontrivial SU(3)-symmetry
breaking for the diagonal (i.e., non-Cabibbo) axial-vector
current matrix elements and a corresponding reduced

sy„y5s matrix element. A similar value for the axial-
vector singlet matrix element is estimated using the
"chiral quark model" in Sec. V. This model is somewhat
related to the "chiral bag model. " For the present calcu-
lation it has the advantage that the chiral-anomaly equa-
tion can be simply enforced as an operator equation in
the same way as discussed in Sec. III, and one may furth-
ermore avoid the subtleties involved in bag boundary
conditions.

II. MODEL-INDEPENDENT PHENOMENOLOGY
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H(0)—:Ht(0)+H2(0)+H3(0), (2.6)

and the strange-quark matrix element H3(0) considering
values of R in the reasonable range of 0-1. The results
are displayed in Figs. 1 and 2, respectively. The solid line
represents the average value and the dotted lines the two
extremes allowing for the uncertainty in (2.3). It can be
seen that the uncertainty in H(0) at each R is 3 times that
of H3(0). An immediate conclusion from Fig. 1 is that,
within the relatively large error, the singlet current ma-
trix element H(0) is consistent with zero. It is encourag-
ing that this main conclusion of the earlier analyses is in-
dependent of SU(3)-symmetry breaking. On the other
hand, the conclusion that there is a relatively large H3(0)
depends upon the choice of R. The possibility of H3(0)
vanishing, which is the old "naive" expectation, is not
ruled out, but can be achieved for R & 0.3.

To summarize, it seems reasonable at the present stage
to analyze the data considering R as an arbitrary param-
eter. Various models make various predictions for R.
The SU(3) Skyrme model treated according to the
"bound-state" approach' mill give R close to zero. The
original approach' to the SU(3) Skyrme model, which in-
cluded only first-order symmetry-breaking corrections to
the energies, will give an SU(3)-symmetric value' for R.
However, this approach was shown, on comparison with
the exact diagonalization of the collective Hamiltonian,

H2(0) = —0.51+0.08, and H3(0) = —0.23+0.08. This
would imply a relatively large strange matrix element

(posy„y5s~p ) as well as an approximately vanishing sing-
let matrix element.

In the above analysis the use of the SU(3)-symmetric
value of R in (2.5) has played a crucial role. How good is
this assumptions In the literature it has been argued
that since SU(3) symmetry holds fairly well for relating
the hyperon decay matrix elements to each other, it
should also work well for calculating the flavor-
conserving octet component in (2.5). One should recog-
nize, though, that the flavor-conserving current involving
strange quarks might have a response to SU(3)-symmetry
breaking which is different from that of the strangeness-
changing currents. In fact, this is precisely what happens
in the SU(3) Skyrme model. This point was recently dis-
cussed in detail in the framework of the SU(3) Skyrme
model of pseudoscalars in which the collective Hamil-
tonian, including symmetry-breaking terms, was diago-
nalized exactly. It was found that while the flavor-
changing Cabibbo matrix elements sufFered corrections
around 30go, the flavor-conserving current matrix ele-
ment in (2.5) was drastically reduced to about one-quarter
of its SU(3)-symmetric value. Regardless of how much
one is willing to trust the precise prediction of the SU(3)
Skyrme model, this effect is clearly a qualitative one
(which could be understood, though not easily predicted,
in the quark language as discussed in Ref. 5). Hence it
seems desirable to analyze the phenomenology for an ar-

bitrary value of R and see which conclusions still be can
drawn.

We have solved (2.3}, (2.4), and (2.5) simultaneously for
the axial-vector singlet matrix element:

H (0)

0. 5-

-0. 5

0. 0 0. 5 1.0

FIG. 1. Axial-vector singlet form factor H(0) plotted against
the "eighth component" of the axial-vector octet form factor E..
The solid line represents the average value, while the dotted
lines indicate the experimental uncertainty. For comparison
SU{3) symmetry with the D/F ratio obtained in Ref. 11 is indi-
cated by the mark at R =0.68.
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FIG. 2. Same as Fig. 1 for the strange axial-vector form fac-
tor H3{0).

to be incorrect; the correct predictions for R in this mod-
el may be read ofF as a function of the symmetry-breaking
parameter from Fig. 1 of Ref. 4 as R =3g~Z, where Z is
defined there. For the preferred range of the symmetry-
breaking parameter, R is around 0.1-0.3.

Finally, we remark that additional information about
the H, may be obtained from experiments on elastic vp
scattering. At present, the results' are not precise
enough (and are also claimed' to be subject to some
theoretical uncertainties of analysis} to force any firm
conclusions. Specifically, one finds'

H3(0) = —0. 1510.09 .

