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It is shown for a wide class of systems in the framework of the total Hamiltonian procedure that
all first-class constraints generate canonical transformations connecting physically equivalent states.
It occurs whenever the constraints arising in the Dirac algorithm are effective when considered in
the functional form as they appear in the consistency conditions. The property of hereditary sepa-
ration between first- and second-class constraints also follows from the above condition. General
Poisson-brackets relations among constraints in the representation used here are also obtained. The
sources of anomalies in the hereditary property reported in the literature are identified.

I. INTRODUCTION

Nowadays, the relevance of the Dirac canonical pro-
cedure for modern quantum field theory is widely recog-
nized. ' Summarizing the results of the previous years,
it can be said that this method furnishes the classical
basis for a powerful Becchi-Rouet-Stora-Tyutin —Batalin-
Fradkin-Vilkovisky (BRST-BFV) gauge field quantization
procedure. This development represents the most elegant
and general way of quantizing gauge or any field
theory.

Many investigations have been dedicated to clarifying
the general structure of constrained Hamiltonian systems
at the classical level. " At present many points have
been well understood. However, in the literature there
exists some unanswered questions. ' ' ' A particular
question is connected with whether the so-called first-
class constraints are always generators of canonical trans-
formations mapping physical states into equivalent ones
(Dirac's conjecture). This work is mainly devoted to this
problem. We want to remark that in Ref. 2 Gitman and
Tyutin argued a solution of this problem in an affirmative
way. Their approach is based on the specific recourse of
embedding the solutions of the total Hamiltonian canoni-
cal procedure in a wider problem. In this approach addi-
tional Lagrange multipliers for all the constraints appear-
ing in the system are introduced.

In this paper we present a proof of the conjecture by
working always in the context of the total Harniltonian
procedure. The meaning of the equivalence accepted by
us is the same as the one used by Dirac two points in
phase space (states) are considered as equivalent when
they evolve from another point in a previous instant of
time according to two total Hamiltonians coming from
the same Lagrange system; i.e., they differ at most in the
Lagrange multipliers of the primary first-class con-
straints. This work constitutes a generalization of the ar-
gumentation and results of Ref. 14 to include second-
class as well as first-class constraints. The case in which

only first-class constraints are present was also discussed
in Refs. 12 and 13.

The results of this paper clarify to some extent the con-
ditions which must obey the constraints appearing in the
Dirac algorithm in order to prove the validity of the
Dirac conjecture. A main requirement is to satisfy the
conditions of effectiveness enunciated in Sec. II. The ex-
amples given in Ref. 15 showing the breakdown of
Dirac's conjecture are related to the absence of
effectiveness properties in these cases.

Section II is dedicated to showing the special structure
of the set of constraints which is the central technical
difficulty in showing the conjecture. After that, in Sec.
III the canonical transformation generators mapping
physical states into physically equivalent ones are con-
structed. This result opens the way to the proof of the
conjecture which is the objective of Sec. VI. In Appen-
dixes A—C some auxiliary theorems and other results are
argued.

II. SEPARATION PROPERTIES
BETWEEN FIRST- AND SECOND-CLASS

CONSTRAINTS

This section, as was mentioned in the Introduction, is
devoted to deducing the particular structure of the set of
constraints which is very important in obtaining the ex-
pected results. A similar property was more directly
found when there were only first-class constraints. '

Here the derivation is technically more difficult. Some of
the basic results implying a long algebraic development
will be deferred to a few appendixes.

We start by reviewing the basic elements of Dirac's to-
tal Hamiltonian formalism as developed by Batlle,
Gomis, Pons, and Roman-Roy. " Their presentation and
results gave an optimal starting basis for the discussion in
this section. Next, a modification of the set of constraints
appearing in their algorithm is introduced. This will be
needed for the proof of the conjecture in the following
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sections. General commutation relations for the modified
set of constraints are obtained. The modified set of con-
straints retains the property that all the constraints ob-
tained from the primary first-class ones by performing
successive Poisson brackets with the so-called 0' Hamil-
tonian are also first class. The general commutation rela-
tions allow us, in addition, to show that the determinant
of the matrix formed with the Poisson brackets among all
the second-class constraints is different from zero. This
guarantees that no linear combination of second-class
constraints turns into a first-class one.

