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In this paper we develop the notion of adiabatic holonomy in classica/ fermionic field theory and

apply it to chiral gauge theory. In chiral gauge theory the classical adiabatic holonomy leads to a
deformation of the Poisson algebra of translation generators in the space of gauge fields and to an
additional term in the Poisson brackets among gauge-transformation generators. We study all this
in detail in a (1+1)-dimensional model.

I. INTRODUCTION

An anomaly in quantum field theory is a case of a sym-
metry of the classical Lagrangian that cannot be main-
tained at the quantum level. Several authors' have re-
cently discussed the connection between anomalies and
the quantum holonomy effect known as the Berry phase.
The Berry phase, for quantum systems depending on
external parameters, consists of a geometric phase ac-
quired by the wave function under an adiabatic transport
around a closed loop in parameter space. This
phenomenon has been associated with the SU(2), ' local
gauge, ' parity, and conformal anomalies. We shall
be primarily concerned with the chiral gauge anomaly.

In chiral gauge theory we consider Weyl fermions t((x)
interacting with gauge fields A (x) in space-time of di-
mension D. Although we ultimately want to quantize
both fermions and gauge fields, for considerations regard-
ing the anomaly it is sufticient to treat the gauge fields as
classical and quantize the fermions. The gauge fields
then play the role of parameters in the fermion Hamil-
tonian

H = Jd 'x
11 (x)i [V'+ A(x)] oQ(x)

[A (x)=0],
where o are the Pauli matrices in (D —1)-dimensional
space. The parameter space is A ', the space of all
static gauge field configurations with 3 =0. At each
point in this parameter space we can solve Dirac's equa-
tion for the first-quantized energy eigenstates, and con-
struct the vacuum ~4o( A) ) by filling the negative-energy
sea. In this way we obtain a Hilbert bundle of Fock-
space vacua over Af '. Gauge invariance means that
the real configuration space is the manifold of gauge or-
bits W '/0' where 0 is the group of gauge transforma-
tions, and hence the vacuum bundle should reduce to a
bundle over orbit space. The anomaly can be viewed as
an obstruction to this bundle reduction.

According to the adiabatic assumption, which will be
justified in Sec. IV, the gauge fields change slowly enough
so as not to induce transitions between the vacuum and
excited Fock states. This provides a natural connection

(1.2)

which allows us to probe the structure of the vacuum
bundle. The integral of AB,„„„around a closed circuit in
parameter space yields the Berry phase. A nonzero Berry
phase for a loop generated by gauge transformations indi-
cates the presence of an anomaly which prevents the
reduction of the vacuum bundle to a bundle over orbit
space. Stated more precisely, the Berry phase for an
infinitesimal loop of gauge transformations is exactly
equal to the Schwinger term in the commutator among
gauge generators. If the Schwinger term (or Berry phase)
cannot be removed by a redefinition of the generators,
then the group of gauge transformations must be realized
projectively and the Gauss law cannot be maintained in
quantum theory. The quantum adiabatic holonomy of
the vacuum can therefore be viewed as the signal for the
gauge anomaly.

It is now well known that the Berry phase has a classi-
cal counterpart, known as the Hannay angle, ' "which
consists, for integrable systems, of a shift b,e(C ) in the
angle variables after adiabatic transport around a closed
circuit C in parameter space. In previous work1112 the
connection between these two phenomena was studied.
They are related by

Therefore, a classical Hannay angle is a sure sign of a
quantum Berry phase different from zero. Moreover for
quadratic Harniltonians the relationship between the clas-
sical and quantum holonomies is exact, without the
O(iri ) term.
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Then a gauge theory with a nonzero Hannay angle
should also have a Berry phase different from zero at the
quantum level and the two should be related as in (1.3).
[Moreover, since the Hamiltonian (1.1) is quadratic, the
relation (1.3) should be exact without O(A' ) corrections,
and this is in line with the Adler-Bardeen nonrenormali-
zation theorem for chiral anomalies. ] Thus we conjecture
that a nonzero Hannay angle should be a sufhcient condi-
tion for an anomaly at the quantum level. This condition
would allow us to diagnose a classical theory for a pro-
pensity to develop an anomaly when quantized. For
more speculations about this connection we refer the
reader to the conclusions of Ref. 13.

Our present goal is more modest. We will argue that a
classical theory of chiral fermions, interacting with gauge
fields, exhibits a Hannay angle corresponding to the
anomaly. In brief, the argument goes as follows: Ref. 1

showed that anomalies can be understood as being related
to a Berry phase that arises from an isolated degeneracy
of the vacuum. Because the degeneracy is isolated, a
theorem, proved in Ref. 12, leads to the conclusion that
different Fock states [indexed by n in Eq. (1.3)] will get
different Berry phases and Eq. (1.3) will then imply a
Hannay angle different from zero. The purpose of this
paper is to develop the notion of Hannay's angle for a
classical chiral field theory, with some explicit examples,
and to investigate in detail the argument just outlined.