It may be seen from Fig. 2 that no value of R shown can
be excluded by this. Future progress in this experimental
approach would clearly be important.
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III. AXIAL-VECTOR U(1) CURRENT

%'e have just seen that the most solid conclusion which
may be presently drawn from experiment is that the
axial-vector U(1) current J„=P&„+Pz„+P3„in the no-
tation of (2.1) has a small matrix element H(0) between
proton states. It is well known that the conservation ofJ„is broken not only by the quark mass terms, but also

by a gluonic anomaly term which does not appear at the
classical level. This may be expressed by the equation

6F2m 2,

also requires' an extension of the Skyrme model.
We will require for our chiral-Lagrangian models that

the axial anomaly equation (3.1) be reproduced. This can
be accomplished by using an effective gluonic composite
field G together with the chiral nonet field U. The basic
Lagrangian' ' needed to mock up (3.1) is simply

2

Tr(B UB U )+
F
8 P P

B„J„=2ig m, q, y5q, +G, (3.1) + 6 (ln det U —ln det U 2i—8 )+X
12 SB ' (3.4)

where the m, are the quark masses, and the anomaly G is
related to the QCD field strength tensor F„„andcoupling
constant g by

ig XF
G = — e„,&Tr(F„„F&) .

16m

EF=3 is the number of flavors relevant for low-energy
physics. Introducing form factors for the operators on
the right-hand side (RHS) of (3.1),

AoP o
(P(p')~2m, q, y5q, ~P(p)) =D, (q )u(p')ysu (p),

(3.2)

AoP o q') (p')y (p

and using (3.1) with (2.2) and (2.6) yields the relation

3

H(0)= g D, (0)+E(0)
a=1

(3.3)

Here we have assumed that m (ri')%0 so that the induced
form factor has no pole at q =0. While m (g') ~0 in the
large-X, limit, it is far from true experimentally. Equa-
tion (3.3) has been discussed from diff'erent points of view
in the recent literature. ' The interesting question would
seem to be how to calculate H(0) as a test of our
knowledge of the structure of the proton.

In this paper we shall discuss H(0) in several models in
which the proton is treated as a soliton. Roughly speak-
ing, this treatment emphasizes the importance of spon-
taneously broken chiral symmetry by attributing a good
deal of the proton's structure to the "pion cloud" which
surrounds it.

There are two simple features of such models which act
to suppress their contributions to H(0). First, we see
from (2.2) and (2.6) that any term in J„which is a pure
four-gradient [i.e. , B„F(x)]will be proportional to q„in
momentum space and will thus contribute to the induced
form factor H(q ) =H, +H2+H3 rather than to H(q ).
Second, the operators which can contribute on the RHS
of (3.3) must represent isoscalars with g and q' quantum
numbers. These matrix elements are typically suppressed
in the Skyrme model. The net result is that one is forced
to go beyond the basic Skyrme model, e.g., by including
(higher-mass) vector mesons or explicit quarks to find
nonzero H(0). Thus H(0) may be considered as a probe of
"short-range" effects. This is analogous to the situation
concerning the neutron-proton-mass difference, which

Here F is a bare pion decay constant ( =132 MeV) and

mz is a bare ri' mass. 8 is the QCD vacuum angle. The
unmixed q' field may be extracted from U by writing

3F„
U =e'rU, detU=1, (3.5)

Neglecting the chiral-SU(3)-symmetry-breaking piece
XsB, (3.4) yields an axial-vector U(1) current

J = —2 = 8
Wa ) 2

(3.6)

Using the equation of motion, we see B„J„=G as desired.
Clearly the "ln" term in (3.4) is the one which reproduces
the anomaly and, apart from XsB, is the only one which is
not U(1)„invariant. We would like to stress, for what
comes later, that any additional terms involving possibly
new fields may be added to (3.4) without spoiling the

anomaly equation so long as those terms are chiral
U(3) XU(3) invariant. Furthermore, note from (3.6) that
as the model now stands, J„is a pure gradient, and so it
will not contribute to H(q ).

By design, there is no kinetic term for the composite
field G. This ensures that it may be eliminated by its
equation of motion as G =&3F m „[ri'—( &3/2)F 8] to
yield

2FX= ——(8 ri') — Tr(B UB U )P 8 P P

2
v'3

F 8 +XsB. (3.7)

The G elimination mechanism which supplies the g' with
a mass may be thought of as the g' field e8'ectively dom-
inating the G operator. It is amusing to contrast this
with the analogous situation in the 0+ channel where the
"trace anomaly" is relevant. There the analogous mecha-
nism lowers ' the mass of the singlet.

This model has a number of useful features in addition
to describing g mass generation. For example it satisfies
the large-&, counting rules, it gives (with the minimal

XsB) a reasonable picture of gg' mixing, it simply'9'2 '

explains the 8 dependences of physical amplitudes, and (if
U is replaced by a linear 0-model field M) it can display a
trigger mechanism for spontaneous breakdown of chiral
symmetry. Ho~ever, an objection against its use has
been raised since it predicts a too small rate for the de-
cay g'~g2m. This objection does not take account of
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the complication that calculation of this process should
include poles near the physical region expected from gen-
eral dispersion theory arguments. These poles are due to
the exchange of 8 (scalar and isovector) and o (scalar and
isoscalar) particles. It has been shown that for a La-
grangian such as (3.7), but where U has been replaced by
the linear sigma model field M so that scalars are includ-
ed, the too small "current algebra" result for g'~g2~
can be understood as a delicate cancellation involving the
o- and 5-exchange diagrams in the limit where these
masses are set equal to each other and sent to infinity.
For physical values of the 0. and 5 masses, this great can-
cellation does not hold. It would be interesting to calcu-
late soliton properties in a more complicated model in-
cluding the 0. and 5 particles but that is beyond the scope
of the present work.

