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On-shell expansion of the effective action. II. Coherent state and Smatrix
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The meaning of the on-shell variation of the effective action is clarified. The higher orders in the
on-shell expansion can be summed up into the coherent state. From these observations, the effective
action is shown to have really the property of a generating functional of the S-matrix elements.

I. INTRODUCTION

q;(t)=qI '(t)+bq;(t) (1.2)

and obtain the equation of motion satisfied by b,q;(t)
which is assumed to be small:

(1.3)

where I,' '(t, t') —= [5I[q]/5q, (t)5q (t')]o. The symbol.

[ ]o implies the value at q, (t)=q,' '(t). The nontrivial
solution to (1.3) exists only when

DetI, ',"(t,t') =0, (1.4)

which determines the eigenmode of the oscillation around

q,
' '(t) Here the .functional determinant is taken in the

space specified by (i, t) However .if we fix the boundary

The effective action is a convenient tool and is widely
used in various fields, especially in particle physics, for
the study of the symmetry-breaking solution. It has two
important properties: (i) Its stationary solution deter-
mines the vacuum; (ii) it is the generating functional of
the whole set of ogshell one-particle-irreducible (1PI)
Green's functions.

Recently the on-shell properties of the effective action
have been investigated' in the form of the on-shell ex-
pansion. This extracts all the observable information out
of the effective action.

In order to make the subsequent discussions clear, let
us recall the arguments raised in Ref. 1. Consider the
classical mechanics in the time interval t; ~ t ~ tf. Sup-
pose the system has the Lagrangian L (q;, q;) and the ac-

tion functional I [q]= f,fdt L (q;, q; ) where q;

(i =1, . . . , N) signifies the particle coordinate and

q, =dq, /dt. The Euler-Lagrange equation of motion is
obtained by taking the functional derivative of I [q]:

5I[ql
5q; (t)

with the constraint 5q (tf ) =5q(t, ) =0. Let one of the
solutions to (1.1) be q '(t) with an appropriate boundary
conditions at t =tf and t;. We want to study the other
solution q;(t) to (1.1) which is close to q '(t) so that we
write

conditions by specifying q;(tf ) and q;(t; ) a unique solu-
tion is singled out so that the existence of a nonzero
hq;(t) implies that q;(t) and q '(t) obey the different
boundary conditions as follows:

the variation b,q in (1.2)

corresponds to the change in the

boundary conditions ~ (1.5)

The coefficient matrix I '(t, t') determines the stability of
the solution q '(t). '

Now for the quantum system, the role of the classical
action is played by the effective action. In Ref. 1 the
equation corresponding to (1.3) has been studied and it
has turned out that Eq. (1.3) is the general equation to
determine the spectrum of the system. The higher orders
in Aq have been investigated in Ref. 2 in a form which
we call the on-shell expansion of the effective action. We
have shown there that the expansion coeScients are re-
lated to the connected S-matrix elements of the scattering
among the particle spectra determined in the lowest or-
der. The purpose of this paper is to study the expansion
scheme more closely by paying particular attention to the
change of the boundary conditions which define the
effective action. The precise meaning of Aq is clarified
and we thereby obtain a novel compact formula for the
effective action in terms of the coherent states. They are
summarized in (2.29) and (2.34) below.

Our formalism is expected to have ample application to
various fields of physics since it can be applied to any
quantum system once the Hamiltonian of the system is
given. The scope of this paper is therefore to present the
formulation in general terms. Our formalism starts from
the effective action which is the generating functional of
all the necessary information of the theory. It is comp/ete
in the sense that it determines the following three objects
successively: (1) the ground state; (2) the excitation spec-
trum above the ground state; (3) the scattering among the
excitation spectra. These exhaust the whole observables
contained in the theory. The nonperturbative ground
state, if it exists, can automatically be picked up so that
the spectra and the S-matrix elements based on the non-
perturbative condensed vacuum can be calculated sys-
tematically. This is impossible by graphical considera-
tions only. Note that through (1) and (2) above we know
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how the Fock space is constructed by the effective action.
In Sec. II, taking the simplest field-theoretical model, it

is shown that the series of the on-shell expansion can be
summed up into the form of the coherent state. Here the
special role played by the change of the boundary states
is essential. Another proof of our formula is given in Sec.
III starting from the observation that the change of the
boundary states is equivalent to the addition of the in-
stantaneous source term at the initial or the final time.
The generalization to other cases including the bound
state is shown to be straightforward in Sec. IV. As the
simplest example of the bound state, we discuss the
Gross-Neveu model in Sec. V, which is the ¹omponent
fermionic theory in two dimensions.

II. ON-SHELL EXPANSION
AND THE COHERENT STATE

Let us concentrate on a single-component scalar field
model described by the Lagrangian density X(4). We
first introduce the generating functional W [J] of the con-
nected Green's function by the functional integral as

exp(iW[J])

= f [d4]exp i f d x[X(4)+J(x)4(x)]

(2.1)

where J(x) denotes the external source used as a probe.
The definition of the effective action I [(}I)] is then given

by the Legendre transformation

r[y]= W[J] fd'x—J(x)$(x), (2.2)

exp(iWFi[J])= F T exp i f d x J(x)iI)(x) I
e ]

(2.5)

where ~I ) or ~F) denotes the initial or final state, respec-
tively, and (Ip(x) indicates the corresponding field opera-
tor of 4(x). To get the generating functional introduced
in (2.1}we must take the limit t, ~ —00 and tf ~+ 00 in

(2.5). This is achieved by the Feynman prescription;
the infinitesimal negative imaginary part is added to the
mass squared, m ~m —ie, which automatically picks
up the contributions of the vacuum state ~0). By this
method Eq. (2.5) becoines, apart from the irrelevant con-
stant,

exp(i)Pee[J])=(0 Texp i 1 d x J(x)4(x) 0) .

