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Gluon color-electric dipole moment and its anomalous dimension
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The purely gluonic dimension-6 CP-violating operator recently discovered by Weinberg is

identified as a color-electric dipole moment for the gluon. It can be represented in a manifestly

Bose-symmetric form using Dirac algebra. This simplifies the calculation of its anomalous dimen-

sion to first order in the @CD coupling constant.
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The Bose symmetry follows from the antisymmetry off' '
together with the Dirac trace identity

Tr([y", y'] [y', y'] [y, y'] y5)

- —Tr([y, y ][y",y'1[y, y']ys).

Under any permutation of [y",y"], [y, y 1, [y, y'], the

It was recently pointed out by Weinberg
' that there is a

CP-violating operator of dimension 6 that is constructed
out of gluon fields only. It can be induced as a term in the
low-energy effective Hamiltonian by exchange of heavy
Higgs bosons, ' by the exchange of gluinos in supersym-
metric models, or by exchange of gauge bosons in left-
right-symmetric models. It can also arise from the
color-electric dipole moment of a heavy quark at scales
below the heavy-quark threshold. s It gives a contribution
to the neutron electric dipole moment that is not
suppressed by any light-quark masses or mixing angles,
and so can tighten constraints on certain models for CP
violation.

The gluonic operator GG is generated at the mass scale
of some heavy particle. To compute the electric dipole
moment of the neutron, it must be evolved down to the ha-
dronic scale using the renormalization group. This evolu-
tion can change the prediction for the neutron electric di-
pole moment by orders of magnitude. In this paper, we
present some details of our recent calculation of the anom-
alous dimension of GG to first order in the @CD coupling
constant. The calculation was greatly simplified by using
Dirac algebra to represent the operator in a Bose-
symmetric form. This representation may prove valuable
in other investigations of the operator GG. It also reveals
that this operator has a simple physical interpretation as a
color-electric dipole moment operator for the gluon.

The purely gluonic dimension-6 CP-violating operator
discovered by Weinberg ' is

G (~) ~ faber pa GbpaGcvp

where G„', —,
' e„„~pG'"P, p is the renormalization scale,

and our convention is e ' +1. This expression for Go
is not manifestly Bose symmetric. It can be written in a
compact form which is also Bose symmetric by using
Dirac algebra:

(5)

where (F')b, if "is the color matrix for the adjoint rep-
resentation and 4' ~ is the spin matrix for the antisym-
metric tensor representation of the Lorentz group. This
matrix can in fact be represented compactly using Dirac
algebra

(1")' "= Tr([y',—y'] [y', y'] [y",y'1) .
64

(6)

This matrix does indeed satisfy the algebra of generators
of the Lorentz group:

[gy gkp] ~ ( Xg pp+ ppg k vpg p7 +pkg vp) (7)

That the expression (5) is equivalent to (2) follows from
the identity e"' p[y&, yp] = —2i[y", y"]y&. Thus the opera-
tor 8g is proportional to the color-electric dipole moment
of the gluonic field strength as claimed.

We now show how the representation (2) for GG can be
used to simplify the calculation of its anomalous dimen-
sion. The term Jd xGG can appear as a CP-violating
term in the low-energy efkctive action obtained by in-
tegrating out heavy particles. Its renormalization-group

trace in (3) changes by the sign of the permutation. In
explicit calculations, the representation (2) has the addi-
tional advantage of replacing cumbersome algebraic ma-
nipulations of the Levi-Civita tensor e"'~p with much
simpler Dirac algebra.

