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Fermionized bosons and Szego's theorem
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It is discussed how the bosonic zero-mode operator q in two-dimensional quantum field theory
should be expressed in terms of fermion operators. Two expressions for q are proposed, one of
which is of a clear meaning and the other of a forrnal nature. The idea of the boson-fermion
correspondence is applied to prove simply Szego's theorem on an infinite Toeplitz determinant. It is
also seen that a fermion theoretical discussion of a special case of the Toeplitz determinant yields a
generalization of Szego's result.

I. INTRODUCTION

Recently, two-dimensional quantum field theory has
attracted much attention because of its possible applica-
tions to string theory and physics on the critical point
and of its mathematical interest. One of the most impor-
tant aspects of two-dimensional theories is the boson-
fermion correspondence a fermion field can be ex-
pressed as a function of a boson field, or Uice Uersa. Al-
though the original idea of bosons associated with fer-
mion fields can be traced back to more than fifty years
ago, the special role of lower-dimensional space-time has
been recognized only recently. In two-dimensional
space-time, the correspondence is exact: a fermion field
is realized by the Mandelstam exponentiation of a boson
field, while bosonic creation and annihilation operators
of oscillation modes are constructed through Tomonaga's
bilinear infinite sums of fermion operators. As for bo-
sonic zero-mode operators, there seems to remain a miss-
ing link. The operator q, which corresponds to the
center-of-mass coordinate of a bosonic string, has not
found its appropriate fermionic expression yet. One of
our purposes in this paper is to explore the expression of
q in terms of fermion operators. We shall propose two
expressions of q: one is not of a compact form but con-
venient for actual calculation, the other takes a compact
form but is rather formal.

The boson-fermion correspondence can also be regard-
ed as a convenient mathematical tool. Its usefulness is
evident ' in the construction of the v functions of the
Kadomtsev-Petviashvili hierarchy of soliton equations. '

It has also been applied to recover a purely mathematical
result in terms of the language of physics. It is well

known that an identity for Jacobi s elliptic theta func-
tions is derived if the partition functions of free, two-
dimensional bosonic and fermionic systems are equated.
Eguchi and Ooguri discussed that the boson-fermion
correspondence applied to fermion Green's functions for
a system on a Riemann surface yields Fay's addition
theorem on Riemann's theta functions. " Saito' pointed
out that Fay's theorem is also equivalent to Hirota's bi-
linear difference equation' of the above-mentioned ~
functions. These kinds of line of thought remind us of
the proofs of the Atiyah-Singer index theorem' ' and

II. FERMIONIZATION OF BOSONIC ZERO MODES

The boson-fermion correspondence is one of the most
remarkable aspects of two-dimensional quantum field
theory. It is widely accepted that various physical quan-
tities can be analyzed either from a bosonic or a fermion-
ic point of view. In this section, we discuss the
correspondence' between the R/2nZ-valued boson,
i.e., a troidally compactified bosonic string, and the com-
plex Neveu-Schwarz (NS) fermion. After briefly review-

ing the above correspondence and setting up notation in
Sec. II A, we argue in Sec. II B how bosonic zero modes
are fermionized.

A. Boson-fermion correspondence

The R /2trZ-valued boson field P(z) is defined by

a„
P(z) =q ip lnz+i —g z

EI EZ
n&0

(2.1)

the Morse inequality' in terms of supersymmetric quan-
tum mechanics supplemented by a path-integral tech-
nique. In this paper, we prove Szego's theorem on the
determinant of the Toeplitz matrix' ' which finds appli-
cations in several branches of mathematics. Although
the previously given proofs, analytic as well as probabili-
ty theoretic, of Szego's theorem are rather skillful and
lengthy, the proof aided by the boson-fermion correspon-
dence is simple enough at least for physicists.

