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Stochastic truncation approach to the Z2 gauge model in 3+ 1 dimensions
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The stochastic truncation method has been used to calculate the ground-state energy per site, its

derivative, and the string tension for the Z& gauge model in 3+1 dimensions. The first-order transi-

tion at the self-dual point is clearly seen, and the latent heat is estimated, together with the discon-

tinuity in the string tension. The prospects for further applications of this method seem good.

I. INTRODUCTION

In Euclidean lattice gauge theory, Monte Carlo tech-
niques have become established as the preferred means of
calculation for very large or complicated systems. In the
Hamiltonian framework, however, Monte Carlo tech-
niques are less well established. Several Hamiltonian
Monte Carlo approaches have been presented, ' but
they have not generally been pursued very far. We have
recently developed a variant approach, called the sto-
chastic truncation method (Refs. 7 and 8, hereafter re-
ferred to as I and II, respectively), which we hope will be
more successful. Stochastic truncation is closest in spirit
to the ensemble projector Monte Carlo method of De-
Grand and Potvin, and the method of Nightingale and
Blote. The purpose of the present work is to test the
method on the simplest four-dimensional theory, the Z2
gauge model.

The phase structure of the Zz model is well known.
The model is self-dual, ' and undergoes a single first-
order phase transition at the self-dual point. " This has
been confirmed by many numerical treatments of the Eu-
clidean model, including the seminal papers of Creutz,
Jacobs, and Rebbi' and other Monte Carlo studies, ' '
series analyses, ' ' and other techniques. ' The Hamil-
tonian version has been analyzed by series methods' '
but not, as yet, using a Monte Carlo approach.

We have used stochastic truncation to calculate the
ground-state energy per site, its first derivative, and the
string tension for the Hamiltonian Z2 model. The results
are in excellent agreement with a previous series
analysis, ' and exhibit the first-order phase transition
very clearly. There is a large "latent heat, " or discon-
tinuity in slope of the ground-state energy at the self-dual
point, and the string tension drops suddenly to zero. Sec-
tion II of the paper discusses the method, including
several pitfalls associated with it. The results are present-
ed in Sec. III, and our conclusions are summarized in
Sec. IV. The prospects for further applications of the
method seem good.

II. METHOD

pie power method for finding the dominant eigenvalue
and eigenvector of a matrix. If lP' ') is some arbitrary
initial vector, and

ly(m) ) —Hmlq(0) )

then

') ~ct,Eo lP, & as m ~~,

(2. l)

(2.2)

(2.3)

where for simplicity we assume that the amplitudes c; are
positive real numbers. In the stochastic truncation
scheme, one constructs a sequence of (un-normalized) ap-
proximations to lgo):

lq(m) ) y (m) ~

) (2.4)

where the n,
' ' are now integers rather than real numbers.

The vector f( ') is obtained from lg™I)) by an appli-
cation of the matrix H, as in the power method, accord-
ing to the following rules. Define an "ensemble size"

~(m) ~ (mj (2.5)

and begin from some arbitrary initial trial vector lP( ')
and "score" S' '. Then at each succeeding iteration m, a
new trial vector lg' ') and score S' are generated by
the two basic rules:

{m —1)

S(m —&)
(2.6)

where Eo is the dominant eigenvalue of H, l(t)o) is its as-
sociated eigenvector, and ac=((tolg' '). Thus repeated
application of 0 "projects out" the dominant eigenvec-
tor.

Suppose that we are working in some arbitrary basis of
vectors li ), and that the eigenvector i/0) can be expand-
ed:

A. The basic algorithm

ar(m)
S'm'= " S™-ll

~{m —1)
(2.7)

The stochastic truncation method has already been dis-
cussed in I and II. It is a Monte Carlo version of the sim-

Here R (x) is a "rounding function" such that for any
real argument x,
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[x] with probability 1 —6,
R x='

[x]+1 with probability 6, (2.8)

rithm to the matrix

H'=3M —H ' (2.15)

where [x] is the greatest integer less than or equal to x,
and 5=x —[x] is the remainder. This function may be
implemented in Monte Carlo fashion by generating a ran-
dom number e in the range [0,1] and choosing

[x] if e& 5,
R x='

[x]+1 otherwise . (2.9)

Thus on averaging over many trials,

(R(x)) =x . (2.10)

Assume the system reaches an equilibrium after some
time, where N' ' and 5' ' fluctuate around some fixed
average values as I varies. Then comparing (2.6) with
the eigenvalue equation

