
PHYSICAL REVIEW D VOLUME 42, NUMBER 8 15 OCTOBER 1990

Surface tension in finite-temperature quantum chromod3tnamics

S. Huang*
Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

J. Potvin
Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

and Department ofMathematics, Statistics, and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

C. Rebbi
Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

S. Sanielevici
Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052

(Received 9 February 1990)

In a first-order phase transition two phases can coexist at the critical point. The surface free en-

ergy a, associated with the interface separating the two phases, is an important parameter for the

phenomenology of nucleation in supercooled matter and, more generally, for the whole dynamics of
a system undergoing the phase transition. We report on a calculation of the surface tension in

quenched QCD on lattices with volumes 62X12X2, 82X16X2, and 10'X20X2, as well as on
8 X 16X4 and 12 X24X4. Our results have been obtained from a Monte Carlo simulation where

one half of the lattice is adiabatically brought from one phase to the other by applying a tempera-
ture gradient, and where the variation of free energy is calculated at the same time through the

average of the action. For N, =2 lattices, we find a/T, '=0.23(3 j and 0.28(9) on 8 X 16 and 10 X20
spatial volumes, respectively. On the other hand, the results from lattices with N, =4 are less well

defined and are compatible with a vanishing surface tension. We discuss possible ways to improve
the accuracy of the calculation with larger N, . In particular we propose the use of the Wilson ac-
tion supplemented with external Polyakov fields as a way to enhance the formation of the interface.

I. INTRODUCTION

The theoretical study of the quark-gluon plasma offers
the exciting prospect of making predictions about a com-
pletely new state of matter, which may be reproducible in
the laboratory through the collision of ultrarelativistic
heavy ions. ' The physics of the plasma also has impor-
tant implications for cosmology, particularly for the for-
mation of primordial H, He, D, and Li. For these
reasons a great deal of effort has been and is being invest-
ed in the exploration of quantum chromodynamics
(QCD) at high temperature. ' This is particularly true
with regard to the numerical simulations of hot QCD on
the lattice, which offer a systematic and nonperturbative
way for deriving the properties of the quark-gluon plas-
ma entirely from first principles.

So far, lattice techniques have mostly been used to
study equilibrium properties of hot hadronic matter. The
calculated observables include the energy density, the
pressure, the chira1 condensate, baryonic susceptibilities,
and screening lengths. The temperature behavior of
these and other observables has confirmed the long-
suspected presence of a phase transition from a hot ha-
dronic state to a quark-gluon plasma, that is, from a
chirally broken, quark-confining phase to a chirally sym-
metric, deconfining phase. Most numerical simulations
of the quenched approximation of QCD, including the re-

cent studies on large spatial volumes, ' support the no-
tion of a first-order phase transition. Moreover, recent
simulations of full QCD are also consistent with a first-
order phase transition in the chiral limit, although the
evidence is more tentative for lack of statistics and of
runs on large volumes. ' In such a case two difFerent
phases can coexist at the critical temperature and it be-
comes important to calculate the free energy per unit sur-
face area associated with the interface, or surface tension
A.

Surface tension is a fundamental parameter for the
description of nucleation and therefore of the time evolu-
tion of hot hadronic matter as it proceeds through the
transition. In homogeneous nucleation, for example, ' a
bubble of hadrons at temperature T & T, and pressure p'
will be in hydrostatic equilibrium within a medium of su-
percooled plasma at temperature T and pressure p. As-
suming spherical symmetry,

2(x
p p =

where rI, is the radius of the bubble. The probability for
such a bubble to nucleate in the supercooled plasma will
have the form

P(T) ~exp( —hW/T),

where 6 W is the free energy required to produce a bubble
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of minimal radius r rh, i.e.,

b, W= —p'U'+pU'+u A ', (3)

and v' and A
' are the volume and area of the bubble (see

also Fig. 1). Using Eq. (1) and the fact that the bubble is
spherical, one derives, for the probability,

P„(T)~exp 16~ e
(4)

3T~ (p' —p )i

or, in terms of the latent heat H and rI—:( T, —T ) /T, (us-

ing the Clapeyron-Clausius formula),

P„(T)o- exp
16~ n

T,H g
(5)