This paper is organized as follows. In Sec. II we estab-
lish the formalism by treating a toy model with a finite
number of degrees of freedom. We show how to calculate
the Hannay angles for this model and demonstrate that,
in the adiabatic limit, the holonomy is responsible for a
deformation of the Poisson brackets among generators of
translations in parameter space. In Sec. III we show how
the deformation of this Poisson algebra can modify the
realization of syrnrnetries in a special case of the toy mod-
el. Section IV describes the application of this formalism
to chiral gauge theory. We derive an anomalous sym-
plectic form, defined on the space of gauge field
configurations, whose coefficients are given by the Pois-
son brackets among translation generators in this space.
The anomalous symplectic form, restricted to a two-
dimensional surface generated by gauge transformations,
is related to an extra contribution to the Poisson brackets
between gauge transformation generators, reminiscent of
the Schwinger term. A semiclassical quantization rule al-
lows us to establish a connection with quantum results.
In Sec. V we calculate the anomalous syrnplectic form ex-
plicitly for a specific model. We end with some conclud-
ing remarks.

II. A TOY MODEL IN Q+1 DIMENSIONS

N complex Grassmann variables' (gi . Pz ) satisfying
g itjk + gk 1(

=0. The Lagrangian and Hamiltonian for
this system are

L =i/ g P—H(B)g,
H =f H(B)g,

(2. 1)

(2.2)

where P = ( g, pe ) is a Grassmann vector,
8 =(8

& BM ) is a set of external parameters, and
H(B) is a Herinitian N XN matrix which we consider to
be the first-quantized Hamiltonian. We choose the ener-
gy scale so that tr[H(8)]=0. Then 8(B) is an element
of the algebra SU(N) in one of the fundamental represen-
tations and can be written in the most general case as

—
1

2

H(8) = g 8'T',
a=1

(2.3)

where T' are generators of SU(N). In previous work'
we studied the Hannay angle in a classical mechanical
model, containing real Grassrnann variables, of the
quantum-mechanical Hamiltonian (2.3). Now we want to
treat the "field-theory" Hamiltonian (2.2), obtained by in-
serting the first-quantized Hamiltonian A' between com-
plex Grassrnann fields. We will show that the Hannay
angles for H are equal to the Berry phases for A'.

We define, for polynomials f(P', tP) in the Grassmann
fields, the Poisson brackets

(2.4)

where j is summed from 1 to N. In parti. cular, we have

(2.5)

Hamilton's equations of motion then yield

g, = [H, P, (
= iH, kgk, —

*=[H, Q,*)=ipkHkj .
(2.6)

Ujk0k ej 0 k Ukj

which diagonalize the Hamiltonian and Lagrangian:

(2.7)

Equations (2.6) correspond to the Euler-Lagrange equa-
tions derivable from (2.1) using right derivatives with
respect to the Grassmann variables.

To derive the Hannay angles we hold the parameters
fixed and expand the fields P in terms of normal modes f,

Our goal is to calculate the holonomy for the classical
version of the Hamiltonian (1.1). This means that, rather
than being an operator, 1t(x) is to be treated as a classical
Grassmann-valued spinor field.

In order to get an idea of how to treat this system, let
us first consider a (0+1)-dimensional toy model with a
finite number of degrees of freedom. This model is a gen-
eralization of the SU(2) model of Stone. ' We introduce

U HUQ

+k4 k Pk

i 4

krak

+kit' k~k

(2.8)

Here E& =
U&, H, U& (i and j summed) are the eigenval-

ues of the first-quantized Hamiltonian H(B) while the
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columns of the unitary matrix U(8) are its eigenvectors
~
k;8 ) . The Poisson brackets (2.4) and (2.5) are

preserved by the transformation to normal modes and we
find the equation of motion

Pk [H~ek ] tEk|ik
(2.9)

The first term in H is just (2.2) reexpressed in action-
angle variables while the second term comes from the
time dependence of the canonical transformation to nor-
mal modes. In the adiabatic approximation we insert the
instantaneous solutions (2. 16) for the normal modes into
(2.19) and average over the fast (angle) variables to obtain
the effective Hamiltonian

k
= [H, fk] =iEkgk,

which have the solutions

k(t) e 1Tk(O)

qk'(t)=e' "Vk(0) .

