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Solvable two-dimensional supersymmetric models and the supersymmetric Virasoro algebra
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The simplest extension of a variety of solvable two-dimensional models to supersymmetric models
is obtained and classical solutions are discussed. It is found that these supersymmetric models are
closely related.

I. INTRODUCTION

u(x)= g L e2m„" 4
(2)

We have shown in a previous work that various solv-
able two-dimensional (2D) models are closely related
among themselves. They can be obtained from the
Virasoro algebra, which specifies the Poisson brackets
(PB). The algebra constrains the dynamical variable (am-
plitude) of the systems, and it serves to specify its dynam-
ics through their nontrivial commutators with the Hamil-
tonian. ' Here we consider the simplest extension of these
classical 2D models to supersymmetric models and
obtain the PB of the superfields and their component
fields, and again verify that the corresponding supersym-
metric 2D models are closely related. The PB are expect-
ed to be useful in quantizing these models.

The guiding procedure is to extend an amplitude u that
satisfies the Korteweg —de Vries (KdV) equation, for ex-
ample, to a corresponding Grassmann-odd superfield
W= (+0u, where g is a one-component Majorana spinor
and fermionic partner of u. Introduce the superderiva-
tive D=t)a+08„(D =t}„)and the superdelta function
b(z —z') =(0—0')5(x —y ), where z =(x,0) and
z'=(y, 0'). The Virasoro algebra for the classical bosonic
systems is expressed in terms of the Poisson brackets

i {L„,L j =(n —m )L„+ + —,', c(n n)5„+—

where L„are the Virasoro generators and c is the central
charge that is put equal to 3/A. The Fourier-transform
field

therefore satisfies

{u (x), u (y) j
=

—,
' [ —5„,(x —y )+4u (x)5„(x—y)

+2u, (x)5(x —y)] . (3)

II. SUPERSYMMETRIC EQUATION OF MOTION

We recall that the KdV equation for the amplitude
u (x) follows from the evolution equation

u, = {u(x),H, j =u„,„—6uu, ,

provided

H&= — dy u y

(4)

The modus operandi is to write the PB of W=g+0u in
terms of supersymmetric quantities and adjust the
coeScients so that the PB of u Eq. (3) is obtained togeth-
er with the PB of {g(x),g(y)j and {g(x),u(y)j. The re-
sult is the supersymmetric Virasoro PB

The periodic boundary condition u(t, x+2m. )=u(t, x) is
imposed, and it is assumed that the amplitudes have con-
tinuous derivatives of any order.

In Sec. II, the superfields U for the supersymmetric
modified KdV (SMKdV) equation, 4 and S for the super-
symmetric sine-Gordon (SSG) equation, L for supersym-
metric Liouville (SL) equation, and V for the supersym-
metric nonlinear Schrodinger (SNLS} equations are intro-
duced, and their equations of motion are obtained. In
Sec. III, classical solutions are discussed, and comments
are given in Sec. IV.

{W( ), W( '}j= —,'{[—2D (z)+2D ( ') —D( )D( ')][W( )b( —'}]—D ( )b( —')
j

=
{g(x), g(y) j +0{u (x),((y) j

—0'{g(x), u(y) ] +00'{u (x), u (y) j,
{g(x),g(y) j

=
—,'(5, —u5),

{u(x),g(y) j
=

—,'(3(5„+(,5) .

The supersymmetric Hamiltonian of the SKDV model
can be written as

where fdz'= f o dy fd0' and f 0'd0'= l. We obtain,
with the aid of (3), (6), (7), and (8),

H= — DR' 8' z' dz'

= —f (u —g'~)dy, (8)

u, =
{u(x), H j

=u„,—6uu +3(g„

g, = {((x),H j =g„„—3ug„—3u„g,

(9)
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where the time is a bosonic parameter. The amplitudes
u (x) and g(x) are related to the superconformal genera-
tors L„and G, u is given in (2), and
g(x)=(4m) 'g G e ™.The set of Eqs. (9) and (10)
are invariant under the supersymmetric transformation
5u =g„, 5/= u, as they transform into each other.

In order to derive the SMKdV equation, let us intro-
duce a Grassmann-odd superfield u =P+Hp and define a
super-Miura transformation, in analogy to the bosonic
case

We define the even superfield of the supersymmetric
SG (SSG) equation

4 = ((512& sr ) + Hq =P'+ Hq,

qi =D@=q+ H$„' —=q+ Hp,
(24)

{U(z), 4(z') )
= —

—,'b, (z —z'), (25)

where q is an independent field. The Poisson brackets of
Uand 4 are

or

W=(DU) U+ U„,
with the aid of (16), (22), and the choices

(11)
{p(x ), q(y) I

= -,'5(x —y ),
(26)

g=pp+p. ,

u =p'+p„—pp„.

(12)

(13)

or

{p(x),p(y) )
=

—,'5„(x —y ),
{p(x), p(y) )

= —
—,'5(x —y),

{p(x),P(y) I =0,

{U(z), U(z') = 2Db, (z ——z'—) .

(14)

(15)

(16)

To determine the Poisson brackets of p and p, substitute
(12) and (13) in (6) and (7) and find

P„,= —sing, (28)

(29)

For the supersymmetric Liouville (SL) equation with

{p(x),q(y)I =0 .