The symmetry-breaking piece XsB is explicitly given by
(assuming isospin invariance)

Xsa=Tr[(P'T+P"S)(B„Ut}„UU+ U B„UB„U)

+ (5'T +5"S)(U+ U —2)], (3.8)

where T=diag(1, 1,0) and S=diag(0, 0, 1). The nonderiva-
tive part is the usual one, while the derivative part splits
the decay constants so F&WF„. The constants are
found to be P'= —26.4 MeV, P"= —985 MeV,
5'=4. 15X10 GeV, and 5"=1.55X10 GeV .
Clearly, the nonderivative part does not contribute to J„.
The derivative piece does, but is easily seen to give a
contribution which is a pure gradient. Hence there is no
contribution to H(q ) from (3.8). The way in which this
turns out to be consistent with the RHS of the anomaly
equation (3.3) is that the piece g, D, (0) coming from the
symmetry-breaking terms cancels the piece E(0) corre-
sponding to the excitation of the 6 field or equivalently
the q' field. Verification of this point requires the exact
solution of the equations of motion. Note also the ex-
istence of an excitation of i)' due to the presence of SU(3)
breaking. This does not exist at the dominant (for the
proton) two-fiavor level. Actually, experience with the
related n-p mass-difference problem suggests that this
type of q excitation is not quantitatively important. Two
additions to the Lagrangian (3.7) are required to under-
stand the baryon as a soliton, Can these contribute to
H(0)? First, the Wess-Zumino term must be added to
the action. This term is easily seen to give no contribu-
tion to the U(1) axial-vector current. Second, the Skyrme
term

1
, Tr([a„,a„]),

32e
(3.9)a„—=B„UU

must be included to stabilize the soliton. However, be-
cause of the commutator in (3.9), we see from the substi-
tution U =e'i'U, (3.5) together with (3.6), that the
Skyrme term also does not contribute to the U(1) axial-
vector current.

To partially sum up, in the Skyrme model of pseudo-
scalars, even including a derivative-type symmetry break-
er, one has H(0)=0. Certainly, many additional chiral-
invariant terms can be added. These are somewhat ad

hoc, but so is the Skyrme term. Consider, for example,
the addition

X,„„,=f Tr(a„a„aa„), (3.10)

where f is an arbitrary constant. Because (3.10) is chiral
U(3) XU(3} invariant, it does not contribute to the U(1)
anomaly. Setting again U =e'~U, we see that (3.10) con-
tains, in addition to a term independent of g, linear,
quadratic, and quartic terms in B~. Strictly speaking, it
is not necessary to always keep the product e'~ and U to-
gether (this, however, violates the quark-line rule if U is
believed descended from a linear-o-model field M), and
so any term in the expansion of (3.10) is chiral invariant
by itself. The term linear in B~ gives a contribution to
the current

b,j„=—8if Tr(a„a„a„),
a„=i3„UU

(3.11)

e abcp
~a ~b

c
P

(3.12)

Evidently, this vanishes at the classical level in which the
fields P' commute with each other. %'hen we quantize
(3.12) the order of the operators may be significant, and
so (3.12) does not obviously vanish. In particular, the
commutator [Q„Qb] might appear and this would give a
piece linear in 0 yielding the first term in Eq. (15) of Ref.

which is to be added to (3.6). Recently, it has been
claimed that a term such as (3.11) should represent the
entire U(1} axial-vector current with the coefficient deter-
mined from an anomalylike argument. Clearly, in the
class of models under consideration, bJ„is just part of
the axial-vector U(1) current. Furthermore, it is claimed
that (3.11) gives a nonzero contribution to H(0) in the
Skyrme model. It is true that (3.11) is not a gradient, and
so it looks encouraging. But a closer analysis reveals
some difFiculties. In the Skyrme model the nucleon is
treated as a collective excitation of the coordinates
A (t) introduced by setting U = A (t) Uo(r) A (t), where