(i) is also called the "supercooling parameter" ).
The surface tension is also important for determining

the average distance between nucleation centers. '" In
the process of nucleating, a bubble will release some of its
latent heat into the surrounding plasma, thereby raising
its temperature again and suppressing nucleation. In oth-
er words, a lesser surface tension means more nucleation,
which in turn means more latent heat returned to the
plasma and less nucleation elsewhere in the plasma. For
example, Fuller, Mathews, and Alcock obtain the fol-
lowing expression for the distance between nucleation
sites:

d =(4X10 m)(cr jMeV )
~

( T/ MeV)

In a more general context, the value of the surface ten-
sion can be related to the tunneling rate between the de-
generate vacua in the symmetry-broken phase due to the
finite size of the lattice (tunneling would otherwise be ab-
sent at V~~). ' ' Here the tunneling is associated
with domain walls of surface free energy al which
separate the different vacua and it can be described as a
transition between a symmetric and an antisymmetric
combination:

The above phenomenon has also been studied numerical-
ly in the context of the four-dimensional Ising model by
Jansen et al. '

In this paper we will report on the results of extensive
simulations of quenched QCD on Euclidean finite lattices
with time extent N, =2 and N, =4, aimed at calculating
the surface tension. In Sec. II, we define the formalism
and the algorithm we have used in our calculation. We
also briefly review various alternative methods for calcu-
lating the surface tension which have been proposed over
the years. We present and discuss our numerical results
in Sec. III and also consider possible improvements on
the calculation. Finally, Sec. IV will contain some con-
cluding remarks.

II. THE SURFACE TENSION IN QCD

A. De6nitions, algorithms

The concept of the surface tension a is very similar to
that of the pressure p since it parametrizes the amount of
work d W done on the system when the interface between
the two phases is incremented by an area d A,

d8'=a dA,

in analogy with the work brought about by an increment
of volume dU,

dW= —pdv .

In general, in a system described in terms of volume, tem-
perature, and chemical potential, the variation of
Helmholtz free energy at constant volume is related to a
by

dF= —S dT —N dp+a d A,
S being the entropy and N the number of particles. The
change of internal energy E has a similar expression

dE=TdS+pdN+adA . (10)

and
Connection with statistical mechanics is established
through the formula

In a semiclassical approximation, the corresponding ener-

gy splitting is'

FIG. 1. Supercooled plasma at temperature T and pressure p,
with and without a hadron bubble of volume U' and pressure p'.

13F=—lnZ .

The calculation of the surface tension by means of nu-
merical simulations is in general more difficult than the
calculation of quantities such as the internal energy, or
the averages of Wilson or Polyakov loop factors, since it
involves an evaluation of the free energy F, and therefore
of the partition function Z itself.

Over the years, several methods for calculating the sur-
face tension have been proposed and applied mostly in
condensed-matter physics. ' We review here those tech-
niques which can be applied directly to QCD. One such
group is based on a phenomenological theory of the inter-
face profile proposed by Van der Waals' and refined by
others. ' The emphasis is on the matter density profile
p(x) describing the interface (Fig. 2), which is subse-
quently used in the calculation of the surface tension.
This is done by assuming that a local Helmholtz free en-
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(a) (b)
where M is defined as

M(x)=min(l, e ') . (15)

FIG. 2. The spatial dependence of (a) the particle density
profile p(x ), and (b) the free energy I' defined in each phase and
analytically continued at the transition point.

The quantity AF, 2 is the result of two Monte Carlo simu-
lations performed at /3, and P2, calculating the average of
the function M. In the context of a surface-tension calcu-
lation, the two simulations would be for a system with
and without the interface.