The normal modes have the canonical momenta
BLII„= . =i/„" .

k

As a consequence, the action variables are

I„= ddt A„(t)j„(t)=y„"q„2'
in terms of which the instantaneous Hamiltonian is

(2.10)

(2.11)

(2.12)

d6,H=EI —A k B
o 2~

d6~ [e.—e ]j k

2K

X Q J. (0)fk(0)

=EI —A I BJ J JJ J

=EI —A BJ J (2.20)

(with the overbar we indicate, from now on, angle-
averaged quantities; for the reader not familiar with all
this, we refer to the third paper of Ref. 15). The angle
average has removed the off-diagonal terms from A so
that there will be no transitions among normal modes.
Now we can integrate the equation of motion

H=EkIk . (2.13)
aH8= =E —A BJJ

J
(2.21)

~ H =Ek
BIk

with solutions [we have made the choice 8(0)=0]

8„(t)=E„t .

(2.14)

(2. 15)

The angle variables are given by the equations of motion

(2.22)

~e, (e)=tt)A, = J' J w, (2.23)

around a closed loop C in parameter space, to obtain

eJ( T)=e, (0)+f 'E, (8 (t) )dt +ae, (e),
0

where (we indicate BS=C )

Therefore the normal modes (2.10) are related to the an-

gle variables by

is the Hannay angle and

A =i U k d~ Uk +d~6 (2.24)

1Tk(e)=e ""yk(0), qk(e)=e'"q„'(O) . (2 16) is the Hannay connection with curvature

Now suppose we allow the parameters to change, trac-
ing out a trajectory B(t) in paratneter space. The trans-
formation (2.7) then becomes time dependent and, ex-

pressing the Lagrangian (2.1) in terms of normal modes,
yields

t 1 k 0k Ek P k (1'k +A '+ (2.17)

which contains, in addition to (2.8), the term A S, where

A:—t 1 J»
UJil Vs( Ulk Pk )

=q; q„(iu,', v, U,„fi,„v,e„)=—A,,q; q„—(2.18)

will be responsible for the holonomy. We are using
Berry's approach" to the Hannay angle, in which the
action-angle coordinates and the normal modes
(pk (0),p k (0) ) are fixed while the (pk, pk ) coordinates
depend on the parameters. The only dependence of 6 on
B comes from the freedom to choose the origin of the an-

gle variable independently at each point in parameter
space.

Corresponding to the Lagrangian (2.17) we have the
Hamiltonian

J' g J'k 6 dg kJ' (2.25)

The term d&6 in A does not contribute to the Hannay
angle but we keep it in order to exhibit the Hannay-gauge
transformation

8 (8) 8 (8)+a (8)

under which A J transforms like a U(1) gauge field:

A&(B)~A J (8) du, (B) . —

(2.26)

(2.27)

Recalling that the columns of U(8) are the eigenvectors
ij;8 ) of H, we see that

iUjk(B)ds Uki (8)=i (j;8~dz ij;8 ) (2.28)

(no sum on j) is the Berry connection. Therefore the
Han nay angle for the field theory Hami ltonia-n (2.2)
equals the Berry phase for the first quantized Hamilton-ian
(2.3).

Let us now promote the parameters B to dynamical
variables by adding the kinetic energy —,'B to the La-
grangian (2.17) to obtain

H = II f L=E g
*
g —A 9—=E I —A .9 .J J J J J J J (2.19) L = i f k @k Ek Q k Qk +A B+ —,

' B— (2.29)
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The momentum canonically conjugate to B' is

P'= — =B '+A'aL= aB' (2.30}

erator of translations in parameter space.
Now let us calculate the Poisson brackets between two

such translation generators:

rather than the naively expected B '. We are momentari-
ly relaxing the adiabatic assumption so that A has the
off-diagonal form (2.18). The parameter dependence of
the transformation to normal modes, which is responsible
for the classical holonomy, has modified the definition of
the momentum canonically conjugate to B. The symplec-
tic form is now

tB',B'j=tp' A—, pb A—bj

aAb
BB'

a
+ tA'AbjaB'

with

tA'A'j=A;kA( t0;Wb 4t'0 j

(2.39)

co=dp'hdB'=dB 'hdB'+dBA

with A =A'dB', and the Poisson brackets are

(2.31) aU=if'tp — U aB'
jk

Ut aU
aBb „.

t
pa Bb

j
gab

t
P', P'j =t B',B'j =

t
P' ~, (0}j

=
t
p', it) J'(0) j =0 .

(2.32}

Now we can ask the following: What is the correct gen-
erator for translations in parameter space? Since
tP', Bb j

= tB ',Bbj =5', both P and B could play this
role. To choose the correct generator of translations we
impose the condition that it is to be covariant under
Hannay-gauge transformations. Before we make the adi-
abatic approximation the different normal modes couple
and therefore the shift in angle variable a(B) must be the
same for all modes:

Let us calculate

,e"" . (2.33}

t
p', P j

=
t
p', g, (0)e '

j =i (2.34)

and
ae

tpa y
J

j
eia(B))

J

eia(B)
t
pa y aB' ' (2.35)

Therefore P' is not Hannay-gauge covariant. On the oth-
er hand, since

B '=P' A'-
(2.36)

+ UtaU
~B'

Jk

taU
BB'

km

aU' aU aU' aU
BB' BB BB dB'

BB' (3B
(2.40)

and therefore

tB',B j=0. (2.41}

(y, y', B,B) (y, y', B,B+A) (2.42)

is canonical and leaves the Poisson brackets invariant; it
does not change the physics.