Uo(r) is the Skyrme soliton solution. Specifically, the
collective Lagrangian is expressed in terms of the eight
angular velocity operators 0, = i Tr(A, , A—A ), where
the A,, are the Gell-Mann SU(3) matrices. Terms higher
than quadratic in the 0, 's are neglected (these are higher
order in 1/X, ). One can compute the vector charges
from this Lagrangian by varying with respect to 0, .
These will therefore come out to be at most linear in 0, .
Keeping terms in the vector currents which are quadratic
in the 0, is inconsistent. It is also therefore highly suspi-
cious for terms in the axial-vector current. However, this
is precisely the situation for (3.11};introducing A (t) into
this expression leads to a U(1) axial-vector current which
is quadratic in Q. An interesting attempt to overcome
this problem was made in Ref. 9. However, it seems to us
there is a further subtlety. To see this let us consider the
first term in Eq. (15) of Ref. 9 which corresponds to the
two-Aavor reduction of 6J„. Introducing P„
= U ' o.„U' then gives a piece proportional to
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9. It seems to us, however, that (3.21) should be quan-
tized in such a way that it vanishes. This is because the
P'„arenegative under G parity, and so (3.12) is also nega-
tive under G parity. On the other hand, J„haspositive 6
parity. The quantization should preserve the 6 parity,
and so (3.12) should also vanish in the quantum theory.
The natural conclusion is that in order to obtain the
quantum expression for EJ„from the classical one, we

should symmetrize the terms quadratic in Q. At the clas-
sical level we find (in agreement with Ref. 9)

from our experimental knowledge of meson decays.
Finally, let us briefly discuss the axial divergence equa-

tion (3.1) and its proton matrix elements (3.3) again. For
the kind of treatment of the g' meson [U(1) problem] be-
ing considered here, it is usually ' a good approximation
to go to the chiral limit where the quark masses vanish.
In this limit (3.3) amounts to a kind of Goldberger-
Treiman relation. Noting the proportionality between 6
and q' discussed in connection with (3.7), we may write
(3.3) in the chiral limit as

b J, = (r )o[ie;, QIQ +(if, i3+d, ,p)Q Qi3],
64~—f

3 H(0)= g (3.13)

where ( r )0 is the isoscalar squared radius of the nucleon
and the Latin indices run from 1 to 3, while the Greek in-

dices run from 4 to 7. The quantization rule is to replace
Q, ~—R, /a, Q ~—R /p, a and p denoting mo-

ments of inertia and the R's "right" SU(3) generators.
Now it is easy to see that Eq. (15) of Ref. 9 follows if we
antisymmetrize the above terms in Q. However, that was

just noted above to be an inconsistent prescription. The
correct formula would result from symmetrization:

hJ; =
z (r )od; &[R,R&]+ .

32m f—
3(P2)2

However, as we remarked, the usual collective quantiza-
tion of the Skyrme Lagrangian does not permit us to reli-
ably calculate the matrix elements of current operators
higher than linear order in the generators R, . These
terms should therefore be neglected, and we conclude
that the current (3.11) does not contribute to H(0) in the
Skyrme model of pseudoscalars. The above argument
can be roughly summarized in particle-physics language
(noting that P„o-B„y+,where y is the 3 X 3 matrix
of pseudoscalars) by saying that a G=+ operator cannot
be constructed as a product of three pions. The choice
g2m does not violate 6 parity, but the g field does not get
excited in this model in the chiral (zero-quark-mass) lim-
it. That limit is a reasonable one for understanding the
effects of a chiral-symmetric addition to the Lagrangian
and was the one considered in Ref. 9. At the dominant
two-flavor level (roughly, the two-flavor level should be
adequate for computing properties of the nucleon), the ri
field will not be excited either. The choice EK~ is anoth-
er allowed possibility, but it results in a contribution
quadratic in 0, which is just the remaining term dis-
cussed above. Note that an alternative argument, besides
G parity, against the antisymrnetrization procedure is
that it contains an undecidable sign ambiguity depending
on the factor order one starts with at the classical level.

Another possibility for extending the Skyrme model
which has been discussed in the literature is to allow,
for example, an eight-derivative chiral-invariant term
which imitates the structure of the well-known vector-
vector-pseudoscalar vertex: e„,B„g'Z0 Z, with Z,
=e,„„Tr(a„a,u ). This type of term will suffer addi-
tional suppression from the quark line rule because it is
not a single trace in flavor space. It seems better to us to
directly use the vector mesons, as we shall do in Sec. IV,
since the strengths of their couplings can be deduced

where gpp9 is the off-shell ~' nucleon Yukawa coupling
constant. Equation (3.13) holds for the chiral limit of all
the models considered in this paper. An equivalent state-
ment to the vanishing of H(0) in the chiral limit is evi-
dently the vanishing of the Yukawa coupling constant
g „.. This viewpoint illustrates the relevance of exciting
the g' (or ri in a two-flavor treatment) meson in order to
achieve nonvanishing H(0). One might think that it is
more convenient to calculate the RHS of (3.13) than the
LHS directly. However, that turns out not necessarily
true in practice. In fact, focusing on the RHS of (3.13)
might occasionally lead to confusion. For example, if one
considers a truncated model in which the g' field has not
been included but in which, if it were to be included, it
could get excited, then the LHS would properly give a
nonzero value, while the RHS would give zero.