(2.6)

Equation (2.6) defines the generating functional of the
connected Green's function and, instead of writing it as
W[J], we have employed the notation Woo[J] to clarify
its boundary contributions. From this expression, (I)( '(x)
is obtained by relations (2.3) and (2.4) as
y("(x)= &o~e(x}~0).

Based on the ground state characterized by
P(x) =(I)' '(x), we have studied in Ref. 1 another solution
of (2.4) in the form of (}I)(x)=(t)' '(x)+ h(t)(x) and have dis-
cussed how we obtain the information concerning the ex-
cited states or the modes. In the following, it will be
shown that the variation b(}])(x}from the vacuum solution
can be reduced to the changes of the initial and final
states on the right-hand side of (2.6}and, by this observa-
tion, we will make clear the relation between the effective
action and the connected S-matrix element.

5W[J]
(()(x)= (2.3)

A. Basic formulation

It is well known that the solution P( '(x) of the stationary
condition

[4] — J( )
—0

5$(x)
(2.4)

determines the vacuum expectation value of the field. We
notice, however, this statement is based on the fact that
certain boundary conditions have been assumed on the
functional integral in (2.1). To clarify this point, let us
consider the following generating functional W„,[J]
defined in the finite time interval between t,- and tf.

Before starting our arguments, we want to summarize
some results of our earlier paper. Here we use 100[/]
defined from Woo[J] and assume that P' '(x) is the solu-
tion of the stationary condition of I 00[/];
5I 00[/]/5$= —J =0. Looking for another solution on
the trajectory defined by J =0, we set
P(x) =P' '(x)+ hP(x) and write b())(x) as

bP(x}=bP "(x)+b(I)( '(x)+6(}I)' '(x)+ . , (2.7)

by assuming bP'"(x) is small and i. P
"()( ())(nx) 2) is of

the order [bP"'(x)]". Each h(t)(") is then determined suc-
cessively by the equations

( I (2)
) gy(1)(y )

—() (2.8)

( I I)0')„AQ' '(y)+ —( I I)0')„,bQ' "(y)A(t)( "(z)=0,(3) (2.9)

(I N). ,~4"'(y)+2X —(1~))...&(()")(y»y"'(z}+—(1~ }. ..~y'"(y}~y "(z}~y'"(~}=0, (2.10)
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etc., where we have employed the notation

~"I ~[41
5$(x)5$(y) 5$(z)

(2.11}

gy(1)(p) [ C+( )g( 0)

In x-space, Eq. (2.13) takes the form

(2.13)

and four-dimensional integration over the repeated vari-
ables is implied. (We will use the similar notation lVI)0'

for Woo, which is evaluated at J =0.)
We have called (2.8) the generalized on-shell condi-

tion' since, for the translationally invariant case, b(t'"
has its support only at the pole of the Green's function as
is seen from the relation

4
gy(1)( ) f gy(1)( k)

—ik.x

(2m )

d k [C+(k) —ik x+C —
(k) ik x]

(2n } 2k

d3k C+ k e
—ik x+C —

g eik x (2.14)

= —5 (x —z}. (2.12)

So we can write down b.(I)" ) in Fourier space with the ar-
bitrary functions C+ and C as

with k =(k +m )
'~ . In these equations, C —+ are to be

determined by the boundary condition on b, (t)"'(x).
For the higher orders, bP(")(n ~ 2) can be summarized

into the simple form

gy(n)( )
— [( pr(n+1)

) ( ~(2)—
1

)
. . . ( ~(2)—1

) ]gy(1)( ~ ). . . gy(1)( &

)
1 tt )7 n' n

(2.15)

where the channel specified by x is off the mass shell,
while the remaining n channels are projected onto the
mass shell by b, ((()"'s. In this equation the order of the in-
tegration is crucial but it is given automatically —since
b,(I)("'s are originally written by I I' )'s, we first amputate
the external legs of Woo+" and then take the on-shell
projections.

Note that, in (2.13) and (2.14), the existence of the non-
vanishing b,(I)") (C+%0 and/or C %0) is assumed.
Strictly speaking, however, the above obtained solution
(()' )(x)+b, (x) which is different from ((t( '(x) does not
satisfy I o[0 =0, because C +— 0 does not satisfy the
boundary conditions corresponding to the vacuum states
at t =+oo. Note that both P' '(x) and ())' '(x)+b())(x)
satisfy the condition J =0 and therefore the only freedom
left to be varied is the change in the boundary states.
This is analogous to the classical mechanics as stated in
(1.5). The "boundary conditions" in (1.5) are now re-
placed by the "boundary states. " That this is indeed the
case can be shown explicitly by using the reduction for-
mula and we can construct the Fock space by this
method. The following discussions are devoted to these
points.

B. The coherent state and connected S-matrix elements

where k =(k +m-'}'~ . This is defined under the condi-
tion of the weak limit:

(2.17}

with Z being the normalization factor. %e utilize the
Lehmann-Symanzik-Zimmermann original proof of their
well-known reduction formula. The following steps just
correspond to the inverse process of their approach.

For instance, let us first examine b,P' '(x). We assume
here, for simplicity, the vanishing vacuum expectation
value of the field (P' (x)=0). However we notice that
the arguments can directly be applied to the case for
(()( )WO by employing the shifted operator 4(x) —(()' '(x)
instead of 4(x) in (2.6).