Another method is that of Binder' based on the study
of an order parameter that selects those configurations
which possess a straight interface separating the lattice in
two halves of equal volume and different phase:

ergy can be expressed as

0 no interface,
C

1 with interface . (16)

F(x ) =F(p(x ))+,i A p(x )

2

(12)
The surface tension is then proportional to the probabili-
ty of finding p;„,=1: i.e.,

where F is the free energy functional defined within each
phase, analytically continued to the transition point (Fig.
2), and A is a temperature-dependent coefftcient of the
form (T, —T)~ . ' The function p(x) can now be ob-
tained by minimizing the surface tension

dFG= x dx
dx

(13)

bF~2=F~& F~& = —lnZ~& +ln—Z~&

(14)

it can also be calculated directly by means of numerical
simulations and subsequently used in Eqs. (12) and (13).
This approach has many problems, related to limitations
inherent to the assumptions implicit in Eq. (12): the use
of the profile p as an unique parametrization, the use of
the quadratic term and the continuity properties of F. '

In particular, the use of p implies the risk of neglecting
capillary waves on the interface and other important
effects.

The advent of high-speed computers has made it possi-
ble to approach the problem from first principles. In the
simulation of statistical systems, a direct calculation of
the internal energy F. as well as the integration of Eq. (10)
can be implemented in a straightforward manner. The
comparison of these results obtained on a lattice with and
without the interface thus provides an estimate of the
surface tension. A possible problem, however, resides
in having to integrate from T=O or T=~, with the in-
herent loss of accuracy induced by the accumulation of
errors over a large range of couplings.

There exist, on the other hand, methods aimed at com-
puting differences of the free energy directly, without
resorting to an integration all the way up to T= ~ or
down to T=O. In particular, there are those which can
be characterized as "sampling" approaches. ' ' ' In a
method proposed by Bennett, ' for example, the
difference of free energies between two couplings P, ,P2
can be written as

P(p;„,)=C exp —2S (17)

+ ,'(c, —c, ) (2P„—P„P, — —nS 1

T g

—2P +P„+P,),
where 1 —P"' is the plaquette operator defined on an ele-
mentary square of lattice. The accuracy of this ap-
proach is directly related to the possibility of obtaining
accurate measurements of combinations of plaquettes
with opposite signs. This may be problematic in cases
where the plaquettes have roughly the same magnitude.

For the purpose of our own calculations, we have used
a newly introduced, alternative method, which attempts
to maintain the most desirable features of the methods re-
viewed above, such as the derivation of the results from
first principles, while avoiding, for instance, by restricting
the integration to a small range of couplings, several of

The goal is to compute this probability numerically, usu-
ally by sampling the different outcomes of the simulation.
A limitation of this method, however, comes from the
need to figure out the volume dependence of the constant
C. Having to sample through the complete phase space
could also be a problem when handling a large number of
degrees of freedom as in QCD. This approach has been
used recently in a study of the four-dimensional Ising
model. '

A last class of algorithms is represented by those which
calculate the surface tension directly without resorting to
Eq. (11). In the theory of Lenard-Jones fluids for exam-
ple, one can calculate the average of the so-called pres-
sure stress tensor:

y=fd [p... ., ( )
—p.....( )].

In the context of QCD and spin models, Kajantie and
Karkkainen and Kajantie, Karkkainen, and Rummu-
kainen have derived expressions which are similar in
spirit. In quenched QCD, for example, the surface ten-
sion is calculated via the average of the following opera-
tor for an interface in the XYplane:
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the sources of error. The method is described in the fol-
lowing section.

B. Integrating with a mixed phase

(PF)= — lnZ = (S )s (20)

where

(S, ), =Z 'f [d-U]s, e (21)

More generally, a free-energy difference can be calculated
from the average value of any operator 0,

Our procedure for deriving the surface tension is based
on the direct calculation of the variation in free energy
induced by the formation of an interface in a lattice, par-
titioned in two halves which are brought to different tem-
perature. The features which we believe are novel con-
sist in the use of a temperature difference (other fields
could also be varied) to induce the interface, accom-
panied by an integration of the internal energies of the
two halves over a limited temperature range, for obtain-
ing the variation of free energy. The advantages are
found in the need to integrate only over a very small
range of temperatures as well as in the control over the
results coming from the fact that several paths, or even
different fields, can be used to obtain in principle identical
results (cf. Ref. 26). The difficulty one meets is that a lim-
iting procedure, whereby the volume is sent to infinity
while the temperature excursion across the critical point
is sent to zero, must be followed for extracting the sur-
face tension. This can be demanding in computer time,
or, alternatively, can lead to some degree of ambiguity in
the extrapolation to vanishing temperature difference if
the volume is not large enough.