IV. VECTOR MESONS

We will now consider the computation of H(0) in a
model where vector rnesons are included. Apart from the
SU(3)-symmetry-breaking terms, the other terms involv-

ing vector mesons will be chiral U(3) XU(3) invariant,
and so the mechanism discussed in Sec. III for satisfying
the axial U(1) anomaly equation will still hold. Here, as
previously shown, the g-like field can get excited, and
noting Eq. (3.3), we expect [since E(q ) is proportional to
the ri' matrix element] a nonzero prediction for H(0).
This is comparable to the situation' regarding the
neutron-proton-mass difference. Some readers may feel
that it is better to keep only pseuodscalars in the low-
energy Lagrangian and to allow many higher-order
derivative terms, if necessary. It therefore seems relevant
to point out that proponents of this approach have re-
cently concluded that the vector mesons generate the
main structure of such Lagrangians.

Of course, chiral Lagrangians involving vector mesons
have been intensively studied for at least 20 years. " We
sha11 adopt a particular version in which the vector-
meson nonet field p„is related to auxiliary "gauge fields"

A„and A„by

~;=kv, k + —P„k'
(4.1)

~„"=g+p„g+—'g'a„g,

where g= U'~ and g is a coupling constant. The advan-
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tage of this formulation is that A„and A„transform
linearly under global U(3)L and global U(3)s so that
chiral invariants may be easily constructed. The total ac-
tion then contains a number of pieces. First, there is a
"gauge-invariant" kinetic term for the vectors

Next, there are two "mass-type" terms for the vectors
which give the vector-pseudoscalar interactions:

X = —m Tr(A A + A "A )+8 Tr(A UA U )

(4.3)

,' T—r[—F„„(p)F„,(p) ],

F„.(p) =d~. dW—„&g[p—, p.] .
(4.2)

where mo and 8 are constants. The terms in the action
proportional to e„,& are conveniently written treating
AL and a as one-forms:

I 3
= I wz( U)+ fTr ic, ( AL a )+c3(dAL a AL —ALad AL + AL a AL a)+c3 2i —AL a+ —

AL a Ar a
g

(4.4)

where c&, c2, and c3 are constants, two of which may be
determined from vector-meson decays and the third may
be treated as a parameter which, however, has only a rel-
atively minor effect on the soliton properties. The c&, c2,
and c3 terms stabilize the classical soliton against col-
lapse without the need for the ad hoc Skyrme term. All
three terms above are U(3) XU(3) invariant. To them we
should add the second and third terms of (3.4) in order to
satisfy the anomaly equation and an SU(3)-symmetry-
breaking part Lsa given in Eq. (2.4) of Ref. 10 and dis-
cussed there in detail.

The new features of this pseudoscalar-vector chiral La-
grangian compared to the older ones include the terms
proportional to e„&and the explicit demonstration of
how the axial-vector rnesons get eliminated by a non-
linear constraint (analogous to the elimination of the sca-
lar field cr in going from the linear to the nonlinear cr

model). The parameters of the model were determined in
Refs. 35 and 36, baryon properties were discussed in
Refs. 36 and 32, and meson-baryon scattering in Ref. 37.
The baryon properties and scattering amplitudes are both

improved compared to the Skyrme model of pseudosca-
lars only.

The above Lagrangian is a minimal one in the sense
that [except for some SU(3)-breaking terms in Xsa] all
the relevant terms with the minimal number of deriva-
tives have been included. It is well known that the same
chiral Lagrangian may be presented in many different
ways. In particular the "hidden symmetry" Lagrangian
of Ref. 38 is identical to (4.2)+(4.3)+(4.4) when redun-
dant fields are eliminated. In order to verify this state-
ment one should note that CP invariance must be im-
posed on the e„„&terms in Ref. 38. Also the SU(3)-
breaking pieces Xsa differ somewhat; in the hidden-
symmetry model, the (3,3*) + ( 3', 3 ) transformation
property is not respected.

The U(1) axial-vector current may be derived from the
Lagrangian, for example, by "gauging" it with an exter-
nal U(1) axial-vector field and picking up the term linear
in that field. In this way we find in addition to (3.6) the
following terms in I„:

5 l Yl )2J„=e„„pTr + p„p (2gp iv)p—
2 2g 3 2

y2—F„(p)(2gp—iv)&v'2

1 y2

2 2g
y3+ (2gp tu)—

X(2gp —iu) (2gp —iv)& (4.5)

where p„=g'+B„g+B„g,u„=g'B„g—B„gg,and

1') =3+2l 2c(

2&2i
C2

g
&2i

3 C3
g

2

2C2 C3

g
2

(4.6)

It is obvious (e.g. , p terms are present) that this new con-
tribution is not a pure gradient. Even though we have a
guarantee from the arguments of Sec. III that the axial
anomaly equation holds, it is amusing to check this
explicitly. Using the q' equation of motion
(
— +m„)g'=B„J„/&3Fafter taking the divergence

of the axial-vector current J„=J„+&3F B„ri',we sim-
ply get B„J~=&3F„m ri as expected. Also notice that'r 7l

5the condition for g' to get excited is that B„J„have a
piece not containing g'.