This paper is organized as follows. In Sec. II, in order
to prepare formulas necessary for later discussions and to
fix notations, we briefly recapitulate the scheme of the
boson-fermion correspondence. In Sec. IIB, we discuss
how the bosonic zero-mode q should be constructed in
terms of fermionic operators. In Sec. III, we introduce
Szego's theorem on the Toeplitz determinant and prove it
with the help of boson-fermion correspondence. In Sec.
III C, we consider a special case of Szego's theorem and
find that a fermion theoretical argument leads us to a
conclusion stronger than the one obtained by classical
analysis. Section IV is devoted to a summary and the
Appendix is attached to explain some details of an equa-
tion in Sec. III.
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with the commutation relations

[q,p]=i, [a„,a ]=n5„+ o, 0 otherwise .

The boson Hilbert space B is given as

& = [lM)b](3I [Fock space] .

(2.2)

The energy-momentum tensor is defined by

7'(z)= — f*( )
—f( )

2 dz dz
(2.12a)

It is well known that the above energy-momentum tensor
can be rewritten in the Sugawara form

The zero-mode operators q,p and oscillation mode opera-
tors a„(n+0) act on [lM)b] and [Fock space], respec-
tively. The state lM )b is an eigenstate of p belonging to
the eigenvalue M:

plM &b =MIM &b, e "IM &b
= 1M+1&b, MEz . (2.3)

The [Fock space] is spanned by vectors

k, k&(a, ) '(a z)
' lvac), k(, kz, . . . ~0

T(z)s =
—,':J(z ):, , (2.12b)

q(z ) = .e r $(z l

where::, denotes the current normal ordering which
shifts J„(n ~ 0) to the right and J„(n & 0) to the left.

According to the standard bosonization scheme, '

fermionlike operators acting on B are constructed in the
following way:

with lvac) being defined by

a„ lvac) =0, n )0 . (2.4)

Z
tl=e'~e~ '"'exp

n

Z
—n

a „exp —g a„
n&1 n

We write lM ) bg lvac) as M, o) and call it the M vacu-
um.

On the other hand, the complex NS fermion is defined
qe( )

—.—(p(z).

(2.13a)

by
q(z) =

pEZ+—1

2

qe( ) y q
—p —(/2

pEZ+—1

2

(2.5)

=e '~e ~'"'exp a
n&1 n

Z
—n

X exp g a„
n&1 n

(2.13b)

with anticornmutation relations

[ P(z), g'( w) I
=—g (w /z )", 0 otherwise .

1

nE;Z

The Laurent expansion of (2.6}yields

[g„,g,* ) =5„+,o, 0 otherwise .

The fermion Fock space is spanned by vectors

(2.6)

(2.7}

where the subscript b indicates that these operators are
acting on B and::b is the usual normal ordering. It has
been established that the analogue of (2.6) and (2.7) holds
for 1((z)b, P*(z)b, (g„)b, and (g„')b, where (g„)b and
(g„*)b are defined as the coefficients of the Laurent expan-
sions of p(z)b and p'(z)b, respectively. According to
Eqs. (2.3) and (2.4), (g„)b and (1(t„')b, p) 0 annihilate the
bosonic zero vacuum:

P) Pp 2
(1(„),lo, o) =(q„*),lo, o&=0, »0. (2.14)

with the fermion vacuum lo) being defined by

q„lo)=q„*o&=o, p, &0.
The fermionic current is defined by

J(z)=:Q'(z)g(z): = g J„z
nEZ

(2.8)

(2.9)

Thus, the boson zero vacuum lo, o) corresponds to the
fermion vacuum lo) in (2.8). The current operator acting
on B is defined by

J(z)b = lim g*(w)bg(z)b— 1

W~Z W Z

where:: denotes fermion normal ordering. From (2.9),
we have

. d(t(z)
i =——y a„z

CtZ
(2.15)

J„= g g„*P„„, n WO,
)M&Z+—1

2

Jo= g (0' „0„0„4„*)-—-
p&0

These operators satisfy the commutation relations

[J„,J ]=n5„+

[J„,g(z)] = —z "g(z),

[J„,g*(z)]=z"g*(z) .