Equation (14) illustrates one way of obtaining the
difference of the free energy between two points in cou-
pling space by calculating the ratio of partition functions.
That same difference can be calculated, on the other
hand, via an integral of the average action S~ [SU(3)
here], since according to Eq. (11):

FIG. 3. Partition of the lattice during a Monte Carlo update.

(24)

where p ":/3, +5 a—nd p —=p, —5. The surface tension is
then obtained from the limit of infinite-volume and zero-
temperature difference:

Pa=PAF, /2 4,
PEF, = lim lim Pb, F& s .

6~0 V~ oo

(25)

(26)

In a numerical calculation the first of the integrals of Eq.
(24) is obtained by performing a Monte Carlo simulation
and measuring (S) in the right half, starting from a
configuration at p, =pz =p, and slowly changing /3i

from P to P+ while keeping P2 fixed at P . The second
integral is obtained similarly. The factor —, in Eq. (24)
arises from the fact that, in the double difference, the free
energy corresponding to the point (p„p2)=(p+, p ) is
counted twice. Another factor —,', appearing in Eq. (25), is
included to account for the use of periodic boundary con-
ditions which generate two interfaces of area A.

We notice that the calculation of the difference AFv &

will always produce a nonzero result, irrespective of the
existence of a surface tension. This is because the finite-

At a finite value of the temperature difference 6, the
free energy associated with the existence of the interface
can be calculated via the integration of Eq. (20) along the
path in coupling space illustrated in Fig. 4. More explic-
itly, it is obtained from the integral

phFV s= —' f '
dp, (S, )ii, —f dp, (S, )p, ~

(/3F ) = — lnZ = (/30 )s (22)

if coupled to the action as

S„, =S +XO . (23) "C

Having defined the procedure we follow to calculate the
variation of free energy, we must still specify how the in-
terface is being set up on the lattice. The code for the nu-
merical simulation of the system has been modified so
that the whole lattice can be considered partitioned into
two halves, where the couplings can be set independently:
p=/3i in the left half and p=pz in the right half [and
p= —,'(p&+pz) along the interface] (cf. Fig. 3). This is
analogous to having the two halves maintained at two
different temperatures. An interface between two
different phases can, therefore, be generated by setting
the couplings in the two halves below and above the criti-
cal point, namely P, =P, —5 and /32=P, +5.

A

t l I

"I L
B

FIG. 4. Path in coupling space for the calculation of the sur-
face tension.
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temperature discontinuity will force an interface onto the
system in any circumstance. A zero surface tension (at

T, ) will simply imply a smooth limit to zero as 5~0. On
the other hand, a nonzero surface tension will manifest it-
self in a discontinuous jump in the action. More
specifically, the left half of the lattice wi11 undergo a rath-
er sudden transition from the hadronic to plasma phase
at a value of p slightly larger than p„at p =—p, +5',
when the right half is maintained in the hadron phase at
p [see the first integral in Eq. (24)). Similarly, in the
presence of a nonvanishing surface tension, the right half
will also undergo an abrupt transition from the hadronic
to the plasma phase when the left half is kept in the plas-
ma phase, but this will occur at p smaller than p„ i.e.,

p =p, —b, [see the second integral in Eq. (24)). This
effect is illustrated in Fig. 5. The relationship between
the surface tension and the magnitude of the shift in p
will be made more explicit below. Let us point out that
these jumps will occur for a temperature difference large
enough to prevent the system from being overwhelmed
by the metastability of the two phases, which normally
occur at P, on a finite volume. There will be some
minimum value for 6, which we denote by y, below
which metastability effects take over and make the inter-
face unstable; this will be marked by the point where the
slope in bFs ~ versus 5 exhibits a crossover (Fig. 6). One
expects y to be proportional to the inverse power of the
ratio L = V/A. As shown in Fig. 6, the crossover for 5
smaller than y(L) demands that the 5~0 limit in Eq.
(26) be taken from the range 5) y; a linear extrapolation
can then be taken as 5 «1. Moreover, as also suggested
by Eq. (26), it is important to repeat the calculation on
larger volumes, where y(L" )L') (y(L'). The facts that
the crossover does indeed approach the 5=0 axis as
V~ ~ and that data from increasingly larger volumes do
overlap provide the best legitimization for the extrapola-
tion 5~0. This has been shown explicitly in the context
of the Potts model and more recently in the Ising mod-
el (see also Ref. 28).