In order to evaluate the proton matrix element of (4.6),
we introduce the classical soliton and quantize its collec-
tive coordinates. This is discussed in great detail in Ref.
32. At the classical level the fields g, p', , and coo are non-
trivial:
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g(r)= exp[is. rF(r)/2] 0
0 0 1,

p,'=e,k, G(r)/gr,

roo= —co(r) .

(4.7)

tional fields are given by

(4.8)

"q(r)"=2(Q r)ri(r) .

r po(r, t) =—A (t)r [Qg, (r)+r(Q. r)$2(r) ]A (t),

ro(r, t)= rXQ,2y(r)
r

After introducing collective coordinates A (t) by
g(r, t)= A (t)g(r) A (t), etc. , we take account of dynami-
cal readjustment of the parameters of the collective La-
grangian. Then also the fields co;, po, g, g', k, and k„'de-
velop nonzero components. Since the collective Lagrang-
ian is universally expanded only to quadratic terms in the
angular velocity Q, = i T—r(A, , A A ), we will only keep
terms in J„upto and including order Q. The k and k„'
fields make no contribution to J„in this order. The addi-

J;=Ri(r)(Q; —r;r Q)+R2(rg, r Q,
where the radial functions are given by

(4.9)

In (4.8) the matrices A(t) are restricted to SU(2) since
"rotations" into the strange directions do not contribute
to order Q. Furthermore, "ri" represents the pure non-
strange isosinglet field.

Substituting (4.7) and (4.8) into (4.5) gives, for the sing-
let axial-vector current expressed in collective variables,

Ri(r)= 1

2gr
—y, +y2 (g, +gz)(G +(i)F' sinF —y2[2g2(ro'p —coy')+(, O' —Gg', —(6'+g'i)( I —cosF)], (4.10a)

2—
gr

—yi+ —
yp (g, +(2)sin F +3y3(g, +(2)(1+G cosF)—

+y2 2g aiy+ G ( G —
gi

—2(2)+(G —(2)(1 cosF)+2—G (gi+gz)(1 —cosF)+ —(g, +(2)(1—cosF)

(4.10b)

Here a prime denotes differentiation with respect to r.
Finally, quantizing the theory using the angular momen-
tum operator J=Qa (a being the moment of inertia for
spatial rotations, denoted as 8 in Ref. 32), we obtain for
H(0) the formula

H(0)= f dr r (2R, +Rz) .
3ga

The final numerical result turns out to be

(4.11)

H(0)=0. 30 . (4.12)

This result changes only by about 10% on the variation
of the parameters y, , y2, and y3 [see (4.6) and (4.4)]
within their allowed ranges. Referring to Fig. 1 shows
that the parameter R introduced in (2.5) must be less
than about 0.25 in order that our determination of H(0)
be consistent with experiment.

To discuss the parameter dependence more explicitly,
we first note that g, mo, and B introduced in (4.1) and
(4.3) are quite well fixed from the meson sector. yi has
the interpretation of a VP coupling constant (it is con-
venient to use instead ii = —2&2y, /3), while y2 has the
interpretation of a VVg coupling constant (it is con-
venient to use gi i«=&2gy2). These are reasonably but
not precisely determined from the meson sector, yield-
ing central values gvv&=1. 9 and h=0.4. On the other
hand, y3 (we instead use a=y3/yz) is not at all deter-
mined from the meson sector. From calculations in the

TABLE I. Singlet axial form factor H(0) as well as the neu-
tron P decay constant g„(computed at the two-flavor level) for
some alternative allowed parameter sets in the vector-meson
chiral Lagrangian.

(h, gyyy K)

(0.4, 1.9,0)
(0.4, 1.9,0.5)
(0.4, 1.9,1.0)
(0.7,2.2,0)
(0.5,2.0,0)
(0.2, 1.7,0)
(0,1.5,0)

g (SU(2))

0.76
0.85
0.91
0.53
0.67
0.99
1.24

H(0)

0.34
0.33
0.30
0.29
0.34
0.32
0.28

I

baryon sector of the SU(2) model we require ' a to be
very roughly around 1 in order to reproduce the elec-
tromagnetic and axial low-energy form factors. The re-
sult (4.12) was obtained with gvv&=1. 9, h=0.4, and a= l.
In Table I we show the results for some other parameter
choices. We also show the predictions for g„,the axial-
vector coupling constant in neutron P decay. Actually,
the value shown for g„corresponds to an SU(2) rather
than an SU(3) treatment of the vector-meson chiral La-
grangian. This is because a full SU(3) treatment, includ-
ing the effects of "cranking" the k and k* fields, has not
yet been carried out. Based on the experience with the
pseudoscalar Lagrangian, we would expect the SU(3)
values for g„to be reduced by 10—15%%uo from the SU(2)
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values. In contrast to H(0), g„has a relatively severe
dependence on the parameters of the Lagrangian. We
furthermore note that a full SU(3) treatment of the vector
chiral Lagrangian would not change the prediction for
H(0). Such a treatment is, however, required to compute
H3 (0).