By using (2.15) with the relations

(2.18)

Now we want to clarify the physical meaning of b,P(x).
For this purpose we use the asymptotic field

4;„(,„,)(x)= [ 8;„(,„,)(k)e(2'�) 2k

+8;„(,„,)(k)e'" "], (2.16)

(on the mass shell), (2.19)

where the subscript c implies the connected part and Z is
the residue of the mass-shell pole, we can write AP( '(x)
in the form
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Sy("{x)=—fd'x, d'x, iZ-'~y("{x, )(o„+m')iZ-'ay"'(x, ){o, +m')&OlT4(x)4(x, )e(x, )lO), . {2.20)

In order to see that hP indeed corresponds to the variation of the boundary states, Eq. (2.20) is transformed in the fol-

lowing way. First we carry out the integration over x, as follows:

iZ ' fd x, l((P'"(x, )(O„+m )(OlT4(x)4(x, )4(xz)lo),

=iZ ' g fd'k f d x, C (k)B o[e '()„o(olT@(x)@(xi)@(x2)lo),]
s=+ 1 1

=iZ ' g f d k f d x, [ lim C (k)e
' "'() o&olk(xi)T[4(x)4(x2)]lo),

S=+ &1 ~oo 1

lim C (k)e '8 o(olT[4(x)4(x2)]@(x,)lO&, I
z —+ —ao

I
1

=z '"f-d'k
[ c-(k) & ola.«(k)T[4(x)4(x, )]lo &+c+(k) & ol T [e(x)4(x, )]u,'„(k) lo& I, , (2.21)

where we have used (2.14), (2.16), (2.17), and the notation fBg:—f (Bg)—(Bf)g. The second integration for xz can be
done in the same way and we get, as the result,

bP' '(x)= —,(Z '
) f d k d l[ C (k)C (l)(ol&,«(k)8,«(1)4(x)lo)+2C (k)C+(l)(ol&,«(k)4(x)a~„(l)lo)

+C+(k)C+(l )(ol+(x)8;„(k)&;„(I) lo) ],
—= &2 1@x)lo&,+& I 1@x)II+ &, +&ol@x)12+&, ,

where we have introduced the new states

l

1+' ') =-z —'"f-d'k n,'„,.„„(k)lo),

l2+' '& =
,
(z '")'—fd'k-fd'l nt„,.„„(k)nt„„«,(i)lo&,

(2.22)

(2.23)

(2.24)

(2.25)

with the notation a,«(k) = C (k)8,«(k) and a,„(k)—:C+(k)8;„(k). In these equations we have assumed the uniqueness

of the vacuum; i.e., the relative phase factors among lo, in ), lo, out ), and l0) have been set equal to one.
In the same way, for the one-particle channel, we can easily check the following relation by using (2.24):

ny("(x) =( I -l4(x)lo), + (ol4(x)l I+ ), . (2.26)

This exhibits the reason why the on-shell condition (2.8) generally takes the form of the wave equation.
From (2.23) and (2.26), we see that the variational process b, changes the initial and final states and that, in particular,

the particle number is changed. More generally, we introduce the states

ln"-') =—
,
(z '")"f d'k-, d'k„,'„a.„(„(k,) . . a,'„,.„„(k„)lo), {2.27)

for n=0, 1,2, . . . . The general term hP'"'(x) is ob-
tained by a mathematical induction, which can be
summed up to get the total form of the nonzero solution
6(I)(x). The result is expressed by the coherent state as

hP(x ) = [ ( 8
l
4(x ) l

8+ ) + ( disconnected terms) ], ,

(2.28)

l8+( —)) y ln+( —))
n=0

=exp Z ' f d k a;„(,«((k) lo& . (2.29)

The "disconnected terms" in (2.28) represent the situa-
tions where at least one particle is not afFected by the col-

lision process (except for the one referring to the channel
x that is still off the mass shell). These contributions have
appeared from the terms which include the product
&,«8,«or I;„&;„.[The corresponding terms are absent in
(2.22) because of the condition P' '(x)=(0l4(x)lo) =0.]
On the other hand, when we calculate (8 l4(x)l8+) by
using the LSZ reduction formula, the same disconnected
contributions appear with the minus sign. So the
"disconnected terms" in (2.28) play the role of canceling
them. In this sense we write the right-hand side of (2.28)
as (8 l4(x)l8 )(,(. We notice that the meaning "(c)"
coincides with the one which is used in the usual
definition of the connected S-matrix elements.

Let us study the relation between (2.28) and (2.6). For
this purpose we further introduce the new generating
functional IVe e+ [J],
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exp(iW + [J])

(( 'rexp i f d x J(x(4(x( (( ), (2.30)

r,—,-[~01
=W, [J=0]
= —i&e-ie &„,
= r [y"'=0]—i&1-~1+&

whose boundary states are selected to satisfy the equation

5W +[J]
5J(x) J=O

=&e-i4(x)ie+&„, . (2.31)

r. ..[y']= W. ..[J]—J' d x J(x)P*(x), (2.32)

5W ay[J]
P*(x)—=

5J x)
(2.33)

We remark that P' satisfies PJ =0=[5Ws + /5J)J
=()(' '+ bP with P' '=0. If we set J =0 in (2.32), then we
find the relation

Since W + is in the exponential we can forget the re-

striction (c) in (2.30). From this expression we find that
looking for another solution of (2.4) around the vacuum
solution can be interpreted as changing the initial and
final states into the form of the coherent states (2.29). In
this case, of course, the Feynrnan prescription is not
adopted to obtain (2.30) from (2.5).

We can also define the following effective action by us-

ing W +[J]:

=s"(c-,c+) .