QH«c; =Eock (2.1 1)

we see that on average

(2.12)

and

B. Implementation

The quantum Hamiltonian of the Z2 lattice gauge
theory in three space and one time dimensions can be
written'

(2.13)

if we ignore correlations between n,
I ' and S ' (this

turns out in practice to be a good approximation). Thus
Eq. (2.6) implements the power method in a stochastic
fashion, and the trial vectors ~g' ') at equilibrium pro-
vide discrete, stochastic approximations to the ground-
state eigenvector

~ Pii). Equation (2.7) is merely an auxili-
ary rule designed to bring N' ' back towards equilibrium
after each successive iteration. For basis states with very
small amplitudes c;, the "occupation numbers" n will
usually be zero, corresponding to an effective truncation
of the set of basis states at each iteration.

the matrix elements of H' are all either positive or zero.
The basis states used were eigenstates of cr3(l), with

spin +1 or —1, so one bit was required to encode the
spin at each link. We employed one integer word for
links in each direction coupled to sites on each plane of
the lattice, and thus required a maximum 15 words to en-
code each basis state for an M=5 lattice. The initial
state ~g' ') was simply taken as the A. =O ground state,
with o3(l)=+1 on every link.

The efBciency and accuracy of the method is crucially
dependent on the particular way in which Eq. (2.6) is
implemented —there are many ways this could be done.
Starting from an initial state (i ) with occupation number
n,

I ", there will be a number of possible final states ~k )
which could be reached via the matrix elements Hk;. One
does not want to waste time generating a final state ~k ) if
its occupation number is going to turn out to be zero:
note that on average each initial state ~i ) will only give
rise to one (occupied) final state ~k), at equilibrium.
Now in the Abelian Z2 gauge model we know a priori the
number of possible final states k (it is P =3M, the num-
ber of plaquette operators on the lattice), and the sum
over all final states:

(2.16)

for a given initial state i. Hence the following technique
was adopted: (i) Round T to an integer T; (ii) if T/P ) 1

(unlikely), then generate each final state with occupation
number [T/P]; (iii) for the remainder, choose randomly a
set of T P[T/P] op—erators from the P plaquette opera-
tors to generate final states with an occupation number 1.
This technique avoids the wasted time mentioned above,
and results in an efFicient algorithm whose speed is almost
independent of lattice size. We obtained a speed of about
60 psec per state per iteration on an IBM 3090.

After each final state was generated, it was placed into
a master file by a hash-sorting algorithm, so that identical
states were gathered together before the next iteration. It
is doubtful whether this procedure is really worthwhile.

C. Traps for beginners

2
——g 0', (I, )o, (12 )c7&(li )cT, (14 ), (2.14)

The stochastic truncation method is very simple in
concept, but it is not by any means foolproof, as we have
discovered by bitter experience. Some of the pitfalls are
discussed below.

where l labels the links on a three-dimensional cubic lat-
tice, p labels the plaquettes, and the t l, ,i =1, . . . , 4( are
the four links surrounding the plaquette p. The cT&(1) are
Pauli matrices acting on a two-state "spin" vector at each
link l of the lattice, and x is the coupling variable.
Periodic boundary conditions are assumed. Calculations
have been performed for lattices of M sites, M=2 to 5.
To ensure that the ground state is the dominant eigen-
state, we actually applied the stochastic truncation algo-

Variational guidance

Some form of variational guidance is essential in a
large system. If the method is naively applied without
any variational guidance, then the initial ensemble tends
to diftuse away into the huge basis of possible states as
the iterations proceed, leaving none behind to sample the
most important region. No equilibrium is achieved, and
no sensible estimate of the eigenvalue is obtained —we
have a "runaway" ensemble.
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H'= UHU (2.18)

where

U„=()~y, )s„, (2.19)

and then to apply the algorithm as before to
~

g' ) and H'.
The eigenvalues are unchanged, and so the average score
(S ) still estimates the eigenvalues Eo. But the accuracy
of the estimate may be very much improved.

In the present case, we have applied an exponential
cutoff on the "unperturbed" energy; that is, we have
chosen

(i ~y, ) =exp( cE,'),—

where c is a constant and E, is the eigenvalue of

H() =
—,'Q [l —(r, (l )]

1

(2.20)

(2.21)

corresponding to basis state ~i ). The constant c is varied
until the estimated error in the average score reaches a
minimum. The choice (2.20) herds the ensemble towards
small E, values, which is clearly appropriate in the small
A, regime, at least.