V. QUARKS

2(qLy„d„U—U qL, qtty„U d„UqR—), (5.1)

where q is the column vector of quark spinors. g is the
conventional "Yukawa" coupling constant in this ap-
proach, while g measures the strength of another allowed
Yukawa coupling. In contrast with the Skyrme model,
which gives a somewhat too small value for g~, the chiral
quark model gives a too large value. It was recently
shown that g could be used to adjust g~ to its experi-
mental value, but such a term was not included in the
previous calculations of H(0). In order to mock up the
U(1) anomaly, we shall also include the second and third
terms of (3.4). Actually, this is not a unique choice in the
present case since a term

iG det U detqz qL
n

g p n
12 det U detqLq

(5.2)

with A, , +A, 2
= 1, could also be used. For the SU(3)-

Another popular approach to the short-distance
description of the nucleon is the inclusion of explicit
quarks. The traditional way to include the quarks is to
couple the chiral pseudoscalar fields to a "bag". A num-
ber of calculations of H(0) have been performed in mod-
els of this sort, with results around the same as our
"vector-meson" result (4.12). In this approach the im-
plementation of the axial anomaly equation (3.1) is rather
delicate because of the need to match the axial-vector
current across the bag boundary. One way to circumvent
this problem is to include the quarks via a generalized
type of Gell-Mann —Levy cr model (=chiral quark mod-
el). Two calculations '" of H(0) using variants of this
method have appeared. Again, the results are in general
agreement with (4.12); Ref. 41 finds that H(0) should lie
in the range 0.2 —0.4, while Ref. 42 finds the range
0.15—0.60.

Here we would like to also briefiy discuss H(0) in the
chiral quark model since this model seems to provide the
beginnings of a "bridge" to the fundamental QCD
description. We will make some relatively minor new
points and content ourselves with a quick estimate of
H(0). Mainly, we will emphasize the aspects of this inod-
el which are related to the concerns raised in our previ-
ous discussion.

The U(3)XU(3)-invariant part of the Lagrangian will
be taken to be

2

Tr(BqU B„U)
—qy„B„q

F

gp
—q(Uq„+U qL )
2

where some meson symmetry-breaking terms propor-
tional to P' and f3" were not written. We see that the
current (5.3) passes the first test mentioned in Sec. III for
contributing to H(0). That is, while the meson terms in

J are pure gradients, the quark term clearly is not. But
P

we still inust check that a (possibly composite) field with

g or g' quantum numbers gets excited so that J„can
have a nonvanishing expectation value in the proton
state. This does not happen at the simplest level of col-
lective quantization. To explain this feature we will next
assume that the problem can be treated at the two-flavor
rather than the three-flavor level. This implies that we

are considering the proton matrix element of sy„yssto be
negligible. As previously discussed in detail, this holds
fairly well even with the "collective" approach to
strangeness in the three-flavor Skyrme model. The sim-

plest approach to collective quantization involves ex-

panding around the classical "hedgehog" solution Uo and

the associated solution of the Dirac equation for the
quark ansatz:

(5.4)

a; and P, being two-component spin and isospin wave

functions, respectively. The ansatz (5.4) is characterized
by a "grand spin" K=—J+I quantum number of zero.
However, the relevant operator for evaluating the first
term of (5.3), A (t)y4y;y~A (t)=y4y;y5 [where A (t) is

the collective-coordinate isospin matrix], clearly trans-
forms as EC =J=1. This means we will get zero for the

J; matrix element since (E =0~K = 1~K =0) =0.
In order to obtain nonzero H(0), it is necessary to em-

ploy a more sophisticated collective quantization pro-
cedure ("cranking") in which the nucleon's moment of in-

ertia is readjusted due to excitation of new field com-

ponents by rotation. Then the quark wave function can

pick up a %=1 piece which yields nonvanishing H(0).
The complete "cranking" has been worked out for the
model with g=O and neglect of the P' and P" derivative-

type symmetry-breaking terms in Ref. 44.
One finds when substituting q (x, t) = A (t)qo into (5.1)

the equation of motion for qo:

(h, +h')qo=eoqo,

where the "static Hamiltonian'* h, is

(s.sa)

symmetry-breaking terms, we may consider the sum of
(3.8) and —g, m, q, q, . A certain amount of double
counting seems inevitable in this model, but this is miti-
gated because the quarks make their main contributions
at short distances and the pseudoscalars at larger dis-
tances. For example, it turns out that the pion-mass term
has a larger eft'ect on the nucleon properties than does the
analogous quark-mass coefficient ( m, +m 2 ).