The S-matrix element is generated by

(2.35)

+ y ( W "'). „~y "(x, ) ay"'(x„),
n1

(2.34)
where 8'00' denotes 8'00' with its external legs amputated
by Woo' '. In the final step of (2.34), the reduction for-
mula has been used together with the fact
&1 ~0& = &0 1+

& =0. We have written I oo[P' '=0]
i l—n&0~0& =0 in (2.34) for the comparison with our

previous result in I. Because of the definition of I +,
the second term i &—1 ~1 & appears in (2.34), which is
not present in I. By assuming the stability of the
one-particle state we get & 1

~

1+
&

=Z ' f d'k 2k (2m)'C (k)C (k).
Equation (2.34) is the on-shell expansion of the

e6'ective action in the sense that all the terms in (2.34) are
projected onto the mass shell by hP"'s. It is I

a s+[b,P]
that corresponds to the generating functional of the con-
nected S-matrix elements, S"(C,C+). This fact is
summarized again into the simple relation

iI , [b,()(]= Z 'J d k 2k (2m. ) C (k)C (k)

+ t W [J=—Z-'~y"'( +m')]

(Z 1/2)n+m
5"™iI ~[6,P]

5C (p, ) 5C (p„)5C+(q, ) . . 5C (q )
C =C =0

=
& 0~a,„,(p~ )

. iI,„,(p„)a;„(q~ ) &;„(q ) ~0&, (2.36)

where the normalization factor Z can be absorbed by the
proper renormalization of the field; 4"=—Z

In the next section our previous approach in I is dis-
cussed again from another standpoint and the relation be-
tween I + and I oo is clarified. This type of discussion

is useful when we calculate the connected S-matrix ele-
ments in terms of the usual effective action, i.e., F'oo.

III. THE FORMULATION IN TERMS
OF THE SOURCE AT THE BOUNDARY

As has been stated (Sec. II), in the functional-integral
formulation for the infinite time interval t,- = —ao, t = ao,
the boundary states are naturally taken as the vacuum by
the use of the Feynrnan prescription. In this section we
show that our conclusions in the previous section can be
obtained by sticking to the vacuum as the boundary state.
For this purpose we define the new effective action whose
boundary states are the vacuum, not the coherent states.

I

The essential point is that we introduce the 5-functionlike
source at the initial (t = —T, ) and the final time (t = T2 )

which plays the role of changing the vacuum state into
the desired coherently excited state. The effective action
is calculated under the presence of this type of source
while the boundary state is the vacuum. By using this
effective action we will follow our previous approach in I.

First we note that we can interpret the solution
P(x) =P' (x)+bP(x) of the equation of motion (2.4) in a
different way. It has been understood in Sec. II as the ex-
pectation va1ue of the field operator with the two
different coherent states characterized by the function
C —(k). But we now want to regard it as the Uacuum ex-
pectation value of 4 under the influence of some external
source. This source is introduced in the action as

fd x K(x)4(x), where

(3.1)
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The way to take the limit T, z ~ ~ will be shown below.
Now we have to solve the following set of equations:

=0, (3.2a)

&roo[4] = —K x
(((x)=y (x)+dig(x)

(3.2b)

(I' '} 5(() "(x')=—K(x} . (3.3)

The equations of higher orders are the same as (2.9),
(2.10), etc. We are assuming that the state at t =+oo is
the vacuum; therefore, for t & —T, and t ) T2, the solu-
tion P becomes (()=P' '. The limit T( 2~ac is taken in
the end of the calculation. The solution of (3.3) is ob-
tained as

bP"'(x)=(W' ') „K(x')
=bp'"(x) (

—T, t T2) .

(3.4a)

(3.4b)

For —T, & t & T2, the solutions of higher orders are the
same as in the previous case (2.15). Here we notice that,
owing to the above boundary condition, (3.4a) does not
include the solution of the homogeneous equation. How-
ever, it is easily seen from (3.4b) that the solution of the

Here b,P(x} is expanded into the series
bP(x)=g„",bP'"'(x) and hP "' is determined succes-
sively by assuming that bP" ( is of the same order as b,P("
and that b(()'"' is O((bg ")").Substituting this series into
(3.2b) we get the lowest-order equation

homogeneous equation is recovered after T, 2~ oo and
that the solution b(()(x)=g„" ( b,P("'(x) coincides with
that in Sec. II. Therefore the introduction of K(x) is
equivalent to setting the boundary condition which leads
to the coherent states.

More comments on the source K(x). b,P'"(x) is the
function on mass shell so that (I (N')„. „can be replaced
by the operator —Z '(, +m )5 (x' —x). Then the
definition (3.1) is rewritten as

T2
K(x)=Z ' f d x'bP"'(x')( „+m )5 (x' —x) .

1

(3.5)

If we integrate (3.5) by parts we find that K(x) has
nonzero value only on the boundary t = —T„T2. In this
sense K(x) has a different nature from J(x), which is
usually assumed to be a smooth function of x and the
support extends all over the space-time. Then the mean-
ing of T, 2~ ~ is now obvious. Namely, in order that
K(x) have real physical effects, it must have its support
inside the time interval which defines the theory. So we
must keep T& 2 finite during the calculation. After taking
the limit T& z ~ 00, the effect of the artificially introduced
source term K(x) becomes to excite the vacuum state at
the boundary t =+~.

On the basis of the above discussion we define the
effective action which includes K(x). We have now two
kinds of source, K (x } and J (x), the latter of which serves
as the one for the usual Legendre transformation in the
definition of the effective action I . We start with the
generating functional Woo [J,K] defined as

exp(iWOO[J+K])= f [d4]exp i f d x[X(4)+[J(x)+K(x)][4(x)—P( ((x)]] (3.6)

where the sources are coupled to the fluctuating part
4(x) —P '(x) of the field 4(x). The Legendre transfor-
mation with respect to J(x) gives the new effective action
r [yK]:

I [P,K]= W [J+K]—f d x $(x)J(x), (3.7)

5W(~[J+K]
P(x) —=

6J(x) (3.8)

The difference between I Oo[P, K] and the previous
effective action I Oo[$] in I (defined using the shifted field
4 —Q' '), is the term K (x)P(x):

I [Q,K]=I [P]+f d x K( )xP( )x. (3.9)

Equation (3.2b) is given as the stationary condition of
I (N[P, K] where K(x) is fixed by the definition (3.1) or
(3.5). So we can regard I 00[/, K] as the effective action
accompanied with the boundary condition implied by
K(x).

The use of 1 oo[P, K] gives a clear derivation of the on-
shell expansion which is more transparent than that
given in I where only I oo[P] has been utilized.