For the SSG equation, we express H in terms of the
superfluid S=P+ H sing'(y):

Hso= —f (DS}S(z'}dz'

= —f [—,'(1 —cos2$') —
qq ]dy . (27)

The SSG equation is obtained from the evolution equa-
tion 4, = {+,Hso ] with the aid of (23) and (26):

Substitute (12) and (13) in (8) and get the Hamiltonian for
the SMKdV model:

L =q+Oe~, (30)

H= — p +py 3P +Py y

pPP„P—,P„ldy—. (17)

The equations of motion of the SMKdV model are ob-
tained from the evolution equation u, =

{u, H I with the
aid of (14)—(17):

p, = {p(x),H )

=p-. 6p'p" +3p.PP—.+3pPP..
P, = {P(x),H ] =P„„„3ppxP 3p P„—. —

(18)

(19)

p(x)= a„y;1

2 rr" (21}

Equations (18) and (19) are invariant under the supersym-
metric transformation 5p=px, 5p=p. Equations (18)
and (19) are expressible as

U, =B„„„U—3(B„U)(DU) —3(DU){B„(DU)I U . (20)

We next consider the sine-Gordon (SG) equation in the
light-cone frame and identify the field P of the SG equa-
tion as

the Hamiltonian is

HL = —f (DL)L(z'}dz'

= —f (e —qq~)dy . (31)

Similarly, the evolution equation 4, =
{O', HL I with the

aid of (23) and (26) leads to

y„,=e~,

qt =qx .

(32)

(33)

{p(x),p(y)) = —5„(x—y), (34)

and substitute p(x)=g„(x)+1/r (x), where p(x) is not
Hermitian in (34) and find the following PB consistent
with (34).

The equations for P and q of the SSG and the SL models
are decoupled by dint of (26). Equations (29) and (33)
mean that q is a function of the light-cone variable x + t.

In order to introduce the supersymmetric nonlinear
Schrodinger (SNLS) equation, we normalize the Poisson
brackets of p (x) in (14) with a factor of i,

then, from (14),

{p (x ), P(y ) )
= &n 5(x —y), — (22}

{g(x),g (x)) =—(x —y),

{1'(x),g(y) )
= {P (x),g (y)I

(35)

or generally

{p(x),P"(y) I
= v'n n p" '5(x —

y —
) .

=o, o&~ &2~.

We introduce the Grassmann-even superfield V=f+Hp
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and the Hamiltonian

H&
———4Re f (DN )N(z')dz',

where

N=DV+8i&K P =p+8(g„+i&K f ) .

(36)

(37)

g,
—g„„„+3u(,+3u /=0 .

We substitute, in a similar manner,

u =2i) sech(27)x + 8rt t ),
(= M2 i)sech(2 i)x +Sq t ),

(47)

The Re (real part) is required so that H~ conserves parti-
cle number, and E is a constant.

The Poisson brackets of the component field p are ob-
tained from the requirement

I V(x ), V (z') )
= Dh—(z —z'), (38)

that is,

into (46) and (47), and find that they are satisfied by dint
of M =0 again.

The classical solutions for the SSG, SL, and SNLS
equations are simple because the superfield component
boson and fermion fields decoupled and are well known.
The fermionic component p of the superfield of the SNLS

4i tequation V=P+8p given by p=2rt cosh(2')xe '" '

satisfies Eq. (43).

tp(x), p (y)) = ——&„(x—y), (39) IV. REMARKS

IW(x) p(y) I

Integration of (36) over 8' yields

HNL= 4f—(fyfy+KQ+ Q +pyp)dy .

(40)

(41)

The equations of motion of the SNLS model are obtained
from the evolution equation V, = I V, HNL I with the aid
of (35) and (39)

iq, +q„„—2K lql'q=o,

'Pr =Pxx

(42)

(43)

Equations (42) and (43) are decoupled because of the PB
(40).

III. SOLUTIONS

p p...+6p'p. —3p.PP. 3pP—P, =o—
P, —P„„„+3pP, +3pp„P=O .

(44)

(45)

We rewrite the SMKdV equations (18) and (19) and re-
gard all amplitudes as scalar functions:

We presented the simplest supersymmetric solvable 2D
models, which are all systematically related among them-
selves. This should provide a common ground for quanti-
zation of these models. The next natural extension is to
consider the even superfield of the type, for example, for
the SSG model,

@(x)=P(x )+i 8q(x)+ ,'i 88F(x—),

where (()(x) and F (x) are scalar fields, and q (x) is a two-
component column Majorana spinor. ' The situation be-
comes more complicated and quantization becomes more
diScult.

The Poisson brackets for the amplitudes for SKdV,
SMKdV, SSG, SL, and SNLS models may all be obtained
from the supersymmetries extension of the Virasoro alge-
bra. Furthermore, the Hamiltonians that yield the equa-
tions of motion via the evolution equation all have the
generic form f (DY) Y(z')dz', where Y is an appropriate
superfield. Thus all these supersymmetric models are
closely related and have a common origin. It is possible
that theories which differ only in their Lagrangians are in
fact different states of a single theory. "

u, —u „+6uu„—3g'„„=0, (46)

In order to solve (44) and (45), we substitute the super-
symmetric pair of trial functions' with an arbitrary con-
stant M (fermionic): p =2g sech( —2rtx Srt t ) and-
p=M2rtsech( —2rtx —Srt t) into (44) and (45), and find
that they are both satisfied with M =0. We next rewrite
the SKdV equations (9) and (10):
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