The mechanical state of a system satisfies the following
canonical equations of motion in the total Hamiltonian
approach:"

q,
= Iq, , Hr I, (1)

p;=tp; Hr) i=1, . . . , n,

The matrix C' ' is defined as

c„"„(qp}=I4."'(q p»0„"(q p) I . (10)

The Hamiltonian H' will be a recurrent element in the
discussion below. The following Poisson-brackets rela-
tions were also obtained in Ref. 11:

It should be remarked that o. , are functions which

coincide with the Lag range multipliers

(k =0, . . . ,f) on the final manifold M&, that is, those
which are fully determined by the Dirac algorithm. The
multipliers A,„remain completely undetermined. "

Pf
The total Hamiltonian may be rewritten as

H =H'+X y"',T Pf Pf

(12)

()I)( '(q, p)=0, p= 1, . . . , m, ,

where the total Hamiltonian HT is given as

(3)
Iy(i) H((+1)) 0 —P

I

(13}

Hr(q, p, A, ) =H, (q,p)+ A,„(I)„'(q,p), (4)

and (1„' are primary constraints. The corresponding
Lagrange multipliers are denoted by A.„. A,„are functions
of time and the Poisson brackets (PB} is defined as usual.
Finally the Hamiltonian H, (q, p) is any function of (q,p),
satisfying

and

'H +")=0
f

Iy(k) y(0)
I
—0 Iy(k) y(0)) —p

Mk

detl I $„$„I I
W 0 k =0 1 f .

(14)

(15)

(16)

H, q, =q; L(q, q) . —BL . BL
(5)

Bj Bq;

Following the procedure developed in Ref. 11 it is pos-
sible to find the complete set of constraints of the system
in the form

primary constraints,
Po P1 P2 Pf Pf

secondary constraints,

y(2) . . . y(2)y(2)
p2 pf Pf

f ary constraints . -
pf Pf

(6)

In our notation ()))„') are all i-ary constraints. The P„"
I

are all i-ary constraints except p', ). p(') (j ~ i ) are all i-ary
p,. Pj

constraints except P ", (I)", (p—:p ) ).

The manifold in the phase space which is defined by
the annulation of all the constraints (6) up to superindex
k will be denoted as MI, .

The explicit form of the constraints (6) is defined in the
following iterative way:"

y(k) Iy(k
—)) H(k)) (7)

(9)

The k-ary Hamiltonian H,' ' is defined also iteratively
through

H,'"'=H,' "+, (q,p)P(, ' k =1, . . . ,f +1 (8)

with H,' '=H, (q,p) and the functions a, given as

(qp)(1)k(C(k)) —I IH(k)(()(k~)
I

Let us introduce now a new collection of constraints
also in an iterative way:

+(0) y(0)
P —l P —l

+(k) {+(k—1) Hi
l

k
P —l P —l

(17)

~(2). . . ~(2)~(2)
P2 Pf Pf

. . . +(f)+(f)
Pf Pf

Let us define now a set of effective constraints P, as one
for which all the constraints have nonvanishing gradients
BP;/Bx (x, =q, ,x„+,=pj,j =1, . . . , n) and all the gra-
dients are linearly independent at any point of Mf.

It may occur, for example, that some of the constraint
hypersurfaces in spite of reducing actually the dimen-
sionality of the initial manifold have common tangent
spaces. An example of this situation corresponds to the
intersection of a cylinder with any of its tangential
planes. In this case these constraints have nonvanishing
gradients but they are not linearly independent in the
final manifold. Therefore they are not effective.

Both sets of constraints ((l)) and IyI are equivalent.
That is, the manifold MI determined by the annulation of
the constraints P is the same as determined by the vanish-
ing of the functions y. The proof of this statement is
given in Appendix A.