The on-shell expansion of I oo[P, K] is followed
by the substitution of P(x) =b(()(x) and K (x)
= —bp'''(x')(roo ),. „. From (3.1) and (3.9), we get, in
the limit T, 2~co,
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00 n

[y(x)=0]——,'&y"'(x')(&"')„„&y'"( )+ y, (&'"')„, „g&y( )
ll —3 k=1

CO n=r [y(x)=0]+ y, ($'"')„„„gny"'(x„),
fl =3 k=1

where Wz&' is defined in (2.34) and we have used hP" 'I' 'b, P'"=0 because of the on-shell property of b,P" '.

The last equality is based on —I Oo'= 8'00' ' = 8'00' and on the crucial identity

00 n 00 n

Q = y '
( w'"')„„, g sy'"( „)= y ', (r'"')„„„Pny( „)

(3.10)

+,'[a4i(x ) —ay"'(x )](r"')„,„[ay(x)—ay'"(x)] . (3.1 1)

This is proved as follows. Let us introduce the graphical
representations shown in Fig. 1. By the notation in Fig.
1, b P(x) and K (x) are illustrated in Fig. 2. Recall that Q
is the sum of all the connected Green's functions whose
external legs are replaced by the wave function hP"'.
Therefore the general term in the sum is expressed as the
aggregation of the topologically difFerent tree diagrams
constructed by means of the proper vertices I 00- ', the
propagator Wo'o', and b,P"'. Only the tree diagrams are
allowed since 8'oo', Foo- ', and 8'00' are all full-order ex-
pressions. In Fig. 3 we illustrate one of such diagrams as

I

an example.
The tree diagrams have a topological relation

(3.12)

where N„and N are the number of vertices and propaga-
tors, respectively, in each graph. This relation is easily
proved by induction and leads us to the following three
steps of the resummation of the series Q. Figures 2 and 3
help us to understand our procedure (which is based on
the similar argument used in Ref. 9).

(1) Consider the diagram of Q which has N, vertices.
(See Fig. 3 for example. ) Such a diagram appears "N,
times" in the sum

(n)

Q +

FIG. 1. The definition of the elements of the diagram.
amputated n-point connected Green's function; I'"', 1PI n ver-

tex; W"', propagator; b,P'", wave function.
FIG. 2. The diagrammatic representation of hP(x) and

sc(x).
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Go n

gy —i( y())+ g II((2)gr(n+1) P gy(1)
n ==2 k=1

(2) On the other hand, if we distinguish one propagator
8 00', the same graph can be regarded as the graph
in which the propagator connects two
( I /n! ) WI)o+" gk, b, P' " coming from b, (t). So each
graph in the sum appears "N times" in the term

)
j ( gr(2) [

) [gy( ) gy(1)(/ ) ] ) ( $y(2) )

X I( W(2) ')„,[b((}(y')—b((}")(y')]) . (3.14)

FIG. 3. An example of the graphs included in the sum Q. It
has N, = 5 vertices and X~ =4 internal lines (propagators).

The reason we subtract b,P(" from b, P is that the propa-
gator is an internal line which always connects two ver-
tices.

(3) From (3.12), the subtraction of (3.14) from (3.13)
gives the right weight in the sum. Therefore we have ac-
cotnplished the proof of (3.11) using the identity
Pr(2) —1 — I (2)

00 00 '

Let us check the equivalence between (3.10) and the
previous results (2.34). For this purpose we show the fol-
lowfng relation between I co[(}!),It.'] and I s &+ [(t"]:
r [apse]

00 n

Q „,(roo'). . ,.. .„g ~4«k) . (3.13) =I [bP]+iZ ' f d k 2k (2tr) C+(k)C (k) .

(3.15)

This is because, by distinguishing one particular vertex
I I)o' in the diagram, we can regard AP'" and the other
tree diagrams connected to it as the terms coming from

This is directly proved as follows: by using the definition
(3.7) of 1 m)[P, K] with J=0 and through the inverse
reduction formula,

exp((T[kd, K])= 0 Texp (Z ' Jdexkd"'(x)((0+me)[Tp(x) —()'e'(x)) 0)
x

0 exp Z ' d k C ka,„, k —C+k&,„, k

&&exP Z ' Jd'k[C (k)8,„(k)—C (k)0 (k)) 0)

= exp —Z ' f d k 2k (2tr) C (k)C "(k)

X 0 exp Z ' d kC k8,„, k exp Z ' d'pC+ p~;„p 0

=exp —Z ' f d k 2k (2tr) C (k)C+(k) exp(il [b((}]). (3.16)

In (3.16) we have used the formula

exp(X+ $ ) = exp( —
—,
' [X,Y] )exp(X )exp( Y ), (3.17)

where [X', Y] commutes with X and $'.

Note that Eq. (3.15) and the relation (3.9) enables us to write the generating functional S'"(C,C+ ) of the connected
S-matrix element in terms of the usual effective action I oo[t(}].

Now we want to summarize the approach of this section in connection with the results of Sec. II. Let us start with
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I +[p"] introduced in (2.32). In the case of p '(x)%0, the corresponding generating functional W +[J] is as-

sumed to be defined with the operator 4—p' '. Then, by using the relation

exp(i)) [7])—:(() Texp if d x J(x)[4(x) P '(x)] ()
)

= exp Z ' jd'k 2ke(2x)'(: ()e)C (k) 0 T exp i I dex [J(x)+K(x)][C&(x)—(t' '(x)] 0),

(3.18)

which can be derived in the same way as in (3.16), we get the equation

I [P']—= W [J]—fd4x J(x)P*(x)= W [J+K] iZ —' fd'k 2k (2m)'C (k)C+(k) —f d x J(x)P'(x),

(3.19)

where W[]o[J+K] is defined by (3.6). Equation (3.19) corresponds to the extension of (2.34) for the case of JWO (and
p' '%0). From this equation we can get the connection between I +[p*]and I 00[p] by the Legendre transformation

of Woo[J+K] as

5W(~[J+K]
I — +[p*]= W [J+K]—fd (J+K)( ) —Z ' fd'k 2k (2 )'C (k)C+(k)+ f d K( )p*( )g

—g+ 00 5(J +K)(x)

=1~[p'] iZ ' f—dik 2k (2m) C (k)C+(k)+Z ' f d x hp"'( x)(0+m )p'(x) . (3.20)

If we set J =0, i I
&

&+[p'] becomes the generating functional S"(C,C+ ) of the connected S-matrix elements, see

(2.35). In this case, Eq. (3.20) directly relates S"( C,C+ ) with the usual effective action I 00[p].