It is the adiabatic assumption that changes the physics.
Let us average over the fast variables in B=P —A to ob-
tain the adiabatic translation generator

Since the translation generator differs from the canonical
momentum by A, which is like a gauge field, we would
have expected the Poisson brackets between translations
to yield the curvature ofA. However this curvature gets
compensated for by the fermionic contribution tA, A j
to the Poisson brackets. Actually, this result should not
be surprising. If we had added the kinetic energy term
—,'B to the Lagrangian (2.1), expressed in terms of the
original variables P, we would have found that B is the
canonical momentum and it obviously satisfies (2.41).
The transformation

tA' 0, j =A)k t 0('4k 0, j B'=P' —A' (2.43)

iA;„g„—

, aU„ee„= —i I U —6.Jt gBa J" gBa

where we still take P' to be canonically conjugate to B'.
Since A '=A~I, and t I, , Ik j =0, there is no longer a fer-
mionic contribution to the Poisson brackets of adiabatic
translations and we obtain

we find

g
~Ulk—

(2.37)
We call

~b ~a
BB' BBb

c7)ab (2.44)

and 6 =—2',bdB'hdB =dA (2.45)
j=e' (2.38)

Therefore the velocity B ' is the Hannay-covariant gen-
the "anomalous" symplectic form. It is an additional
term in the symplectic form on the slow variable phase
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space' induced by the adiabatic holonomy, and it is re-
lated to the Hannay curvature by

where E, =8 = ~B ~, E2 = —~B~. After the adiabatic aver-
age this Hamiltonian becomes

Bco
1

J

(2.46) H=BIi B—I2+ —,'(P —A )

where

(3.3)

We have learned the following lessons from our toy
model.

(a) The Hannay angle of classical field theory equals the
Berry phase of the first-quantized Hamiltonian.

(b) Even before we make the adiabatic approximation,
the transformation to normal modes changes the
definition of the canonical momentum conjugate to the
parameters, so that it dift'ers from the Hannay-covariant
translation generator. However, the translation genera-
tors still Poisson commute.

(c) The adiabatic average over fast variables "deforms"
the Poisson brackets among translation generators and
introduces a modification of the symplectic structure of
the slow variable phase space. ' (Kuratsuji and Iida'
have also derived a deformation of the symplectic struc-
ture by treating the fast variables quantum mechanically
and integrating them out of the path integral. In con-
trast, our treatment is purely classical. )

III. ROTATION SYMMETRY OF THE TOY MODEL

Let us now investigate how the modification of the
symplectic structure of the slow variable phase space,
found in the previous section, can inhuence the realiza-
tion of symmetries. We consider rotational symmetry in
the model (2.1) specialized to the case where there are
just two complex Grassmann variables ($„$2) and the
first-quantized Hamiltonian

A =iI Uikds Ui,j
= —I, sin (6/2)dg+Izsin (6/2)dg

or, in terms of Cartesian coordinates,
r

I] I2 B3 B)dB2 —B2dB )1—
2 B

(3.4)

(3.5)

The anomalous symplectic form is given by

B,dBb AdB,
co= ,'Q, bdB—,RdBb =dA = ——E' ' (3.6)

with I =
—,'(I, I~). W—e recognize (3.6) as the field of a

monopole of strength I located at B=O, the point in pa-
rameter space where the two normal modes p, and AT& be-
come degenerate.

The adiabatic translation generators are B '=P' —A ';
they satisfy

B,aBbI — I abc
ab (3.7)

The corresponding "rotation" generators are

L '=e' 'BbB, As a co. nsequence of (3.7) the "angular
momentum" L is not conserved,

3

8(B)=Bcr= g B,a,
a=1

(3.1)
B ' B'B.B

IH, L 'I =I (3.8)

is a generator of SU(2). Jackiw'7 and Stone and Goff
have made similar analyses of this model at the quantum
level. In this case we have an explicit expression' for the
transformation matrix to normal modes:

and satisfies, instead of the usual Poisson brackets,

IL a L b~ &abcL c+ &abc
B'
B

(3.9)

e
cos

2

ee'&sin
2

6—e '~sin
2

e
cos

2

(3.2)

valid everywhere except at 6=~. We have introduced
here spherical coordinates on parameter space related to
the Cartesian coordinates by

8 i
=8 sin6 cosP,

Bz =8 sin6 sing,

83 =B cose .