It must be remarked that in QCD using two different

2A

FIG. 6. Anticipated 5 dependence of the free energy
difference AI'y q, and definition of the parameter y(L ). The ex-
trapolation 6~0 from the range y(5(&1 yields the surface
free energy at the current volume.

values of the coupling at different locations on the lattice
not only changes the physical value of the length of the
temporal axis but that of the spatial volume as well. In-
tegrating along a path in coupling space such as the one
illustrated in Fig. 4 implies a distortion of the lattice and
the introduction of extra volume effects. Ultimately,
however, these effects will vanish as the two limits in Eq.
(26) are implemented. This corresponds to the fact, al-
ready mentioned above, that different paths in parameter
space can be equivalently used to derive the surface ten-
sion (here the spatial volumes of the two halves are also
seen to vary along the paths, because of the distortion of
the lattice), an obvious advantage of the method. On a
large volume, y should be small, allowing an extrapola-
tion with 6 «1.

It is important to stress that the success of this method
rests on the accurate determination of (I) the discontinui-
ty in the action at p, and (2) the shift of critical coupling
(6' and b ) when one-half of the lattice is changing

0.60—

0.58—

I I I I I

(a)
I I I I I

0.60— (b)

0.58—
(s,)'

0.56 .c0
~~

~ 054-

0.56—
0

~~

~ 054—

O. 52
I

5 5.1 5.2

0.52
I I I I I

5 5.1 5.2

FIG. 5. Variation of the averaged action with respect to f3, as
two halves evolve along the path of Fig. 4 and Eq. f24). The
data were produced on an 8 X 8 X 16X 2 lattice, where

P, =5.095; here 6=0.10.

FIG. 7. Four distinct regimes for the slope of the action in
lattice half No. 1 (a similar subdivision can be defined for
(s, )).



42 SURFACE TENSION IN FINITE-TEMPERATURE QUANTUM. . . 2869

phases. As shown by the data later on, this will depend

largely on the aspect ratio N, /N, . The dependence of the

surface tension on the action discontinuity and on the
coupling shifts can be uncovered by trying to evaluate
directly the integrals of Eq. (24), using a small number of
assumptions. In a first step, each integral is divided into
four distinct regions, depending on the magnitude of the
slope of the average action (see Fig. 7): regions I and IV,
where (1/VN, )B(s;)/Bp; is always finite and (space-
time) volume independent, and regions II and III, where
(I/VN, )B(s;)/Bp; go to infinity as VN, ~~. Implicit

I

here is the assumption that the width of regions II and
III combined is equal to m. Moreover, it is assumed that
V is large enough so that y, 5 « 1 and also that 5 )w. Fi-
nally, because of periodic boundary conditions,

f' dp, (s, &, , = f' dp, &s, &, , (27)

In the case where 5) y, using Eq. (27) and partitioning
the integrals of Eq. (24) according to the regions defined
above, we get

f dp, (s, ) + f dp, (S, ) + f dp, (S, ) + f' dp, (S, ), ,

(28)

Taylor expansions of the averages (S& ) around the
points p, p, p', and p+ are then carried out, and
keeping the zeroth- and first-order terms allows an expli-
cit integration. In the limit V~ ~, where y and 5~0,
the products of the form

, a&s, )
(y, p +y, or p'+y)

I

will vanish in regions I and IV. Moreover, if the values
of ( S, ) and of its derivatives on both sides of the singu-

larity dividing regions II and III are assumed to be the
same at p' (and p ), we obtain

I

At this point the surface tension should be a constant in
the V~ ~ limit. That implies that the critical coupling
shifts p' —p„ /3,

—p' have to vary like 3 /V, . It also
implies that y —3 /V, . According to Eq. (30), an accu-
rate evaluation of the surface tension requires a clear
discontinuity in the action and also a measurable shift in
the critical coupling.