IV. GENERALIZATIONS TO THE OTHER CASES

In the previous sections we have studied the single-component scalar field case, however, our formalism is easily gen-
eralized to the other cases.

We first consider a model of multicomponent scalar field (I];(x) (i =1, . . . , n ) since it can be a basis for the composite
field case. In this case, the generalized on-shell condition (2.8) takes the form

(4.1)

By assuming the space-time translational invariance, (I (((]]};„becomesa function of x —y and we get the Fourier rep-
resentation of (4.1) as

I (2] (p2)hp(l](p) 0 (4.2)

To investigate the eigenvalue of this equation we then diagonalize I 00'; as is discussed in I:

U;,' '(p')I '";;(p')U;, (p') = I "';,(p') —=&;,y, (p'),

where U(p ) is the appropriate orthogonal matrix. We also introduce hp( (p) defined as

hP';"(p) —= U~ '(p )hP j"(p) =hP,'"(p) UJ, (p ) .

Since it satisfies the equation I I](]I&hpj."=0 we can write it in the following form as in (2.13):

hP';"(p)=[C; (p)8(p )+C, (
—p)8( —p )]6(p' —m,'),

(4.3)

(4.4)

(4.5)

where we have assumed that the solution of y, (p ) =0 is p =m, .
With these mechanisms, let us study the following identity, which corresponds to (2.26} in the single-component field

case:
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&P';"(x)=—i f d y d y'h(t), "(y)[l I)o,','(y —y')(01T@,(x)@,(y')I0l]

—i f d y d y'AP'"(y)[I I)0 '(y —y')(0~T4;(x)4,'(y')~0)], (4.6;

where we have further introduced 4, defined similarly as
~y(, "in (4.4),

(I);(p)—= Ui '(p )C)J(p)=C), (p)Ui;(p ) . (4.7)

dI4 1 —ik x
((x)(n(o«) =

3 0 [ ~( in(out)(
(2m. ) 2k

The asymptotic form of 4 can be written for its each
component as

ticomponent scalar field case —all we need is to write
G, (X) and C, (X) instead of )I);(x) and 4, (x), respectively.
In this case, a~;„(,«) in (4.11) is interpreted as the opera-
tor which creates a certain mode of the bound state.

Of course, other cases can also be studied by the
straightforward extension of this approach. In the next
section we consider the Gross-Neveu model and present
the derivation of the S-matrix element for composite
fields as an example.

+a;;„(,„,)(k)e'"'], (4.8) V. AN EXAMPLE

where k =(k +rn; )'~ . The right-hand side of (4.6) is
then transformed into the following form by using the
same approach as has been shown in Sec. II:

ay' , "(x)= (I-~4, (x)~O), + (0~ 4, (x)~T'), ,

~1+' ') —=Z ' g f d k a;„(,«)(k)~0),
J

(4.9)

(4.10)

where the similar notation a as in (2.24) has been used for
each j. In general, we obtain ~8+( ') instead of (2.29) as

~8+' ')—:exp Z ' g f d k a, ;„(,„„(k) ~0) . (4.11)
J

Namely, looking for the possible solution on the trajecto-
ry J=0 is equivalent to creating the physical particles
which are given by the on-shell condition y; (p ) =0.

Once the effective action I — -+ is defined through

(4.11), it is straightforwardly related to the generating
functional of the connected S-matrix elements as in
(2.35). The relation between I — -+ and I 00 is also ob-

tained in the same way as in Sec. III.
Now we consider the bilocal composite field case. The

generating functional Woo[J] is introduced as

exp(i W(~[J])

= 0 Texp i dxdyJx, y x,y 0

In this section we apply our formalism to the Gross-
Neveu model in the large-N limit. It is one of the exam-
ples of our general theory, and we will show that our
method is applicable to the system including the bound
state.

Many people have discussed the S-matrix elements
among the bound states. ' ' We will check by the mod-
el that our formalism reproduces the existing results.

Let us start with the action of the Gross-Neveu model:

I = f d x [P;ir)g;+ ,'g (P;—P,) ], (5.1)

I„„„,, = f d x [r);(x)g;(x)+q;(x)lt;(x)]

+ fd x d y J; (x,y)P;(x)g (y) (5.2)

(here it is more convenient to couple g, g, and J to the
nonshifted operator) and the generating functional as

exp(iW[ r)q, J])—= f [dgdiT)]exp[i(I+I„„„,)], (5.3)

where P(x) is the N-component massless fermion field
and the coupling constant g behaves as I /N in the
large Nlimit (th-e summation over the repeated indices is
understood).