We have also the following structure for the new set of
constraints:

(0) (0) (0) . . . (0) (0)
PO Pl P2 Pf Pf '

(18)
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Ix(k) x(0)
] p Ix(k) x(0)I

~k ~k —l M ~k —I ~k Mk k

detlIx'"', x"'l l«
k

(19)

(20)

Relations {19)and (20) are not enough to prove the sep-
aration property between first- and second-class con-
straints. A sufficient generalization of the PB relations
(19) and (20) for further discussion is given by the follow-
ing theorem.

Theorem. All the constraints X„'"' (k =0, 1, . . . ,f))"k+t —
&

PB commute with all the constraints g„" except the

and y", which obey
~k+t i k+t

An important assumption in this work will be that the
set of actual constraints obtained up to any stage of the
Dirac algorithm is effective in the exact functional way
that they appear from the consistency conditions. Of
course, we do not consider the possible identities that can
appear in the Dirac algorithm as actual constraints.

It is also useful to state that in Ref. 11 and in this pa-
per another implicit assumption is that the determinants
of all the C'"' matrices in (9) retain their properties of be-
ing different from zero through all the stages of the Dirac
algorithm. Those cases in which the determinants do not
have the property mentioned above are related possibly
to the discussion provided in Ref. 10.

In Appendix A it is also shown that the g satisfy the
same PB relations among themselves which obey (I}; that
is,

jecture.
First, it must be noticed that all g' ' are first-class con-

straints. This is a direct consequence of the theorem by
putting i =0 and any value of k. Then

[X(k) X(0)
] p k p

k —l f
But, as the Hamiltonian H' is a first-class function' the

PB of H' with any first-class constraints will be first
class. ' Then, the subfamily of constraints g given as

x(0)—y(0)
Pf f

(23)
x(k) —Ix(k —)) H~]

are all first-class restrictions.
Now, it is possible to demonstrate that the set (23) in-

cludes all the first-class constraints of the system. For
this purpose in Appendix C we show that the deter-
minant of the matrix formed by the PB among all the
constraints not included in (23) is different from zero in
Aff . This fact implies that no linear combination of the
constraints which are not included in (23) can be first
class. Provided that this linear combination can exist,
the coefficients of such a combination will form a null
vector of the above-mentioned matrix for the points
(q,p)EM&. The obtainment of the hereditary structure
(23) for the set of first-class constraints was the main ob-
jective of this section.

III. GENERATORS WHICH MAP SOLUTIONS
INTO SOLUTIONS

d«l Ix "',x"'
~k+t ~k+t Mk4+t

wheni ~k, and

i ~f—k (for even f),
i~f —k —1 (for odd f) .

In addition

(21)

(22)

g'„+)=
I g'„,H'], n =0, 1, . . . , r (a) —1 . (24)

Let us denote as g' all the constraints of the system
[i =1, . . .m;q =0, . . . , s(i)]. We have also that

In this section we introduce new nomenclature for the
constraints. We denote as f'„ the first-class constraints
{a=1, . . . , rn —r;n =0, . . . , r(a)), and p, ((I},=$0) the
primary first-class constraints. We have (as was proved
in Sec. II)

The proof of the theorem is given in Appendix B.
The results reviewed above are sufficient to prove the

hereditary property of the first-class constraints which is
so decisive in demonstrating the truth of the Dirac con-

I

Xq+) = IX~,H'I, q =0, . . . , s(i) 1. — (25)

Let m be the number of all primary constraints and let
m —r be the number of all primary first-class constraints.

We may also write the relations

m —r r(a') m s(i) m s(i')
I @:(.) '] = & &;('.). {q p)C {qp)+ g g g g G;(.),", (q p)x', {q,p)x,'(q p),

a'=1 n'=0 i =1 q =Oi'=1 q'=0
m s(i')

[X,'(;),H']= y y J,'(;)j (q,p)Xq(q, p)
i'=1 q'=0

(26)

(27)

because IX,'(, ),H'I must vanish in the final manifold M&
defined by all the constraints, and I g'„(,),H'] is in addi-
tion a first-class function.