On the other hand, if 5 & y, the free energy difference
b,Fv s has a different expression. Here, Eq. (24) becomes

P~Fv, s —f dPi(si )p p+ (31)

N
pa=

4

V,
(p —p, )(., ), ,

—(s, ),, , (p, —p'+5 —y)
)

—(s, )
p

—p. [(p' —p, )
—(p, —p')]

+2y((S[)p. p- —(S, )p p ))) . (29)

Extrapolating to 6~0 is still not easy at this stage since
factors such as (S, )p have a nontrivial 5 depen-

dence. On the other hand, one can take advantage of the
fact that since V~ ~, Eq. (29) should be a good approxi-
mation to the surface tension for 5=y. In terms of the
action density s, ,

As with the case 6 )y, Taylor expansions are once again
used for the integrals Eq. (31). Keeping the lowest order
in 5, and using the action density s„

PbFv s
N, V, 5((,), ——(,), ) . (32)

Since 5&@, finite-volume metastability mixes the two
phases and the difference of the two action densities in
the right-hand side of Eq. (32) is very small. There, the
surface tension vanishes as 6~0 on finite-size lattices.
Note the volume dependence of the slope in Eq. (32),
which has been confirmed in numerical simulations of the
Potts model.

III. NUMERICAL RESULTS

(p, —p')(s) )
p p+

V) (., ). ..[(p' —p, ) —(p, —p')]

V)
+2y (&s, & . —&s, &p, p. ) (30)

A. An estimate

Unlike hadronic spectroscopy, there is no empirical
data, nor any model calculations of the surface tension
which could be used in the comparison with the numeri-
cal results reported below. But an order-of-magnitude es-
timate can be attempted using bag-model and current lat-
tice results. The starting point is Eq. (1), which relates a
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to the pressure difference inside and outside a hadronic
bubble of radius r immersed in supercooled plasma. The
meaning of Eq. (1) is that for a finite value of the surface
tension, the minimum radius increases to infinity as
hp ~0 or as T~ T, . Assuming a radius of 1 fm in the
range T & T„one obtains

~ (p, +x, p, +x)

a/T, -0.5 X (1 fm) X bp /T, . (33)

The right-hand side of Eq. (33) vanishes as bp~0 or
T~T, . This estimate may, however, be meaningful if
the temperature dependence of Ap changes by at most an
order of magnitude in the range of temperature T & T, .
In the following, the equation of state of the bag and the
Kallman models ' for both hadronic and plasma phases
at T & T, are used to get such a temperature dependence.
For the pressure difference, one gets

bag: b,p /T, = 1.42 X T, [1—( T/T, ) ],
Kallman: hp /T, = 1.42 X T[ 1 —

( T /T, ) ) .

On the other hand, one can also use the Clapeyron-
Clausius equation'

bp/H=1 —T/T,

and write

hp/T, =(H/T, )T, (1—T/T, ) .

Using lattice data for the latent heat H (Ref. 8),

bp/T, =2 1T,(1—
T. /T, ) .

Inserting these three relationships back into Eq. (33) pro-
duces the estimates shown in Table I, assuming 1

fmXT, —1, a value commonly found in lattice SU(3).
One first weakness of these estimates may come from the
use of 1 fm as a typical radius over a large range of tem-
perature. The assumed value for T, may also be at fault.
Finally, one has all the weaknesses associated with the
phenomenological models used here. However, the cal-
culation suggests that it is not unreasonable to expect
values of the surface tension in the vicinity of 0.1—0.5.

These values may be compared with the result of a
mean-field lattice calculation by Frei and Patkos: '

ag =0.8

(g is the correlation length). On the other hand, a recent
lattice calculation by Kajantie et al. on a 8 X40X2
volume has given

a/T, =0.24(6) .

(pc x, pc+x)

FIG. 8. Closed path for the study of the systematic errors in
the integration of Eq. (24).