Promoting the parameters B to dynamical variables we
derive from the Lagrangian (2.29) the Hamiltonian

H =Ekfklk+ —,'(p —~)'

Therefore it looks as if the rotational invariance has been
destroyed by the adiabatic average. However, it is well
known that the additional terms in (3.8) and (3.9) can be
remedied by adding to L ' the term IB'/B, which is finite
and nowhere singular for BWO. The new rotation gen-
erators

BaJa &abcB bB
B

satisfy

a
I 0 I

Ja Jb) abcjc

(3.10)

Thus in this model, which has a finite number of degrees
of freedom (two), it is possible to preserve the symmetry
by adding a finite and everywhere well-defined term to
the generators. This term is in fact the relic of the spin
density S' =—,

' P o'g, left over after the adiabatic average.
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IV. CLASICAL ADIABATIC HOLONOMY
IN CHIRAL GAUGE THEORY

5u (y; A)
A'~=if„*g fdyu„(y, A)

Let us now consider the classical theory of chiral fer-
mions interacting with gauge fields. The action for the
fermions (in the gauge A =0) is =Q„'Q A'„' (x) (4.11)

1=f dx i1(j (x)[B,—(V+ A).o ]g(x), (4. 1)

[ga gb] fa—bcgc tr(gagb) ~ 5ab (4.2)

When the gauge fields are held fixed this system is integr-
able in the fermions. We can expand in normal modes

where dx =d x, cr are the Pauli matrices in (D —1)-
dimensional space, A - = 3 'V, and A,

' are anti-Hermitian
generators of the gauge group satisfying

coming from the parameter dependence of the transfor-
mation to normal modes. We have omitted the term

P „'$„5„B„from A since it does not contribute to the
dynamics; we know that, when we include it, A has the
correct Hannay-gauge transformation properties dis-
cussed in Sec. II.

Now let us promote the gauge fields to dynamical vari-
ables by adding to 4 the Yang-Mills action (in the gauge
a'=o)

SYM = f dx Tr(F„„F"')1

2g

g(x) = g g„(t)u„(x;A), (4.3)
A J (x, t )F'~ (x )

—&YM(x ) (4. 12)

where

8( A)u„(x, A)=i (V+ A) emu„(x; A)

=E„(A)u„(x; A) (4 4)

with the Hamiltonian density

1
YM

2g
Fo F' ~+—g F;;(x)F"J(x) . (4.13)

and P„(t) are complex Grassmann variables. The ortho-
normal set of eigenfunctions u„(x; A) plays the same role
as the unitary matrix U of Sec. II, transforming between
the field g(x, t) and the normal modes P„(t).

Inserting the expansion (4.3) into (4.1) we find

The total action of fermions interacting with gauge fields
is then

S= fdr tt „*j„—E„q„'q„

4= fdt(ig„'g„E„g*g„)— (4.5)
+ f dx A '(x, t) F'~ (x)+~,. (x)

1

for fixed A(x). The Lagrangian is an infinite-
dimensional version of (2.8). Therefore, as in Sec. II, we
find the actions

(4.14)

and the fixed parameter Hamiltonian

H= QE„I„.

The angles are then given by

B„(t)=E„r

in terms of which the normal modes are given by

P„(B)=g„(0)e ", g „*(B)=g „*(0)e

(4.6)

(4.7)

(4.8)

(4.9)

P "(x)= F" (x)+A"(x)1,p

rather than the usual (I/g )F" . In writing the action in
terms of normal modes we have performed a canonical
transformation

(4.15)

g(x), g (x), A, (x), F" (x)

with dx=d 'x. We find that in these coordinates the
momentum canonically conjugate to the gauge field is

When the gauge field is held fixed in time, we have a free
theory of independent fermionic oscillators.

When the gauge fields are allowed to evolve in time the
normal modes become coupled and we find, upon inser-
tion of (4.3) into (4.1), that

4= f dt i g „*P„E„Q„*Q„+f dx &—;(xM "(x)

(4.10)

~(Q„,Q„*,A)'( )x, P"( )x) .

In the new coordinates the Poisson brackets are

[P 'J(x), P "(y)j =
[ A;(x), A„(y)j =0,

=
[ a, q„(0)j

=
[ ~, q „'(o)j =o,

[P "(x),A~(y) j
=5' 5,„5(x—y),

(4.16)

(4.17)

Again we have found the holonomy term while the fermionic Poisson brackets are an infinite-
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dimensional generalization of (2.4), expressed in terms of
normal modes. In the transformation (4.3) we have put
all the gauge field dependence in u„(x, A) so that lij„and

are independent of A (ignoring the Hannay-gauge
freedom). This was motivated by Berry's approach to the
Hannay angle as explained in Sec. II. What we have
done here is unconventional because now the fermion
field g depends on A. If we had treated P(x) and A (x)
as independent dynamical variables, we would, of course,
have obtained no holonomy term in the action. We
therefore find it necessary to verify that the equations of
motion of the new variables are equivalent to the usual
ones of Yang-Mills theory. This is done in the Appendix.