The U(l) axial-vector current derived from (5.1) and
(3.8) contains both quark and meson pieces:

(5.3)
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F
h = i—a V.+ — (cosF i—y x rsinF)S 5

l
5q = ——((r Q)qs, (5.11}

F' sin2F+go' x(x'1 ) [r x(x'1 )]
2 4r

where g is a parameter to be determined self-consistently,
it can be shown that the relativistic correction is given by

Vs sin XXr
r

(5.5b)
0 U df

0 3
(5.12)

and the perturbation piece h
' is given by

h'= —Q r+g sin F[r—x(x v)] ——sin2Fy~xXr
2 2

(5.5c)

This is analogous to the relativistic "depolarizing" fac-
tor in bag models. This suppression factor appears to
have been left out in the treatment of the cloudy bag
model in the first article of Ref. 39.

For the case g=O the prediction for H(0) can be ob-
tained from the numerical solution of Ref. 44 where it is
found (g =5.4)

0 is the angular velocity operator, as before while a and
P are here the usual matrices introduced by Dirac,

( i 0},and F(r) is the chiral profile in (4.7). Work-
ing in the adiabatic limit of small 0, it is consistent to
consider a first-order change 5q to the static solution q, ;
1.e.,

8 8,=0.38, =0.68,

and so

H(0) =0.26 .

(5.13)

(5.14)

qo=q, +5q . (5.6)

(h, e, )5q =——h'q, , (5.7)

from which one can deduce that 5q must be a I( =1 spi-
nor. Finally, the Lagrangian in (5.1) can be written to
second order in 0 as

Upon substitution of (5.6) into (5.5a) and keeping terms
to first order in Q, one obtains the "cranking equation"
for 5q:

0, =0.69, (5.15)

In this model the value of g„for the nucleon comes out
about 15%%uo too high. As pointed out earlier, this can be
corrected by adjusting the quarks' axial-vector coupling
with a negative value for g. At first, one might conclude
from (5.10) that H(0) would then also be decreased by a
similar factor 1+g. However, including a nonzero g
dramatically increases the role of the quarks in the nu-
cleon. For example, taking g = —0.2, the preferred solu-
tion is around g = 3.8 and predicts

L = —Mo Nqe, + —,
'—(8+8q)Q (5.8)

displaying the quark contribution 8 to the moment of in-
ertia in addition to the contribution dependent on the
meson fields 0.

The matrix element of the axial-vector singlet current
in (5.3) is easily seen to be related to the quark-spin
operator. For our discussion we define spin and orbital
parts of the quark moment of inertia as follows
(8 =8, +8L ):

and from (5.10) we find

H(0) =0.33 . (5.16)

Our estimates in (5.15) were computed using an approxi-
mation to the exact cranking based on that of Ref. 45,
but with (5.11) generalized to

8 J=(8+8 )f q
—qd r,
2

5q = — g(r Q)q, ———g'(r x)(Q x)q,
l l

2
' 2

(5.17)

8L J=(8+8, )f qt( ir XV)q dir . — (5.9)

The expression for H(0) in the chiral quark model is then
given by

0
H (0)=(1+g ) 0+0 (5.10)

and has the following interpretation. The first factor is
the axial-vector coupling of the "constituent" quarks.
The second factor is the fraction of the proton's spin car-
ried by the quarks. The third is a relativistic suppression
factor which is the fraction of the quarks' angular
momentum due to their intrinsic spin as opposed to their
orbital motion. Using a simplified treatment in which
the change in the quark field is taken as

This approximation was found to be in excellent agree-
ment with the exact cranking results of Ref. 44 for the
case g=O. The predictions for H(0) in the chiral quark
model are seen to be consistent with our vector-meson re-
sult (4.12).

In the chiral quark model we have been discussing, the
g excitation does not play a direct role since it contrib-
utes to J„only through a pure gradient. It can, however,
affect the prediction for the quark moment of inertia and
thus indirectly contribute to H(0) Arough appro. xima-
tion outlined in Ref. 10 indicates that inclusion of the g
boosts the quark moment of inertia slightly and hence
should slightly boost the prediction for H(0). Calcula-
tions for H(0) in the cloudy bag model get a direct con-
tribution from the four-divergence of the g field. This is
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possible in the cloudy bag model because of the contribu-
tion of the integral around the surface of the bag. The
bag is, however, an artificial construction intended to
mock up confinement, and so any effects of the bag sur-
face are somewhat diScult to interpret. It should be not-
ed also that (5.10) is incomplete if one includes scalar-
meson fields as proposed in the SU(2) model of Ref. 41
where it was found that scalars could contribute as much
as one-third of the total for H(0).

Note added. The remark in Sec. II that SU(3) breaking
for R in (2.5) might be large without adversely affecting
the successful Cabibbo scheme has been strengthened in
N. W. Park, J. Schechter, and H. Weigel, Syracuse Re-
port No. SU-4228-441, 1990 (unpublished). Furthermore,
a small extension of the present treatment which yields
an interesting connection with the operator-product-

expansion approach of the last three papers in Ref. 8 has
been given in J. Schechter, V. Soni, A. Subbaraman, and
H. Weigel, Syracuse Report No. SU-4228-452, 1990 (un-
published).
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