(2.10a)

(2.10b)

(2.11a)

(2.11b)

(2.11c)

where ao =p.
Conversely bosonlike operators on the fermion Fock

space (a„)~, are identified with fermionic current opera-
tors:

(a„)&=— fdz z":g*(z)f(z):=—J„, n EZ . (2.16)
1

2&l

Equation (2.11a) reproduces the analogue of (2.2) for
(a„)I. To our best knowledge, however, no appropriate
definition of q&, fermionization of q, has been given. In
the next subsection, we discuss how it can be attained.
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B. Construction of qf

One candidate for qf is

qf = fdz:g'(z)f(z):Inz1
(2. 17) + g*(z) g J„z

n=0
(2.21b)

since a heuristic and somewhat ambiguous calculation of
[qf pf] with pf= —Jo seems to give a desired result

[qf,pf]=i .If, however, we directly integrate the right-
hand side (RHS) of (2.17) by putting z =exp(i8),
0~ 0(2m, we obtain

It turns out that (2.21a) and (2.2lb) are equivalent to

1
qf = i g——(a„)f npf—

nEZ
n&0

(2.18)

P'-I" iez+ —'
2

+ & & 4A„*-pAp
~))"vez+ —'

2

which is obviously incompatible with [qf,pf]=i and

[qf, (a„)f]=0, nAO. Thus, we turn to seek an alterna-
tive expression for qf.

Simply multiplying Eqs. (2.13a) and (2.13b) by some in-
verse operators and fermionizing them, we are led to

Zn n

e f =exp g J „g(z)exp —g J„
n)l n n)1 n

v)0

P -)" veZ+ —'
2

+ X X &A'-p-A'.*
i ))"vCZ+—

2

(2.22a)

X exp( Jolnz ), (2.19a)
v)0

(2.22b)

n —n

e f =exp —g J „g'(z)exp g J„
n n

Xexp( —Jolnz) . (2.19b)

These operators satisfy the desired commutation relations

[e,J„]=e 5„0,

[e,J„]=—e 5„0 .

(2.20a)

(2.20b)

The undesirable feature of them is that the RHS's of
(2.19a) and (2.19b) contain the variable z, while the LHS's
do not. We see, however, in the following way that they
are in fact z independent. The z independence of the
RHS's of (2.19a) and (2.19b) (i.e., vanishing of their
derivative) requires the equations

gJ " ' P() qf- iMqf —(Mqf

iM, M
(2.23)

We find that (2.22a) and (2.22b) are identities of our fer-
mion system because they can be derived from (2.6) by
some manipulations. Thus (2.21a) and (2.21b) are also
identities of the fermion theory but not equations. So the
RHS's of (2.19a) and (2.19b) are automatically z indepen-
dent. We note that identities (2.21a) and (2.21b) are
equivalent to the relation T(z)= T(z)s. they are neces-
sary and sufficient to ensure T(z)=T(z)s. We see that
T(z) equals T(z)s by applying (2.21a) and (2.21b) to T(z)
given by (2.12a) and that the requirements
[P(w ), T(w)] =[1(j(w),T(z)s] and [g*(w), T(z)]
=[/'(w), T(z)s] yield (2.21a) and (2.21b), respectively.
The operator qf itself should be interpreted as the
Fourier series

—n —
1

n=0
(2.21a)

i Mqf —iMq
According to Eqs. (2.19a) and (2. 19b), e f and e
(M )0) are given by

iMqf
e

J
exp

n

M

Zk Z1 Z2
'

ZM
k=1

J„
X exp

n

M

exp Jo g lnzk
k=1

(2.24a)

e
—iMq J

exp
n

M

X zk 0 (zl)e (z2) ' ' ' 0 (zM)
k=1

co J
X exp

n

M

exp —Jo g 1nzl,
k=1

(2.24b)



42 FERMIONIZED BOSONS AND SZEGO'S THEOREM 2739

Recalling the z independence of above operators, we see
that these operators act on the fermion vacuum l0& as
follows:

1 —M+1/2 0 3/2—0 1/2—lO &z M & Oz

e l0&= l0&, M=0,
1 —

~
M

~
+ 1/2 0 3 /2 —P 1/2 l—0 & z

The state lM & defined above satisfies

iflM & =MlM &, e "/lM
&
= lM+1&,

(a„)flM & =0, n &0 .