As in Sec. II the Hannay covariant generator of
translations in JR ' is

v'j(x ) =P 'j(x )
—A 'j(x) (4.18)

and it satisfies

( 6"(x),6 "(y) )
=0 (4.19)

Now we are interested in the evolution of the fermionic
system as it is carried around a loop in A, ' generated
by gauge transformations. Transport around such a loop
can be effected by a sequence of infinitesimal gauge trans-
formations Q(x, t) under which A transforms as

(4.21)

Since we want to preserve that gauge A =0, we are led
to the adiabatic limit B,Q(x, t)~0. Thus transport
around a circuit generated by gauge transformations
must be adiabatic.

Since the evolution in Af ' is adiabatic we can aver-
age over the fast variables to obtain the Hannay-
covariant generators of adiabatic translations

before we invoke the adiabatic assumption. The corre-
sponding Hannay-covariant generator of gauge transla-
tions, i.e., of translations along orbits of 9 in dll ', is
Dj' 6 "j(x), satisfying (D'" is the usual covariant deriva-
tive)

(Dacgcj( ) Dbd@dk( ) I fabc5( )Dcdgdk(y)

(4.20)

are the coefficients of the anomalous symplectic form

co= —,
' fdxdy 5A;(x) h5A„(y)ro', "b(x,y)=5A . (4.26)

For a general circuit in A ', the Hannay angle for a
normal mode li„ is related to the anomalous symplectic
form by

(4.27)

The Poisson brackets between gauge transformation gen-
erators have now acquired the additional term DDT,
which is reminiscent of the Schwinger term at the quan-
tum level. (A similar result was also obtained by
Kuratsuji and Iida' but treating the fermions quantum
mechanically ).

It is easy to see that a nonvanishing symplectic form on
a two-dimensional surface in JM ' generated by gauge
transformations, implies the presence of the additional
term in (4.28). Consider a surface generated by a
two-parameter set of gauge transformations
g(x;s)=g(x;s„s2). On this surface

5A =Du—:DU' 'ds( ),
where

(4.29)

u' =g '(xs9, g(xs)=v'~'A, ',
(p)

p=1,2, a is the gauge index, and D is the covariant
derivative with gauge field A. Inserting (4.29) into (4.26)
and partially integrating twice, we obtain

ro= —,
' fdxdy v, (x) hub(y)Dj"(x)Dk" (y)S j"(x,y) .

(4.30)

For transport along gauge orbits in At ', the adiabat-
ic Hannay-covariant generators of gauge translations are
then Dk 8 "(x) and, due to the nonvanishing Poisson
brackets (4.24), they satisfy

I D ac/ cj (X ) D bdg dk(y )

f"'5—(x y)Dk—"6' ""(y)—D (x)Dk"(y)io', d(x, y) .

(4.28)

8 'j=P" A "(x)—
with

They satisfy

I & "(x),@ '"(y)
J
= a',kb(x, y), —

where

~'."b(x, y)=5„.
,

~'"(y)—5, A '&(x)
jt ~,'(y)

n

(4.22)

(4.23)

(4.24)

(4.25)

This is as far as we can go in looking for relics of the
anomaly at the purely classical level. We are now con-
fronted with the problem that the action variables
I„=f„'g„,which appear in the anomalous symplectic
form 6, have no obvious interpretation. They are not
real numbers but rather even elements of the Grassmann
algebra. In order to make physical sense of the actions
we need to find a natural way to assign real numbers to
them. The physical meaning of the Grassmann variables
li„ is that they carry the anticommuting nature of the fer-
mions and they give an amplitude and phase to a mode of
oscillations, i.e., P„=o„f„,where o„ is a complex num-
ber and f is some Grassmann unit. The actions are then
I„=~a„i P „f„,where P„*g„should be mapped into a
real number i~/ „*g„i~ of absolute magnitude 1. To decide
whether iitij „*g„ii is 1 or —1 we can bring in the physical
principle that the energy must be bounded from below
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Since the amplitudes a„l in

E= XE.I&. l'll&:4. 11

span a two-dimensional gauge orbit. We want to calcu-
late the anomalous symplectic form on this orbit. The
Lagrangian for the fermion is

are arbitrary, the energy will only be bounded from below
if

I. =q'(x, t)(ia, P—)y(x, t)

with the first-quantized Hamiltonian '

(5.3)

11@„*g„l[=sgn(E„). (4.31) 8= —ia, +

I„=la„ 1 sgn(E„) (classical) . (4.32)

That means that the actions have to be positive for
positive-energy modes and negative for negative-energy
modes. So we have