Representation (2) also allows the operator GG to be
given a simple physical interpretation: it is the color-
electric dipole moment for the gluon field strength. It is
well known that a quark color-electric dipole moment
violates CP and will contribute to the neutron electric di-

pole moment. It should then come as no surprise that a
gluon color-electric dipole moment also violates CP and
also contributes to the neutron electric dipole moment.
The quark color-electric dipole moment operator is

Gq Gp'~( —,
' o"")T'q, (4)

where T' is the color matrix for the fundamental repre-
sentation and —,

' cr"p (i/4)[y", y ] is the spin matrix for
the Dirac spinor representation of the Lorentz group. We
can identify the operator GG as the color-electric dipole
moment for the gluonic field strength G„'„by expressing it
in an analogous form,
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equation to order a, has the form

a, (p)
p d'x Go(p) yGG d x GG(p)+au" 4 J

(s)

' f' 'Tr([p, y"][q, y'][r, y']ys), (9)

entz indices p, v, X, and color indices a,b, c has the elegant
form

where the ellipsis represents other CP-violating interac-
tions, such as fd x Gq. To lowest order in a„ these other
operators do not feed back into the evolution of GG, so the
coefficient yGGa, /4z is an eigenvalue of the anomalous-
dimension matrix.

The determination of the coefficient yGG requires the
calculation of some gauge-invariant quantity to one-loop
order. One possibility is to calculate the CP-violating part
of the effective action to one-loop order using the
background-field method. 7 Another possibility is to use
ordinary field-theory techniques to calculate a physical
quantity such as the scattering amplitude between on-
shell gluons. The simplest such scattering amplitude is
the CP-violating part of the four-gluon scattering ampli-
tude. There are seven diagrams that contribute to this
scattering amplitude at tree level. Six of them involve a
CP-violating three-gluon vertex and an ordinary three-
gluon vertex joined by a gluon propagator, and the
seventh consists of just a CP-violating four-gluon vertex.
The sum of the seven diagrams is gauge invariant.

The anomalous-dimension coefficient yGG could be
determined by calculating the divergent parts of all one-
loop corrections to the four-gluon scattering amplitude.
This calculation would be extremely tedious, but for-
tunately the same information can be obtained from a
small subset of the diagrams. If the incoming gluon mo-
menta are labeled p and q, only two of the seven tree-level
diagrams contain a pole in their invariant mass (p+q) .
Since the entire scattering amplitude is gauge invariant,
the residue of this pole is also gauge invariant. It factor-
izes into a product of two three-gluon vertices, one of
which is CP-violating. Similarly, only for a small subset
of the one-loop diagrams does the divergent part have a
pole in the invariant mass (p+q) of two external gluon
legs. The residue of this pole is gauge invariant and the
relevant term in the residue factorizes into the product of
perturbative corrections to the CP-violating three-gluon
vertex and an ordinary tree-level three-gluon vertex. Thus
we can reduce the calculation of the anomalous dimension

yoG to the calculation of the divergent part of the matrix
element of fd xGo between two on-shell gluons with
the third gluon leg off its mass shell: r WO, where
r -—(p+ q ). Setting the first two gluons on-shell
amounts to setting p =q =0 and dropping terms propor-
tional to p" and q'. A further simplification is that the
third leg can be treated as if it was on its mass shell. If it
has momentum r and Lorentz index A, , terms proportional
to r can be dropped because they do not contribute to the
residue of the pole in (p+q) . Terms proportional to r
can also be dropped because they vanish after contracting
with the three-gluon vertex.

To avoid complicated algebraic manipulations of the
Levi-Civita tensor e"' ~, we extract the Feynman rules for
the CP-violating vertex directly from expression (2). The
Feynman rule for the CP-violating vertex with three
external gluon legs with incoming momenta p, q, r, Lor-

The term shown explicitly is proportional to the momenta

p and q of two of the legs, and the sum is over the six pairs
of legs. Expressions (9) and (10) are much simpler than
the Feynman rules that follow directly from (1).

Aside from wave-function renormalization on the exter-
nal lines, there are four topologically distinct diagrams
that contribute to this amplitude and they are shown in

Fig. 1. For each of the diagrams shown, there are actually
three diagrams that correspond to the cyclic permutations
of the external lines. We calculated the diagrams in

Feynman gauge using an ultraviolet momentum cutoff p.
Each diagram contains quadratic divergences, but they
cancel after summing over the three diagrams in each to-
pological class. This follows from the simple identity

Tr(py" y "y'y5)+ c.p. 's 0,
where the expression is summed over the three cyclic per-
mutations (c.p. 's) of (p, p), (q, v), (i', X).