(2.25)

(2.26)

Comparing (2.26) with (2.3) and (2.4), we see that lM &

corresponds to the bosonic M vacuum lM, O&. Equations
(2.25) and (2.26) are crucial for our discussions in the next
section.

Now we turn to seek a different expression for qf
which reveals another feature of qf. If we put zk in
(2.24a) as

X it'(zN+2) ' p(zM)T+S+, (2.27)

zk =exp[ xi+—2mik/(M+1)], k=1,2, . . . , M,
and consider the case M =2N +1 with N a positive in-

teger, we obtain

e' '/=cMS T y(z, ) . y(zN}y(1)

Since the above-mentioned infinite product of g(z) van-
ishes, it is appropriate to introduce a normalization fac-
tor. We have thus seen that a possible expression of
exp(iqf ) is given by

e 'f=—
exp ~, ~

=,z dz in/(z)
1

27Tl
L (2.33)

(
0 exp )()),

)

—,z dz)nd(z) —))
1

27Tl

This expression is of a formal nature since the clear
definitions of the fractional power and logarithm of nil-
potent fields ( I g(z) j =0) are yet to be given.

III. BOSONIZATION AND SZEGO'S THEOREM

In this section, we present a mathematical application
of the boson-fermion correspondence. We introduce
Szego's theorem' ' on determinants of the Toeplitz
matrices in Sec. III A and prove it in Sec. IIIB on the
basis of the boson-fermion correspondence. In Sec. III C
we investigate a special Toeplitz determinant through fer-
mion theoretical consideration and generalize the previ-
ously obtained result. '

z, ,z2, , zM. According to conventional terminology,
the latter quantity is called the geometric mean of fer-
mion fields on the unit circle and is expressed as

exp (2vri ) 'f
~,

~

1z 'dz 1ng(z)

CM
1 ~ k (k' &2N+1

(zk zk')
A. Szego's theorem and Kac's reinterpretation

= (2N+2) exp[m iN(N+ —,
'

)],I—1
+ e"P * g k (M + 1) +k(M+1)

k=1

(2.28)

(2.29) co c

C1 co

C M

C M+1

Szego*s theorem' ' concerns the distribution of ei-
genvalues of (M+ 1)X (M+ 1) Toeplitz matrix

00

S+ =exp T- g —J+„
1

n
(2.30)

Cp

(3.1)

where the fact zN+, =1 has been made use of. Recalling
that exp(iqf ) =S g(1)S+, we have

p(1)=T p( 1 ) j cM( —1) exp[ i (M —1—)qf ]

xf(zi) . $(zN)$(ZN+2) $(zM)l T+

Let the continuous function f(8) defined by

f(8)= g cue'
/= —x)

be positive for 0 & 0 & 2m. and satisfy the condition

(3.2)

(2.31)

If we let M get very large, T and T+ reduce to 1 as far
as we work in a subspace of the fermion Fock space
where the 1() „,p*, modes with )u, v&M are not excited.
In this sense, we write K1= e ' 1nf(9)d9, 1=0,+1,+2, . . . ,

2& 0
(3.4)

If'(~1)—f'(6)2)l &Kl(), —i)21, 0&&„()2&2~ (3.3)

with some constants K & 0 and 0 & a & 1. We define IK1 I

and G(f ) by

p(1)=))()(1) lim cM( —1) exp[ i(M —1)q—f] G(f)=e ' . (3.5)

X g(z 1 ) ' ' p(zN )g(zN+2) ' ' ' p(zM ) (2 32) Szego s theorem asserts that

A similar line of argument yields similar expressions for
f(z), g*(z) and products thereof. This observation indi-
cates that exp(iqf ) should be identified with the M~ ao

limit of the Mth root of the product of fermion fields at

detCMlim, =exp g 1K&K" [G(f )]
(3.6)

This theorem is proved, with the aid of Weierstrass's ap-
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proximation theorem, through skillful and lengthy discus-
sions. ' If f(8) in (3.6} is replaced by 1 gf—(H), then
detCM /[G(f )] +' is replaced by