0+r sin—
2

0sin—
2

—i cos—e""
2

i cos—e
2

0—sin—
2

This prescription (4.32) is reminiscent of the filling of the
Dirac sea at the quantum level. It can also be interpreted
as the choice of a complex structure' necessary for the
geometric quantization of the classical theory. In a forth-
coming work we shall investigate geometric quantization
more thoroughly and the relationship between classical
and quantum holonomy in field theory. We mention here
that quantizing semiclassically' gives each normal mode
a zero-point action

I„=—,
' A'sgn(E„) (4.33)

so that the coeScients of the anomalous symplectic form
become

The eigenvalues of 8 are given by
1/2

E =n+ —+r (r —1)sin—1 . 28
n, + —

4
(5.4)

Inx

and the eigenstates become degenerate in pairs at ~ =
—,',

0=~. This degeneracy is the source of the anomalous
symplectic form on the surface r=1. (Henceforth we
shall restrict our considerations to this surface. ) At r= 1

the eigenstates (these eigenstates are not well defined at
0=m., but we would circumvent this problem by defining
the eigenstates on patches ') are

t sin —e'~
2

co Jb =i g[sgn(E—„)—sgn(E )](5„,
,
nlm )

n, m J

x( m15„.. .n) .
A~(y)

(4.34)

un, + 9
cos

2

—i cos—e
2

&
inx

(5.5)

This is a formal expression which needs to be regularized;
it agrees precisely with the Berry curvature of the Fock
vacuum found by Niemi and Semenoff.

un 0
sin —e

2

V. AN EXPLICIT EXAMPLE IN 1+1DIMENSIONS

where n EZ. To find the anomalous symplectic form 9
we expand the fermion

In this section we calculate the anomalous symplectic
fortn on a two-dimensional gauge orbit for a specific
model in 1+1 dimensions. The model consists of a chiral
fermion 1((x), on a compactified space with coordinate
0 & x & 2m, interacting with a three-parameter set of
gauge fields A (x;r, e, p). Various versions of this model
have been considered by Forte, Chang and Liang, ' and
by Hosono. The gauge fields are given by

P(x, t;8,$)=

in normal modes

n = —cc, a=+

(0)e

with frequencies

8„+(t)=E„+=n+ —,
'

(t)u„(x;8,$) (5.6)

=0,
A '= A (x;r, e, p)

=rg(x;e, y)a„g '(x;e, y)

i (1—cose) —since

since'" ~' i (1—cose—)

whereO~r ~1, 0&0~m, 0~/~2', and

(5.1)
and actions

L = g (ig„* Q„E„P„*Q„)+BA—e+~~
n, a

with

(5.7)

Inane n, ann,a,
Inserting (5.6) into the Lagrangian (5.3) (with r= 1 fixed)
we get

g (x;8,$)=e ' e" (5.2)

with n=(sinesine, sinecosg, cose).
At r= 1 the set of gauge fields 3 (x;1,0,$)—:3 (x;0,$)

We=i J dx f (x;8,$)ac/(x;0, $),
a,=t jdx y'(x;e, y)a, q(x;e, y) .

(5.8)



E. GOZZI, D. ROHRLICH, AND %. D. THACKER 42

Taking then the exterior derivative 5—=d88&+dP8& of
the one-form

A =Asd8+A~dg

=i f dx g (x;8,$)5$(x;8,$) (5.9)

tv=i f dx 5$ (x;8,$) h5$(x;8, $)

=-,'sin8d8hdp g ( I„,+I„)—. (5.10)

This is the field of a magnetic monopole" in parameter
space (r, 8,$). Each mode P„+ contributes a monopole
charge of ,'I„+ while —ea—ch mode 1T„contributes a
charge 2I„. If we use the semiclassical quantization
condition (4.33) to make the transition to the quantum
theory, all of the terms in (5.10) will cancel in pairs ex-
cept for the n =0 terms which combine to give

~v = ——sin 8 d 8 h d P (quantum ) .
2

(5.1 1)

Thus the two levels which cross at zero energy when
r =

—,', 0=m are the sole contributions to the anomalous
symplectic form after the semiclassical quantization con-
dition has been invoked. Note that these "zero-modes, "
at the quantum level, are the origin of the anomaly ac-
cording to the analysis contained in Refs. 1, 20, and 21.

VI. CONCLUSIONS

We have seen in this paper how the influence of the
fast fermionic variables, when they are averaged, remains
in the effective theory for the slow bosonic variables. The

and adiabatically averaging, yields the anomalous sym-
plectic form.