Next, the source terms are introduced as

(4.12)

with the shifted operator C(x,y) —=4(x)4(y)—( T4(x)4(y) )J 0. Then we define the effective action

I oo[G]—:Woo[J] —f d x d y J(x,y)G (x,y), (4.13)

where [d li)d ())] denotes the functional integral with
respect to g and f. Here g and g are the Grassmann
number sources. In (5.2) the vacuum expectation value
has not been subtracted from each operator, but it causes
no trouble. Through the Legendre transformation from
W[g, g, J], we define the effective action as

5W~)[J]
G(x,y)=

5J x,y)
(4.14) I [g, g, S]—:W —f d x[g, (x)it), (x)+g, (x)g, (x)]

We notice, however, if we write G(x,y) into the form
G;(X) [i—:x —y and X—:(x +y)/2, for example], we can
make the parallel arguments with the ones in the mul- where

—f d x d y J;,(x,y)S,, (x,y), (5.4)
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5i);(x)

5W[g, g, J)
5g;(x)

(5.6)

F[X+5X] F—[X']

—:J d'x 5y(x) +O((5y)')
5y(x)

5W[7), vy, J] = J d'x ' ]5y(x)+O((5y)'),5F &y

5g(x)
(5.8)

We have used the same symbol 1(t;(x) or g, (x) in (5.5) or
(5.6). In the above definitions, 5/5ri;(x) denotes the left

derivative, which is defined for the Grassmann number y
as

where the right derivative is also introduced.
In the large-X limit, it is easy to see that the effective

action of the Gross-Neveu model is given by'

2

I [Q, Q, S]=I [Q, Q, S]=i Tr(lnS —So 'S)+i J d x d y P;(x)SO; (x,y)P (y)+ f d x [P;(x)g;(x)—trS(x, x)]

where SJ(x,y):—Si(x,y) —1(t;(x)1(t (y) is the connected part of S and So is the bare propagator. "Tr" indicates the trace
operation in the functional sense; that is, the integration over the space-time is implied in addition to the matrix trace.

To the above effective action we apply our general formalism to get the S-matrix elements between the bound states.
The first stage is to determine the vacuum state through the vacuum expectation values of the operators. They are

given by the solutions of the equations of motion for 1(, g, and S or S, which are the stationary condition of the effective
action. As for the propagator, it takes the form of the Schwinger-Dyson equation. They are given as

0= ' ' = i f d y—So;'(x,y)g (y) —g [g (x)g (x)—trS(x, x)]g, (x)
5I , ,S (5.10)

(and the conjugate of this equation),

0= ' ' =i[S,; '(y, x)—So, (y, x)]—g [f„(x)P„(x)—trS(x, x)]5; 5 (x —y) .5r, ,S
5S;, x,y

F10)(x)
—y(0)(x )

—() (5.12)

and

We look for the solutions where the fermion-antifermion
pairs are allowed to condense but fermions do not con-
dense. Indeed we find the solutions

ized coupling. In the following we will continue our ar-
guments based on the stable vacuum, i.e., on the solution
m =tu exp( —m. /A, „).

The second stage is to give the on-shell conditions,
which are the wave equations for hg'" and b P+" and the
Nambu-Bethe-Salpeter (NBS) equation' for bS. In gen-
eral, they are coupled to each other, but the fermion
number is conserved in the Gross-Neveu model, so that
they decouple. We have the wave equation

S(0)(p) S(0)(p)— (5.13)

in momentum space where m is determined by the self-
consistent gap equation:

0= f d y
' ' 4g'"(y)

5$, (y)5$;(x)

d~ =&g 2trS p
(2m )2

(5.14)

d /SO;J- X,g 5

+g tr[S' '(x, x)]bgI "(x) (5.15)

This equation is known to give two types of solutions:
m =0 and m =pexp( —m. /A, „) where p denotes the re-
normalization point (p )0) and A.„:g„N is the renormal-—

and the charge-conjugate equation of it. The NBS equa-
tion is
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0= d xzd yz
' ' bs; (xz,yz)

~'I'[4 0 sl
M; (xz,yz 5S; (x&,y, )

i f d xzd yzSJ, (y), xz)ES; J (xz, yz }SJ~; (yz, x) )+g 5, J 6 (x ] y/ )trkS (x ),x$ ) . (5.16)

Equation (5.15) is rewritten as

S'" ' xy a '"y =0 (5.17)

state composed of fermion and antifermion. Therefore,
the solution becomes now

by using the Schwinger-Dyson equation (5.11) with
P+ '=tt' '=0. Then we find that hg'" is on the mass-
shell which is determined by the pole of the full propaga-
tor. As for the NBS equation (5.16) we easily get the
solution in momentum space as

d2
dP1 'q [(2 )

—1/zC+(P 1 )y ( P)
—iP x —iP.x

(2~)

ES; "(P,q)= A (P)[s'k '(q + ,'P)sk '(—q ——,'P)], (5.18) +(2m. )
' C (P')P,, (q, P)e+' +'~ "], (5.21)

d2k
A (P}:— ig —f trhs' "(P,k) .

(2n )
(5.19)

where P or q is the total or relative momentum, respec-
tively, and

where X or x is the center of mass or the relative coordi-
nate, respectively, and Po=[(P') +4m ]' . We have
introduced

Substituting (5.18) into this definition we obtain P,, (q, P) =B[S,'„'(q + ,'P)S„' '(q ——
—,'P)), (5.22)

d k
A (P)= i A, A (P)f— tr[S' '(k+ ,'P)S' '(k ———,'P)] .

(2m )

(5.20)

This determines P, which is equal to 4m with the
large-N limit. It corresponds to the (threshold} bound

(q, P)=. B[s't, '( —
q ,'P}S' '( ——q—+—'P}] (5.23)

Here, B is a normalization constant which is determined
by the well-known normalization condition of the NBS
amplitude. ' After some algebra it takes the form

d2
i

z f z tr[P( p, P)P(p, P—)s' ' '(p —
—,'P)+P( p, P)S' ' '(p—+ —,'P)P(p, P}]Bg„(2n )

dz 8 4m+i tr p P tr q P =i, 524
(2~)' (2m )' Bg,

'

where P =4m . In the above normalization condition,
however, the first integration shows the infrared diver-
gence on the mass shell P =4m . This is due to the fact
that the bound state in the large-N limit is actually the
threshold bound state so that the wave function P or yY is
not well localized as a function of the coordinate x. But
this diSculty is known to be solved when we take into ac-
count the next-order terms in the large-X limit.