With the quadratic divergences having canceled, the
remaining divergences are logarithmic and should sum up
to an expression proportional to (9). The straightforward
calculation of the diagrams does not produce the desired
form automatically. One must put the expression into
that form using trace identities that are consequences of
the Levi-Civita identity e'"""g' ~ 0. We define a tensor
function of three four-vectors as

T"""(pi,pi, pq) -Tr([p~, y"] [p2, y"] [pi, y'] y5) . (12)

From (3), this tensor changes sign under the simultaneous
interchange of any pair of arguments and the correspond-
ing pair of indices. The CP-violating three-gluon vertex
(9) is proportional to T"" (p, q, r). Each of the diagrams
in Fig. 1 can be reduced to combinations of the functions
T"", with the momentum arguments being various com-
binations of p, q, and r. Using momentum conservation

{a} {d)

FIG. 1. Diagrams that determine the anomalous-dimension
coeScient yg~. The circle with G inside represents the gluonic
CP-violating operator 86.

~here inside the trace, p p„y", etc. The Feynman rule
for four gluons with incoming momenta p, q, r,s, Lorentz
indices p, v, k, p, and color indices a,b,c,d is

—,', f' 'f" Tr([p, y"] [q, y'] [y, y~] y5) +5 similar terms .

(10)
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p+q+r 0 and the symmetries of the tensor (12), one
can easily derive the trace identities
T"" (p,q,p)+ T"" (p,p, r)+c p .'s . —3T"" (p, q, r),

(i3)
T"" (p,q, q)+ T"" (p, r,r)+c.p. 's —3T"' (p, q, r) .

The terms T"" (p,p,p) and its cyclic permutations can be
dropped because of the identity

T""(p.p.p) -—8p'Tr(py" y"y"y ). (i4)
This term is either zero because p is on the mass shell

(p
2 0), or else the factor of p

2 cancels a pole so that the
term does not contribute to the residue of that pole. Drop-
ping terms of the form (14), we can derive additional
trace identities
T"""(p,p, q)+ T"""(p,r,p)+c.p. 's 3T"" (p, q, r),

(15)T"" (p, r, q)+c.p. 's 0.
After summing over the three cyclic permutations cor-

responding to each of the diagrams in Fig. 1, the identities
in (13) and (15) allow the diagram to be reduced to a
multiple of T"" (p,q, r) as desired. The divergences from
wave-function renormalization of the three external gluon
lines automatically have the desired form. Thus the sum
of the logarithmic divergences is proportional to the tree-
level expression (9). From the coefficient, we read off the
diagonal anomalous-dimension coefficient yoo defined in

(5),

yGG C~ —2NI .

The contributions in Feynman gauge from the individual

diagrams are 11C~/2 from diagram 1(a), 0 from diagram
1(b), —23Cq/2 from diagram 1(c), and 0 from diagram
1(d). The remaining factor of 5C~ —2Nf comes from
wave-function renormalization on the three external gluon
lines. Here C~ 3 is the Casimir for the adjoint represen-
tations of SU(3) and Nf is the number of light quarks at
the scale p.

If we use the alternative operator 6|(p) g, (p)
x6o(tt), the anomalous dimension coefficient in (8) is
changed in an obvious way. To leading order in

a, g,~/4tr, the running coupling constant g, (p) satisfies
p(8/8„) g, (p) —P(a, /4tr)g, (tt ), where P (11C~
—2Nf)/3. The coefficient analogous to yoo in (8) is then

yll yoo —3P —12C~. This result, which was first
given in Refs. 6 and 8, has now been verified by three oth-
er groups.

We have shown that the purely gluonic dimension-6
CP-violation operator discovered by Weinberg has a sim-

ple physical interpretation as the color-electric dipole mo-
ment for the gluonic field strength. Dirac algebra can be
used to express this operator in a Bose-symmetric form.
This form simplifies the calculation of its anomalous di-
mension, and we believe it could be equally useful in other
investigations of this new CP-violation operator.

Note added in proof. After this work was accepted for
publication, it was brought to our attention that the anom-
alous dimension of the gluon color-electric dipole moment
was first calculated by Morozov.
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