There is a subtlety here: note that the normal modes
1(t„+ and 1T„+, have the same frequency. This means
that in the adiabatic average (which is really a time aver-
age) it happens that

f dt exp{i [8„+(t)—8„+, (t)]{NO

and there should be mixing between the degenerate
modes. However, it turns out that for the choice of
eigenstates (5.6), the matrix elements

(n+1, ;8—,y~5~n, +;8,y)

and

(n, +;8,$~5 n +1,—;8,y)

vanish for all n due to an uncanceled exponential factor
e' —"' which gives zero when integrated. This would not
be true for other choices of eigenstates, but the point is
that it is possible to choose normal modes which do not
mix under adiabatic transport on the sphere r=1. Using
(5.5) and (5.6) we therefore obtain

effective theory is not what it would be starting from bo-
sonic variables alone. In the bosonic theory without fer-
mions the gauge symmetry is realized by a globally Ham-
iltonian action on the phase space which admits a como-
ment. In the effective theory, on the other hand, the
Hamiltonian action of the gauge symmetry does not ad-
mit a comornent, as can be seen from Eq. (4.28). The
Poisson brackets between the generators of the two Lie-
algebra elements are not equal to the generator corre-
sponding to the commutator of those elements. If U'1',

p=1,2 are two Lie-algebra elements, as in Eq. (4.29), and
G(u'~')= f v'~'D6' are the corresponding generators of
the Hamiltonian action, then {G(v'"),G(u' ')]
—G([u'", v' ']) is a two-cocycle given by (4.30). If the
cohomology group 0 (9) is nontrivial, the obstruction
(4.30) to a group action, which admits a comoment, can-
not be removed. Then the generators give a representa-
tion of an extension of Q. At the quantum level this
means that the group of gauge symmetries is realized pro-
jectively and we have an anomaly. We have somehow
an advance warning at the classical level that something
is likely to go wrong when we quantize the theory. Nor-
mally in classical mechanics we are not concerned with
global effects that are crucial ingredients for anomalies:
Hannay's angle provides such a global detector of the
classical phase space of the slow variables. In quantum
mechanics, instead, we have naturally a global detector
and that is the wave function.

The above conclusion depends on an essential assump-
tion that we have made about putting a low bound on the
energy. This assumption may seem artificial, yet without
it the classical theory has runaway solutions. We have
chosen a polarization so as to bound the energy below.
Nevertheless it is clear that this ambiguity arises only in
the formulation of the theory in terms of Grassmann
variables. It would be interesting to see what would hap-
pen in a classical version of the theory where the fer-
mions are represented by ordinary variables. For a
(1+1)-dimensional field theory, such a version arises in a
path integral constructed from coherent states of the
relevant Kac-Moody algebra. The resulting Lagrangian
always contains a Wess-Zurnino term for its kinetic part.
It is nothing else than the Berry phase of the Fock-space
states. It is thus clear that the same symplectic form is
obtained as the one in this paper. The energies are posi-
tive by construction (since one starts from the states of
the Pock space). Thus the polarization we have chosen
really appears as the correct classical version for the stan-
dard quantum theory and its negative-energy sea.
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APPENDIX

The Hamiltonian corresponding to (4.14) is

2

&= g E„Q„*Q„+f dx — (P' A—')(P'& A—'&)

n

Fa Fajk
Jk

from which we derive the equations of motion

(Al)

Equation (A5) is equivalent to

F'& (x)+A "(x)1

g
2

6E„
g*g + D' F "(x)

5A;(x) " g~

5Ak(y)+ f dy A "(y) . (AS)
5A '(x)

From Eqs. (A2) and (A3) we find, after some algebra, that

iE„—Q„ig'—fdx[P; A&—(x) jA'„& P

=iE„Q„+ig'g' fdxA"„(x)[P;(x)—A&(x)],

(A2)

(A3)

B,A' (&x) =i (E„E)A—'„& (x)1( „*p

+fdyA "(y)
5A&'(x)

We also have the identities

(E„E)(n—~5„~m & =(n~5„H~m &

(A9)

(A 10)

A;(x)= [&,A;(x)}= —g'[P&'(x) —A;(x)],
P "(x)=j&,P"(x)]

(A4) from which it follows that

i (E„E)A'„&—( x ) = ( n
~
5„, ,

H
~
m &A. (x) (A 1 1)

5E„(A)
g'g + D' F "(x)

A '(x) g

5Ak(y)
g2 f dy[Pb/c(y)~6/c(y)]

A '(x)
(A5)

where D' (x)=8 +f '"'A '(x) is the covariant derivative.
Equation (A4) is just the definition

and

5„E„(A)=(n~5„H~n &, (A12)

where 8=i ( V+ A) o is the first quantized Hamiltonian.
Thus we finally obtain

', D„F»(x)=q„*y.&, n~5„., P~m &

F'0(x) =g [P'(x) —A'(x)] = —A;(x) (A6) u„(x)iA, '0&u (x)

=J'&(x) . (A13)
since AD=0. From Eqs. (4.3) and (4.11) it is easily seen

that (A2) is equivalent to the Dirac equation Therefore Eqs. (A2), (A3), (A4), and (A5), are equivalent
to the standard equations of Yang-Mills theory with
matter fields.
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