2. The fermion problem

There seems no reason in principle why the "occupa-
tion numbers" n, ' ' must be restricted to positive
values —one could easily allow them to be negative, or
even complex. Thus it was conjectured in I and II that
the method might be capable of handling a general Ham-
iltonian matrix, such as that for a lattice fermion model.

Unfortunately, the basic problem is a little more subtle
than this. It turns out that there is a difficulty whenever
the model involves competing amplitudes, or a degree of
"frustration. " Consider a particular final state ~k ) at
iteration m, and suppose that the amplitudes HI, , c, which
feed into it are of different signs for various initial states i.
Then for the exact ground state there will be a cancella-
tion between these different amplitudes. In the stochastic
approximation, however, the basis states are only sparse-
ly occupied, so that the occupation numbers n,

' " are
mostly zero, and such cancellations will almost never
occur. The result is that there is a rapid buildup of en-
semble states with both positive and negative occupation
numbers which "ought" to have canceled out. This acts
as a background "noise" which soon swamps the signal
from the ground-state vector one is interested in.

There may be ways around this problem in particular
cases, but for the moment it appears that the stochastic
truncation method will be mainly restricted to "fer-
romagnetic" problems, in which there are no competing
interactions, and the problem is equivalent to one in
which the amplitudes c, are positive semidefinite. This
excludes fermion models in two or more space dimen-

Suppose that a reasonable approximation to the
ground-state eigenvector is already known, ~$o) =—~yo).
Then one way of implementing variational guidance ' is
to perform a similarity transformation:

(2.17)

sions. The pure Z, gauge model is fortunately of "fer-
rornagnetic" type.

4. Expectation values

As stated in I, if we want the ground-state expectation
value of an operator Q which does not commute with H,
we can use the fact that ( n; ) =c, to show that

(w. iai~. ) =--""'~""), (2.22)
( q~(m)

~

q(m) )

where
~

P' ' and
~

g™) are two independently evolved
ensembles, and, for instance,

( qi(m)~ elm) ) y n ~(m)n (m) (2.23)

We cannot use the same ensemble ~1l)( ') on either side,
because although (nk )ac)„ it does not follow that
(nk )a(c)',. )'

We have attempted to use this method to estimate the
derivative of Eo with respect to k. If

H=HO —XV,

then by the Feynman-Hellmann theorem

(2.24)

dE() E() ( H() )().
(2.25)

Thus the required derivative can be deduced from the
ground-state expectation value of Ho ~ This method
works quite well at small values of k, but at larger values
it becomes erratic and unreliable, because the ensembles

') and ~))'j' ') spread out in basis space, and the
probability of overlap between them becomes small. One
can alleviate this problem to some extent by "symmetri-
zation, " but this was not successful for the 4 and 5 lat-
tices. A simple differencing technique is much more
effective in estimating the derivative for this model, as
outlined in the next section.

III. RESULTS

As mentioned in the Introduction, the phase structure
of the Z2 gauge model is well known. The Hamiltonian

3. Symmetrization

The ground state in this system is symmetric under lat-
tice translations, rotations, and rejections. The sector of
states possessing this symmetry is much smaller than the
full basis set —by a factor of 6000 for a 5 lattice. One
might think, therefore, that one would gain accuracy and
efficiency by restricting the calculation to this symmetric
subset. But then it is necessary to "symmetrize" each
new spin state ' —i.e., perform all the lattice symmetry
operations upon it, count how many times the resulting
configurations are degenerate, and select a standard
representative from among them. This is a very time-
consuming process. The resulting increase in accuracy is
not nearly enough, by a factor of order 100, to justify the
expense of time. For a more complicated model, or on a
more powerful vector processor, it might be more
worthwhile.
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TABLE I. Table of values for the ground-state energy per site, Eo jM as a function of coupling A, and lattice size M. Also listed

are the resulting estimates of the bulk limit, M~ oo; and, for comparison, estimates from the [3/2] Pade approximant to the strong-

coupling series of Irving and Hamer (Ref. 19).