B. Monte Carlo simulations and error analysis

We have applied the integral approach to the calcula-
tion of the surface tension in quenched QCD on several
volumes, namely, 6 X12X2, 8 X16X2, 10 X20X2,
8 X 16X4, and 12 X 24 X 4. The Monte Carlo updating
was based on the Metropolis algorithm described in Ref.
33. The integrals of Eq. (24) were implemented by using
steps hP in the range 0.005 to 0.02, depending on P, and

132, the smaller step size being used when closer to the
discontinuity at P, . For each volume, 20 to 40 values of
the pair (13~,Pz) were simulated with 10000 to 30000
iterations each. The average action was calculated every
10 iterations.

Systematic errors may be induced if there are hys-
teresis effects. However, it is easy to check whether these
errors are acceptably low for the chosen thermalization
rate and integration step size by evaluating the net free
energy change along any closed contour in coupling
space, which we know should be identically zero (Fig. 8).
On a lattice of volume 12 X24X4 we have obtained
PBFv s/2 A T, =0.01+0.30 for the largest triangular
path (x =0. 12).

The statistical errors on the surface tension have been
estimated by adding in quadrature the statistical error at
each point of the integration. We have verified that the
separation of 10 iterations between measurements
guarantees suSciently decorrelated results. The main
source of error, of course, is due to the finiteness of the
integration step. We have estimated it by using first- and
second-order summations for the integral. In general, the

TABLE I. Estimate of a/T, ' (here 1 fm X T,. —1.0).

Model

Bag
Kallman
C-C/Lattice

T/T, =1
~ 00

0.00
0.00
0.00

T/T, =0.95

0.13
0.10
0.05

T/T, =0.80

0.42
0.28
0.21

T/T, =0.50

0.67
0.32
0.53

T/T, =0.0

0.71
0.00
1.05
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3.0

A- "e' 1.0

0.5

0 0.1 Q2 Q3 0.4

FIG. 9. Computer-time-saving paths in coupling space.
Once the free energy corresponding to the path A'B'C' has
been evaluated, that of path ABC can be computed more chea-

ply by using A A'B'C'C.

FIG. 10. The surface tension vs 5 for %, =2, with spatial
volume eX6X12 ( ~ ), 8X8X16 (~ ), and 10X10X20 (0).
The straight line is to guide the eye.

T3
C

0.229(29) on 8 X16,
0.277(88) on 10 X20 .

(34)

results from the two formulations agreed well within a
few percent of error.

The difference of the free energy is, as suggested in Eq.
(20), like a potential difference, depending only on the end
points of any paths in coupling space. For that reason it
is possible to use paths which are less costly in computer
time than the basic wedgelike path pictured in Fig. 4.
Typically, we have used paths such as the one illustrated
in Fig. 9, which include the results of the simulations al-
ready done for another value of 5.

Let us now present our results, in terms of the number
of time sites N, .

N, =2. Figure 10 and Table II show the resulting sur-
face tension, rescaled by T, as a function of 6. The two
largest volumes provide consistent values for the extrapo-
lation to 5~0 performed in the range 6)0.025:

In contrast, the 6 X 6 X 12 X 2 data seem to extrapolate to
a value consistent with zero. The difference between the
N, =6 and the N, . =8, 10 results is due to the fact that
there is too much tunneling in the smallest volume to
keep a stable interface. The above result is consistent
with the estimates shown in Table I ~ It also agrees well
with that of Kajantie et al. ; however, the slope in the
(nonphysical) regime 5%0 is different in both studies. Let
us recall that in Ref. 32 the surface tension is calculated
directly from the derivative of lnZ with respect to an ele-
ment of area in the plane of interface [see Eq. (19)]. It is
possible that the vacuum contributions are handled
differently, as evidenced by the comparison between the
results of the two methods in QCD and in the Potts mod-
el 28

N, =4. The data for the simulations performed on
8 X 8 X 16X 4 and 12 X 12 X 24 X 4 volumes are shown in
Fig. 11 and Table III. There is no indication of a finite
surface tension for the extrapolation to 5~0. We notice

TABLE II. The surface tension for X, =2.