M+-1 M+1e„(M)=—— g [A,, (M)]"— I f"(B)d8

(3.8)

det( 1 —gC~ )

, =exp 2 g —e„(M)P
[G(1 gf )]M+1

(3.7)
where A, (M), j=1,2, . . . , M+1, are the eigenvalues of
C~. Similarly, exp(QI", IKIK, ) is replaced by

exp g I J e ' in[1 —gf(8)]d8 J e" in[1 —gf(P)]dP =exp 2 g —d„g"
( ) 2K 0 27T 0

(3.9)

where [d„) are given by

di=0, (3.10)

/=1 m =1
(3.1 1)

Appealing to Szego's theorem, we obtain the relations p (3.19)

and

lim e„(M)=d„, n =2, 3,4, . . . ,
M~ oo

(3.12) Recalling the relation

Prob [Sk I ) X cl cl clk
11+12+ + Ik I

M+1
lim TrCM Ep =0,

M —+ oo 2' (3.13)
J

—i I9[f( g ) ]kd g2' 0
(3.20)

ProbIX~ =k
) =Prob[X~ = —k I =ck =c (3.14)

where Prob{X =k I denotes the probability that X, takes
the value k. For a probabilistic interpretation, ck should
be assumed to satisfy ck ~0, gk „ck=1. The relations
discussed below, however, hold valid without these re-
strictions. We define S„,p„, q„, and r„by

S„=X)+X2+ +X„, (3.15)

p„=Prob[S„=OIE [max(O, S„Sz, . . . , S„,}~S„=OI,

which involve much information on the distribution of
the eigen values of the infinite Toeplitz matrix
limM „CM

We now consider a set of independent, identically dis-
tributed, random variables [X,,X2, . . . , X„I capable of
integral values only. We assume that

it is easy to understand that d„equals q„. Kac gave an
independent argument showing'

lim e„(M)=r„
M~ oo

(3.21)

B. Derivation of Szego's theorem
in terms of the boson-fermion correspondence

and regarded the purely probabilistic relation p„=q„as
the reinterpretation of Szego's theorem. He could also
generalize Szego's result and obtained a formula to calcu-
late the Fredholm determinant of some class of integral
equations. ' It should be noted that Szego's result has
been utilized to calculate matrix elements of the fermion-
ic many-body problem. '

n —1

q„= g —g ProbISk =I,S„=O)

and

(3.16)

(3.17)

As noted in the previous subsection, both the analytic
and the probabilistic proofs of Szego's theorem are rather
involved. ' ' We are to give a simple proof of it on the
basis of the boson-fermion correspondence. We consider
a fermionic matrix element

Max(0, 1&, I &
+ I2, . . . , I

&
+.. . + I„)

Il +12+.. . +1„=0
(3.22)

XCI CI
. .

CI
1 2 n

(3 lg) where A, 0'~, and 'PM are defined by

where E [a~PI denotes the expectation value of a under
the condition P. Making use of a curious combinatorial
identity of Hunt and Dyson, it can be shown that' '

A =A)A2= A2A, ,

A, =exp( —KOJO),

(3.23)

(3.24)
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A2=exp I lnf(0)J(8)d0
2K 0

F=exp —exp g K„J„exp g K„J„
n(02 n)0

F
exp —exp —g K„J„

2 (0

X 0 exp — K„J„4'MA2+M 0
n &0

From (3.5),

(3.29)

(3.30)

Sec. III A. Noticing (OlJ„=O, n (0 and (A, ) 'g„A,
=exP( —Ko)1J/„, we obtain

F/2
—™+1)KOIM=e e

X exp —g K„J„
n)0

F= g nK„K
n &0

+M 01/243/2 4M+1/2 &

+M 0—M —1/2~ —M+1/2 P 1/2 '—

(3.25)

(3.26)

(3.27)

(3.28)

(Olexp —g K„J„'A2=exp ——(Ol
F

n&0

and Wick's theorem, we obtain

detCM
IM

[G(f )]M+1

(3.31)

(3.32)

Here J(8) and J„are the current operators discussed in

Sec. II and {K1) and f(0) are those introduced in
the M~ ~ limit of which is equal to the LHS of (3.6).
IM can be written as