Series

0.2
0.4
0.6
0.8
0.9
0.95
0.975
1.0
1.2
1.4

—0.0075
—0.0306(1)
—0.0712(2)
—0.1355(4)
—0.1835(4)
—0.2154(6)
—0.2344(4)
—0.2545(4)
—0.4795(4)
—0.7456(6)

—0.0076(1)
—0.0301(2)
—0.0689(4)
—0.1248(4)
—0.1604(7)
—0.1807(7)
—0.1915(7)
—0.2056(7)
—0.460(2)
—0.733(2)

—0.0073(2)
—0.0298(3)
—0.0686(5)
—0.1236(6)
—0.1606(3)
—0.1809(5)
—0.1922(3)
—0.2033(6)

—0.0074(1)
—0.0304(2)
—0.0689(3)
—0.1239(4)
—0.1604(2)
—0.1817(3)
—0.1931(5)
—0.2034(3)

—0.0074(2)
—0.0300(3)
—0.0688(5)
—0.1238(4)
—0.1604(2)
—0.181(1)
—0.192(1)
—0.203(1)

—0.007 514 3
—0.030 243
—0.068 86
—0.1250
—0.1608
—0.181
—0.192
—0.203
—0.464
—0.738

(2.14) is self-dual, obeying the relation'o's'9

H(A, ) =AH(1/A, )+ —,'M (1—k), (3 1)

10

Eo
M

01—

0-2—

FIG. 1. Graph of the ground-state energy per site Fo/I', as

a function of coupling A, . Monte Carlo results are shown for lat-

tice sizes M =2 and 3. The so1id line is the [3/2] Pade approxi-

mant to the strong-coupling series of Irving and Hamer (Ref.
19), continued beyond A, = 1 using the self-duality relation (3.1).

where M is the number of sites on the lattice. The mod-
el undergoes a single first-order phase transition at the
self-dual point k= 1.

The stochastic truncation method was used to calcu-
late the ground-state energy in both the vacuum and the
axial string sectors of the Hamiltonian (2.14), for lattices
with M =2, 3, 4, and 5. The results are given in Tables I
and II. The longest runs were performed for the M=4
and 5 lattices, for couplings k between 0.9 and 1.0. For
these cases 4000 iterations were carried out, for an initial
ensemble size X' '=4X10, at each coupling. The first
1000 iterations were discarded, to ensure equilibrium had
been reached. The remaining scores were averaged over
bins of up to 256 iterations, and the bin averages were
treated as statistically independent data points in estimat-
ing the statistical error. Thus the effect of correlations
between successive scores was minimized. The optimum

value of the variational parameter c in Eq. (2.20) was
found to be about 0.6 for M=5 at A, = l. Each of these
runs occupied about 10 CPU sec on an IBM 3090
machine.

The results for the ground-state energy per site are list-
ed in Table I and graphed in Fig. 1. Convergence is ex-
tremely rapid, so that on the scale of Fig. 1 the results for
M=3 have already converged to the bulk limit, even at
X=1. Thus estimates of the bulk limit can be given to
better than l%%uo, as listed in Table I. Also listed there are
some series estimates, obtained from the [3/2] Pade ap-
proximant to the perturbation series for the ground-state
energy calculated by Irving and Hamer. ' The agreement
between the two sets of estimates is excellent. Using the
self-duality relation (3.1), one can graph the continuation
beyond A, =l with equal accuracy, and the change in

slope at A, = 1 is clearly evident. It becomes increasingly
diScult to get accurate results by the Monte Carlo tech-
nique beyond k, = 1, but again the M =3 results agree well

with the bulk estimates obtained by self-duality.
The measurements of the ground-state energy are good

enough, in fact, that one can get quite good estimates of
the first derivative ( 1/M )(dEo/d A, ) using the
differences between successive pairs of values of Eo. The
results are shown in Figure 2, together with the series es-
timates. Once again, the agreement between the Monte
Carlo and series estimates is excellent. Convergence is
again extremely rapid and for M=3 it is only the last
point before X=1 that swings away from the bulk limit.
The discontinuity in the derivative at k= 1, equivalent to
a "latent heat, " is estimated from the series results and
the self-duality relation to be 0.51+0.02.

Finally, the string tension has been estimated from the
difference between the energies in the vacuum and axial
string sectors. The results are exhibited in Table II and
Fig. 3. Already for M =2 and 3 the pattern is clear, with
a sharp step developing at A, =1, and the tension ap-
proaching zero beyond that point, characteristic of a
first-order transition. The convergence to the bulk limit
is not as rapid as it was for the ground-state energy, but
plotting the results against 1/M, one can make a crude
extrapolation to the bulk limit as listed in Table II. Also
listed are some estimates obtained from the [2/2] Pade
approximant to the string tension series of Irving and Ha-
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FIG. 2. Graph of the derivative of the ground-state energy,
(1/M )(dEo/dA, ), as a function of coupling A, . Monte Carlo
results are shown for lattice sizes M=2 to 5. The solid line is
the slope of the [3/2] Pade approximant shown in Fig. I, contin-
ued beyond A, = 1 using the self-duality relation (3.1}.