Finally the S-matrix elements are calculated. %'e con-
centrate on the matrix element of the scattering between
two bound states as an example, but it includes all the

essential points. Only the fourth-order term in (2.35) or
(3.10) is needed, which is calculated as follows. First we
draw all the topologically different diagrams with four
amIzutated external legs in terms of the vertex 1 ' ' andr", and the line W"'. The line or the leg for the com-
posite particle has twice the number of indices and argu-
ments compared with that for the elementary fermion.
Next we sum up these graphs to get 8" ', and put the
bound-state wave function on each external leg. Then we
get the expression

—W'„' . .„b,s "(x„y,) ES'"(x,y )

(4]
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where the indices of the components are included in the arguments such as x, = (i, ,x, ). We have used the notation

p(n)
„3'„

s"r[y, @,s]
5$(x, ,y, ) . . 5S(x„,y„}

(5.26)

evaluated at solutions (5.12) and (5.13). W„' '
.„ is the two-particle propagator which satisfies

(2) (2) (2) (2) 2 2
x~,y~,'x2, y2 Wx y 'x3, y3 Wz~, y x y x2,y2, +3,y3

'5 (x f x 3 }'5 (y ~

—y 3 } (5.27)

In the large-N limit we can write down the explicit form of 8" ' as

W„' '
.„= i IS—' '(x2,y, )S' '(x, ,y2}+f d x d y[S' '(x„x)S' '(x,y, )]E(x,y)[S' '(xz, y)S' '(y, y2)]], (5.28)

where K (x,y) is expressed in the momentum space as

E(P)= ( ig —
)

d2
1+ig tr S'' q+ —S '

q
——

(2n )

(5.29)

The above procedures are equivalent to the method to calculate the S-matrix elements of the bound states as formu-
lated by Nishijima. ' The specific point to our method is that it directly provides the amputated Green's function 8' '

which is noted as o in Ref. 10. There, the 0 function for the composite particle has been defined from the ~ function
(the usual Green's function) by the process in which the external legs corresponding to the composite particles are
grouped together, and the two-particle propagator is amputated from each pair of legs. However, our method does not
need such a process, since 8'"' is constructed as the sum of the tree diagrams with amputated external legs from the be-
ginning. The effective action I from which we started automatically produces the correct diagrams.

Finally, we evaluate 1' ' and I' ' frotn the effective action (5.9) and substitute them into (5.25) together with hS"'
and W' '. As a result, we get the explicit expression (see Fig. 4)

—W„' ' . .„hS'"(x„y,)
. b,S'"(x,y }

=—I6tr[S' ' '(y4, x, }AS"'(x,,y, )S' ' '(y„xz)bS"'(x2, y~)

XS' ' '(y2, x3)ES"'(x3,y3)S' ' '(y3 x4)bS"'(x4,y4)]

+12tr[bS'"(x,y, )S' ' '(y, ,x2)bS"'(x2, x)]It(x,y)tr[ES"'(y, y3)S' ' '(y3, x4)ES'"(x4,y)]I .

(5.30)

The functional differentiation of this expression with
respect to two C+'s and two C 's contained in hS'"
yields the S-matrix elements for which we are looking.

More general S-matrix elements such as the scattering
of one elementary fermion and one composite particle are
also calculable. In such a case, the order of the

FIG. 4. Graphical representation of (5.30).

Grassmann numbers needs careful treatment, which may
bring the extra minus sign in the expressions.

VI. DISCUSSIONS

We have presented the on-shell expansion of the
effective action and have shown that the effective action
generates all the physically observable quantities. Let us
point out here several important issues about our investi-
gations.

(1) 5$ and b,P—the off-shell variation and the on-shell
variation. As has been stated in the Introduction, the
essential concept in our work is the on-shell variation b,P.
The conventional variation 5$ is taken for the purpose of
obtaining the dynamical equation of motion. We get
51 [P]/5$(t)= —J(t)=0 by the free variation 5$(t)
(t, &t &tf) but without allowing the variation at the
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boundary 6$(t, )=6/(tf )=0. This is the off-shell varia-
tion since the meaning of 5$ is the variation away from
the physical trajectory.

The on-shell variation b,P on the other hand stays on
the physical trajectory therefore the only permissible
variation is the one at the boundary; —J(t)=0 is always
satisfied. In this way we get the different physical trajec-
tories with different boundary conditions. In quantum
theory, the boundary conditions are the conditions on the
boundary states and indeed our on-shell condition (2.8)
determines the possible boundary states which are the
discrete excited spectra of the theory. The solutions b,P
turn out to be the wave functions of these states. The
difference between the higher-order off-shell expansion
and the on-shell expansion is that the former generates
the 1PI bshe!1 Green's functions whereas the latter gen-
erates the connected S-matrix elements.

(2) Construction of Fock space. By our method the
whole Fock space can be constructed starting from the
effective action. In order to do that we have to couple

the source J; to some operator 0; for every channel i and
calculate the effective action. Different channels are as-
sumed to have different quantum numbers. The operator
0, can be anything as long as it has correct quantum
number. The on-shell condition in each channel deter-
mines the one-particle spectrum in that channel and the
entire Fock space is constructed according to our scheme
of on-shell expansion.

(3) Continuous spectrum. We have assumed that the
on-shell condition has only the discrete spectrum. In or-
der to discuss the case of the continuous spectrum
(scattering states) we first put the system in a large but
finite box of the volume V. All the allowed spectra are
now discrete and after all the calculation the limit V~ ~
is taken. This is the usual process to discuss the continu-
um states. But in this paper we are interested in the real
discrete states which gemain discrete even after the limit
V~ ~. As has been studied in this paper the continuum
region is more appropriately discussed by the scattering
of these discrete bound states.
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