IM=e 0 exp — Kn Jn +M xp Kn n p Kn n +M
n)0 n&0 n&0

(3.33)

Observing that (see the Appendix)

lim (Olexp —g K„J„%'M= lim (Ol%'M,
M M

n &0

we are led to

lir» I&&=e li&&& 0 &p&&e&p z E„eJ&zpii'„J„'p i&) &. &
M M~ oo

n &0 n&0

(3.34)

(3.35)

The simplest way to calculate the matrix element on the RHS of (3.35) is to bosonize it:

0 1I/Mexp g K„J„exp g K„J„%M 0 = 0, —M —1 exp —g K„a„exp —g K„a„ —M —1,0 =1,
n&0 n&0 n &0 n &0

(3.36)

where we have made use of (0, —M —1 la „=a„
l

—M —1,0) =0, n )0 and (2.25). We thus obtain

11m IM =e
M~ oo

(3.37)

The above result, together with (3.32), completes the proof of Szego s theorem. We note that the above discussion indi-

cates

e = lim exp g K„J„WM*lO)
M~ oo

n &0

= lim exp —g a„K„ l

—M, O)
M~ oo

n &0

= lim
M

1 2 1 2, f(9') dg(61)
:exp d 0 d t9'ln2' o 2m. o f(0) d8

(3.38)

where::& denotes bosonic normal ordering. We note
that some care must be taken to apply the above result to
physics on the Dirac sea &I/*„l0) since %M l0) with M
large and the Dirac sea belong to different equivalence
classes of Hilbert space.

C. A special case

We here consider the special case that f(H) is given by

f(&)=— 2, z=e', (3 39)
1

ly(z„—z)(z, —z) . (z —z)l''
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lz; I », l =o, 1, p

zi +zj &
k +J

(3.40)

(3.41)

where y, zo,z„.. . , zp are complex numbers satisfying In the following, we shall discuss (3.43} in a purely fer-
mion theoretical language and obtain a somewhat gen-
eralized result.

We first note

and p is an arbitrary non-negative integer. In this case,
K„'s are calculated to be ,dzz" ' 'g(z),

vE Z+ 1/2
(3.45)

IC„=—g (z, ) "=(E „)*, n =1,2, 3, . . . ,
P

n,.

(3.42)

where g(z) is defined by

2»lyzozl ' '
zp I

.

An interesting fact is that detCM/[G(f)1 +' for this
case is independent of M if M is larger than or equal to p.
This fact was proved with the help of ingenious inequali-
ties among the Toeplitz determinants. ' Translated to
our words, it can be expressed as

g(z) =
P

yy" Q (z; —z)(z,' —z ')
i=0

=f((9), z =e'

(3.46)

lyz, z, z, l' &olz-'e„Xe„"lo)

=lyz, z, .
Z, l2P&olz-'e, )e,'lo), M p, (3.43)

For v~ p, +p, the integral on the RHS of (3.45) is given
by the sum of residues at z =(z,') ', i =0, 1, . . . , p, while
for v~p+p+1 the residue at z=O contributes. Then,
we have

where )l, is given by A2 in (3.25) with f(8) specified to
(3.39):

'Q„A, = A„+B„, (3.47}
00

A, =exp
m=1 "

P

g (z, )
" J„

i=0

P
+ g(z ) "J

i=0

P
A„= g a, (p)g[(z ) '],

i=0

b„(P)l)/„,
v» p+p+1

(3.48)

(3.49)

—2Jolnl yzo zp l

~ . (3.44} where a;(p} and b„(p) are given by

a;(p)= „(z )P " ' g (1—z;*zJ) g (z,' —z,')y'r' j =0 jwi

1 1 d g (z, —z)(zz,*—1)b„(p)=

Especially we have

bp+p+l(i )=( 1)"l(y—y'zozl " zp)
l

and

z=O, k=v —P —P &1

(3.50)

(3.51)

(3.52)

(z,')"a, (tu) =(z,')"a;(v) .