0.010
0.012
0.020
0.025
0.050
0.075
0.080
0.100
0.120
0.150
0.160
0.200
0.250
0.300

a/T, ', (6x6x12)

0.067(66)

0.175(54)
0.406(36)
0.621(24)

0.819(12)

1.208(24)

1.613(36)
2.016(51)
2.433(63)

(I/T, , (8X8X16)

0.171(60)

0.336(51)
0.624(36)
0.827(30)

1.023(18)

1.403(27)

1.795(39)
2.208(51)
2.630(63)

~/T, , (10x10x20)

0.168(84)

0.312(84)

0.648(75)

0.888(75)
1.032(90)
1.176(93)

1.488(99)
1.776(105)

0.000'

'Extrapolated values.

0.017(25) 0.229{26) 0.277(88)
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FIG. 11. The surface tension vs 5 for N, =4, with spatial
volume 8X8X16 (~ ) and 12X12X24 (c) ).

0.60 —+
oi (b)

S=Sg+ g (h "L„+hL„*), (35)

where S is the standard Wilson pure gauge action, L„
the Polyakov line, and h =h +ih the corresponding
coupling constant, the free energy can be obtained from

that, with N, =4, our lattice gives no sign of an apprecia-
ble discontinuity of the action at the critical point (as-
suming, of course, a first-order phase transition ). This
lack of discontinuity is illustrated in Fig. 12, which
should be contrasted with the corresponding graph for
N, =2. Our difficulty in extracting a finite surface tension
may depend on the weakness of the discontinuity in the
observable, namely, the action, that we have used as in-
tegrand in the evaluation of the free energy. Let us men-
tion that the lack of evidence for a measurable value of
the surface tension is also consistent with the latest calcu-
lation of Kajantie et al. on an 8 X40X4 lattice.

Assuming that there is a finite surface tension and that
the negative result for N, =4 is due to limitations in the
present calculation, the situation should be improved by
going to larger lattices. Better results could also be ob-
tained without going to extremely large lattices, by com-
puting the free energy from Polyakov lines instead.
Indeed, using the action

0.55

0.50—
0

0.45

O.40—

0.35 5 6.5

FIG. 12. Action density as a function of the coupling con-
stant f3: (a) N, =2 (triangles), (b) N, =4 (diamonds and crosses).

Eq. (22). The surface tension is obtained from a pro-
cedure analogous to the temperature-partitioned lattice
method outlined in the previous section. Given the well-
known fact that the Polyakov line exhibits a discontinuity
sharper than that of the plaquettes on volumes greater
than 8 X 4, this alternative approach promises interesting
results on the N, =4 lattices studied here.

TABLE III. The surface tension for X, =4. IV. CONCLUSIONS

0.020
0.022
0.040
0.060
0.066
0.080
0.100
0.110
0.120
0.220

a/T, ', (8X8X16)

0.084(164)

1.111(83)

2.580(46)

7.660(184)

a /T, ', ( 12 X 12 X 24)

0.280(143)

0.760(122)
1.241(96)

1.920(77)
2.431(55)

3.185(77}

We have reported the results of a calculation of the
surface tension in quenched QCD, on N, =2 and N, =4
lattices. The algorithm used in this work was based on
free energy differences calculated by means of an integra-
tion of the action in coupling space; the interface was
generated by setting the two halves of the lattice at two
different temperatures. In the case of N, =2 we were able
to obtain a nonzero value for a/T, , which agreed with
the recent calculation of Kajantie et a/. For N, =4 lat-
tices, however, no evidence of a finite surface tension was
obtained. We brieAy discussed possible reasons for this
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a =2m (36)

at least within the mean-field approximation. The tech-
niques described in this paper can be applied directly to
the study of such phenomena, particularly by using exter-
nal Polyakov fields [see Eqs. (22) and (35)] in order to es-
tablish an interface between two deconfined Z3 vacua.

negative result (spatial volume too small, given the weak-
ness of the discontinuity of the action) and the use of the
Polyakov lines as a way out of this problem.

Much remains to be done in the study of phase inter-
faces in QCD, in addition to the above calculation on
larger volumes. One interesting issue in the context of
lattice SU(3) theory is the calculation of the surface ten-
sion between domains of gluon plasma in different Z3 va-

cua, denoted by cz, and its relationship with the surface
tension between hadronic and gluon-plasma phases calcu-
lated in this work (a=as"). Recently, Frei and Patkos
have studied the possibility of having perfect wetting, i.e.,
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