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Colliding impulsive waves in succession
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We formulate the initial-value problem for two colliding trains of impulsive gravitational waves.
In the absence of a global, exact solution we show that in a region lying between the singularity
u?+v2=1 and the wave trains, the solution is still the well-known Khan-Penrose solution.

I. INTRODUCTION

In a recent paper' we have introduced the formulation
of the problem of colliding superposed waves in general
relativity. Being unable to present an exact solution, we
have constructed the proper initial data in the incoming
regions. The formation of an essential and therefore
impenetrable singularity, however, by the collision of the
very first front waves raises the question of whether a
physically acceptable solution exists at all. In this Brief
Report we consider an arbitrary number of successive im-
pulsive gravitational waves in collision and provide a new
approach to this particular problem. The amplitude con-
stants of the waves are chosen in such particular values
that the original singularity obtained by Khan and Pen-
rose?® (KP) remains effective. Then, we observe that the
original KP geometry is retained in a smaller region of
space-time formed by successive waves located at
u <1/V2 (v<1/V2). The reason for this restriction is
connected with the fact that for u (v)>1/V'2, the space-
time region to be obtained (as described below) falls
beyond the essential singularity u?+v?=1, and therefore
such incoming waves can be handled only within the con-
text of an exact solution. A globally exact solution is
beyond our scope and this handicap compels us to ex-
plore the possible validity of the KP solution for such a
sequence of incoming waves.

II. ARBITRARY NUMBER OF INCOMING WAVES

In the harmonic coordinate system the space-time line
element that describes gravitational plane waves (pp
waves) is given by

ds?=2dU dV —dX*—dY*+h(U)Y*—X?*)dU?, (1)

where the function h(U) determines the profile of the
waves. We shall choose now

R(U)=8(U)+ 3 A4,6(U—-U,;), (2)
i=0

where A, are constant coefficients and U; denotes the lo-

cation of the ith impulsive wave. For 4, =0, we have

h (U)=06(U), which is the single wave case that gives rise

to the KP solution. By this choice we assume an order-
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ing in the impulses such that U; > U; whenever i > j. We

apply now the coordinate transformation
U=u, X=xF, Y=)G,
V=v+1(x?FF,+y*GG,) ,

which brings the line element into the Rosen form
ds’=2du dv —(F dx)*—(G dy)* , 4)
and where the equations satisfied by F and G are

F,,=h(u)F ,

(5)
G, ,=—huG .
Solutions for F and G are given by
PR I TR
Flu)=L —St—+ 3 4,——Fy)|,
s S =0 N
—su (6)
L 1 1 n e '
Gu)=.L —t—==3 4—G;) |,
S N i=0 N
where £ ~'{ | denotes the inverse Laplace transform and

F(u;),G(u,) are the constant values for F(u) and G (u)
at the locations of the ith impulse. We have a similar
metric for the other incoming region in which we substi-
tute u —v, u;—v;, and n —m. Although the number of
waves can be arbitrarily chosen, for symmetry reasons,
we shall make the choices u; =v; and m =n, which imply
that the two incoming regions involve the same number
of waves located at equal intervals.
The constants F(u,) and G(u;) are given by the re-

currence relations

n—1

Flu)=1+u,+ > A(u,—u;)F(u;),
i=0

n—1

Gu)=1—u,+ 3 A(u,—u;)G(y;),
i=0

where for n=0 we have F(uy)=1+u, and
G (ug)=1—ugy. In the case of a single impulsive wave at
u =0, we have u,=0, which leads to the conditions
F(0)=1=G(0). We rewrite the incoming space-time
line element (4) in the form
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ds*=2du dv—e YleVdx*+e Vdy?) , (8)

where e "U=FG and e"=F/G. We want now to choose
e " U the same as in the single wave case, namely,

e U=1—u?6u), 9)
and fix all the constants accordingly. In order to achieve
this, we multiply F(u) by G (u) and equate the result to
1—u2%6(u), which determines all A;:

2 — i+1
%‘ (i=0,1,2,...,n—1). (10)

i

A_:

! 1—u

Using these constants and the values for F(u,),G(u,)
from (7) we express the incoming region metrics in terms
of an arbitrary number of waves. For the three-wave

case, as an example, we have the incoming metric func-
tions

— F
U=1—u?0(u), eV'==, 11
e u“u), e G (1n
where
F=14u6b(u)— (u —uy)O(u —uy)
—u,
2 1+u,
1—u01+u1(u u )0(u—u,),
2
G=1—u9(u)+1+u0(u—u0)9(u~u0)
2 l—u

T — (w —u)0(u —uy) .

The three impulsive waves, obviously, are located at the
points (0,uq,u,), respectively, and the expressions are
suggestive for a straightforward generalization. The F,G
functions for an arbitrary number of waves are found
without much effort as

n

Flu)=1+ub(u)—2 3 (=D u —u)6(u —u,)

1=0
Eof =1y
| : )
k=0 1_(—1) 2%
n (12)
Gu)=1—ubu)+2 3 (—Diu —u)0(u —u,)
1=0
Lol =Dk
X —— ||
k=0 1_(—1) U
where u _;=0. It can be checked that these functions

satisfy FG=1—u26(u), and a similar construction for
the other incoming region provides e “Y=1—v20(v). Be-
ing combined together, the two incoming regions suggest
that in the interaction region we can choose
_ ~Ugp
e U:1_u2_v2:e KF , (13)

which is essentially the choice that we abide by.
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III. THE PHYSICAL INTERPRETATION

As admitted in the beginning it is not our intention
here to seek for an interaction region metric that will
match the F,G components in (12). Rather, by special
choices of the coefficients we have rendered the condition
(13) for one of the metric functions. For a symmetrical
collision problem we impose now the condition that all
successive waves are located in a region 0<u <1/V2
and 0<v <1/V2. Otherwise, for incoming waves satis-
fying u (v)>1/V'2, the extrapolation of the incoming
waves into the interaction region leads to a meeting point
which is beyond the singularity u*+v?=1, and therefore
we discard it from our discussion. Once we impose this
condition on our initial data, which is always possible, it
enables us to determine the function e”"=F /G in the in-
teraction region. To this end, we express ¥V (u) in the in-
coming region after some manipulation as

1—u
! 1—(— Dk, 1+u for 2n waves
il § B e, 1+
e=r [T D 1 % for 2n +1 waves
—u
_ 1+u
1+u ’ (14)

where the constant factor of products is denoted in short
by a. A similar expression exists with u-—v and
u;—v; =u, for the other incoming region. This form of
e” can be recognized now (with a=1) as the KP form.

The interaction region line element is

ds’=2e¢ Mdudv—e YeVdx*+e Vdy?), (15)
where
U=Ugp, M=Mgyp ,
v, +
eV=ae *=q I:T ,
1+7

=u(1—v)"?+v(1—ud)'?,

a=const [in Eq. (14)],
in which + (—) refer to the even (odd) number of waves
and KP refers to the Khan-Penrose functions. The valid-
ity domain of this solution, however, is

2
U>iuy, 4, V>0, q, u*+v*<1 for 2n waves ,

2 2
u>u,, v>v,, u-tv-=1 for 2n +1 waves .

In conclusion, this interpretation of colliding waves in
succession does not contradict any physical condition
and, unlike the problem of colliding superposed elec-
tromagnetic waves,* crossing of the singularity does not
take place. In the latter case, we recall that an exact
solution exists globally but waves have to cross into
nonallowable regions consisting of § function curvatures
at the boundaries.* In a linearized theory only, where the
8 functions are approximated by appropriate peaks, the
solution of colliding electromagnetic waves may have
some physical use.
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