For p» M —p+ —,', B„c osnists of f, with v» M+ —,'. Then we have

1 M —p + l /A'M —p + 3/2
' '

PM + l /2~+M l
0 ) = A M —p + l /2 A M —p + 3/2

' '

Recalling that [f(z)I2=0, we find

+M~+M l0 ~ ~ Pl/2 4/2 PM —p —l/2~~ ((M —p+ l/2 ~M l/2~+M l0 ~

l /2 3/2 M —p —l /2 M —p + l /2 A M + l /2pM

(3.53)

(3.54)

—~@~M—p ——I I

2 2

( Pp 3 2+4p/5 2+/4M+I/2 (|i—M —l/2 0—p —3/2}+p l

From Eqs. (3.52), (3.53},and (3.55), we obtain

(3.55)
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+M~+hflo& —Iyzozi ' ' ' z
I

~ &/2 ~3/2 ~p+1/2+@ Io&

=lyz, z, z, l'&-' a 'e, ae,* o& .

Now, instead of (3.43), we have

z, l' &+l7 '+M7+Mlo&=lyzo z, l"&+l~ '+,~+,*Io&, ~ p,

(3.56)

(3.57)

where & 4I is an arbitrary state vector. We realize that
the fermionic algorithm leads us to (3.56) or (3.57) which
is a generalization of (3.43).

IV. SUMMARY

In Sec. II in order to complete the correspondence be-
tween bosons and fermions in two-dimensional space-
time, we sought the fermionized expression qf of the bo-
sonic zero-mode operator q. It turned out that no simple
form of qf bilinear in fermion fields exists. The expres-
sion (2.19) with J„given by (2.10) is seemingly complicat-
ed but does not result in any inconvenience for actual cal-
culation. Its apparent z dependence disappears thanks to
the identity (2.21) which is inherent in the theory and
equivalent to the property that the energy-momentum
tensor (2.12a) can be written in the Sugawara form
(2.12b). By the alternative expression (2.32) of qf, qf can
be formally related to the geometric mean of the fermion
field. We note, however, that a clear meaning of lnttt(z)
with [1((z)} =0 is yet to be sought.

In Sec. III, we applied the boson-fermion correspon-
dence to prove a mathematical theorem of Szego. Our

proof was much simpler, at least for physicists, than
those given previously. We could also derive a somewhat
generalized version of a relation among special Toeplitz
matrices. We see that bosonization technique is helpful
because it automatically takes cumbersome Schwinger
terms in the fermion theory into account.
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APPENDIX

p, EZ+—1

2

=&ol y y„' A„e =o
0&v&n

for 0(n M+1 and that

(A 1)

In this appendix, we prove (3.36). We begin with ob-
serving

0&v&n p'E Z+—I

2

4„*t}/ -„'pM

=&ol
0&v&n

0:-A'.— g g 4." A'„'4A' „-pM =o-
0&v& n

2

(A2)

for n, m &O, n+m M+1. Similarly, we have

&0 J„J„J„+M=0, (A3)

for n, , n2, . . . , n~ & 0, n, +n2+ +n~ M+ 1. Then we obtain

exp —& K„J„—1

n)0

where & &M I
is defined by

(A4)

I=&ol g, g sc„
1V =1 '

nl +no+ . . +n&, )M+1

Noticing that WM%'M is a projection operator, we have

&e Ie ~* Ie &~&a Ie

On the other hand, & 4~ I &M & is given by

(A5)

(A6)

ao co
( 1)N+L

&&'Ml@M&= g &
Ã=1L =1

X X
nl+ - +n~) M+111+.. .

1L )M+1
sc„.z„sc, sc, &olJ„. J„J, . J, lo&.

(A7)



MINORU HIRAYAMA AND YOSHIHIRO HORIKAWA

Bosonizing the RHS of (A7), we obtain

n, I &„,I'n, I&„ I' - . . n,, I &„ I-' .
N=l '

n& )0 n& &0
n

1
+. . . +- n~ )M+ 1

Cotnparing the last expression with a convergent expansion of exp(F) —1, we obtain

lim (tpstI&M)=0.
M

From Eqs. (A4), (A6), and (A9), we conclude (3.36).
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