FIG. 3. Graph of the string tension T as a function of cou-

pling A, . Monte Carlo results are shown for lattice sizes M=2
to 5. The solid line is the [2/2] Pade approximant to the
strong-coupling series of Irving and Hamer (Ref. 19).

mer. ' The agreement between the two methods is
reasonable. There is some suggestion that the series esti-
mates are too high at the larger X values, but the error
bars are quite large and the series is not very long. There
is no definite sign of divergence between the series and
Monte Carlo results, such as one might expect at a
roughening transition. Both methods indicate a string
tension of 0.5+0.1 just before the phase transition at
A, = 1, at which point it drops discontinuously to zero.

IV. CONCLUSIONS

Using the stochastic truncation method, the ground-
state energy of the Z2 gauge model has been calculated
with excellent accuracy, and a break in its slope at the
self-dual point A, =1 is clearly seen. Using self-duality,
the discontinuity in slope or "latent heat, " is estimated to
be 0.51+0.02. A recent study of the Euclidean version of
the model, ' using a microcanonical simulation method,
similarly gives the free energy and its derivatives with ex-
cellent accuracy.

The string tension was also measured, from the
difference in energy between the vacuum and string sec-
tors, with an accuracy of a few percent on lattices up to
5 sites. The tension drops to zero at A, =1, with a discon-
tinuity estimated as 0.5+0.1 There was no definite indi-
cation of a roughening transition, consistent with other
studies ' ' which have suggested that the roughening
point is either absent, or very close to A, = 1. This
represents the first time, as far as we know, that the
string tension has been calculated for a Hamiltonian
gauge model in 3+ 1 dimensions by a Monte Carlo
method without any variational bias —although Chin,
Long, and Robson have calculated the ground-state en-

ergy of the SU(3) lattice gauge theory in an unbiased
fashion with remarkable accuracy. In the Euclidean
model, there seem to have been no very precise Monte
Carlo studies of the string tension apart from that of
Bhanot and Foerster. '

Our Monte Carlo results are generally in good agree-
ment with series estimates, ' and are broadly of similar
accuracy near the critical point. The series analysis is
greatly aided, however, by the self-dual property of this

TABLE II. Table of values for the string tension T as a function of coupling A, and lattice size M. Also listed are some crude extra-
polations to the bulk limit, M~ ao, and estimates from the [2/2] Pade approximant to the strong-coupling series of Irving and Ha-
mer (Ref. 19).

0.2
0.4
0.6
0.8
0.9
0.95
0.975
1.0
1.2
1.4

0.9702(1)
0.8835(3)
0.741(2)
0.497(2)
0.317(2)
0.231(3)
0.195(2}
0.157(2)
0.044(2)
0.019(3)

0.989(7)
0.947(2)
0.860(5)
0.693(8}
0.543{8)
0.320(9)
0.177(9)
0.02(1)

—0.03{2)
—0.01(2)

0.990(4)
0.953(7)
0.885(9)
0.713(14)
0.625(9)
0.535(9)
0.33(2)
0.03(2)

5

0.982(3)
0.95{1)
0.88{1)
0.76{2)
0.639(9)
0.564(10)
0.538(14)
0.44{3)

0.986(4)
0.95(1)
0.88(1)
0.74(2)
0.65{2)
0.58(2)
0.56(3)

Series

0.9899
0.9582
0.899
0.79(2)
0.70(4)
0.63{5)
0.59{7)
0.5(1)
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model. Without that, one cannot distinguish a first-order
transition using a strong-coupling series alone. Further-
rnore, the roughening transition limits the ability of a
series analysis to track the string tension for most mod-
els. The Monte Carlo method, on the other hand, does
not suffer from these limitations.

We have spent some time discussing drawbacks of the
stochastic truncation method. We have found difficulty
in estimating ground-state expectation values, because of
the small overlap between independent ensembles; and
the method is not suitable for models with competing in-
teractions, such as fermion models, because of the build-

up of "noise" in the ensemble. In spite of these draw-
backs, we believe our results are highly encouraging for
further applications of the method.
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