Let [q (t),p (t), A(t)] be an extremal of the action SD ..
P

t2

SD[q,p, A, ]=f [p, .q, H, (q,p) —
A, ,X0]dt, — (28)

where q, p, A, are independent variables.
This trajectory is a solution of the equations of motion

(29)

(30)
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xo(q p)=o (31) A,,'(t) = A,, (t)+en), '(q(t), p (t), t ) (36)

with the total Hamiltonian

HT '(q, p, t) =H'(q, p)+A,., (t)i', (q,p) . (32)

which also is an extremal of the action SD and satisfies
the equations of motion with the Hamiltonian HT '-.

Note that in (32) P, are all primary first-class con-
straints and these A,, their undetermined Lagrange multi-
pliers.

Let us consider now a function g( '(q, p, t) which is sup-
posed to be a first-class function and satisfies the relation

().)

I 1("),H') +X.(t) I 1("),y, ) +
at

H,"'(q,p, t) =H,"'(q,p, t)

g I,(k)

(q p t)+ [
q(iL) H(il)).

= H'( qp) +A,,'(t)P, (q,p) . (37)

= g co(,")(q,p, t)P, (q,p), (33)

(A. )

q,'(t) =q, (t)+e (q(t), p (t), t ),
Bp;

g@(k)
p;(t)=p;(t) —~ (q(t),p(t), t),

(34)

(35)

where m,
' ' are some functions of q, p, and t. Then the

infinitesimal canonical transformation generated by f'"'
maps the solution [q (t),p (t), i((t)] into another trajectory
[q'(t), p'(t), A, '(t) ]:

The condition of f' ' being a first-class function guaran-
tees that 1(

' generates transformations of the points
(q,p) of Mf into points (q', p') of the same manifold.
Condition (33) furnishes that the canonical transforma-
tion of the total Hamiltonian equations of motion brings
about the same total Hamiltonian equations of motion in
which only the Lagrange multipliers are changed.

We will prove the existence of the function g( '. For
this purpose let us consider g' ' expressed by a linear
combination of all the first-class constraints plus another
linear combination of terms quadratic in all the con-
straints of the system. That is,

m —r r(a) n s(i) n s(i')
p' '(q, p, t)= g g c' '„(q,p, t)g'„(q,p)+ g g g g D' '" (q,p, t)x'(q, p)xq(q, p) . (38)

a=1 n=0 i =1 q =0 i'=1 q'=0

Selecting g' ' in the form (38) automatically assures that (((
' is a first-class function. It remains, then, to prove that the

coefficients C ' and D' ' in (38) can always be selected in order to satisfy (33). Given that the PB between two first-
class functions is first class and that H' is a first-class function we have that If'„,H''I and If'„,i', ) are first-class func-
tions and vanish in Mf. Then they can be expressed as linear combinations of the first-class constraints plus linear com-
binations of terms quadratic in all the constraints. Thus, in an explicit way we have

((it'„,H,'"I =
I q'„,H'I +A,.(t) [f'„,P. )

m —r r(a') m s(i) m s(i)'

g f'"'„'„(q,p, t)f'„(q,p)+ g g g g g' '.,','(q, p, t)x,'(q p)x', (q p) . (39)
a'=1 n'=0 i =1 q =0i'=1 q'=0

Because of the consistency conditions for all the constraints it is possible to write

m s(i')

I x,' HT"!= X g J"",', (q p t)x,' (q,p) . (40)
i'=1 q'=0

If we substitute (38) into (33) and use relations (39) and (40) we find that the function g' ' exists if the coefficients C' '

and D' ' satisfy the following system of equations:

ac"'
n

at

m —r r(a')

I
(iL)Q (k)

] g g C(k)a f a Q

a'=1 n'=0
a =1, . . . , m —r, n =1, . . . , r(a), (41)

m —r r(a)
+D(k)ii ) ~ ~ C(A. )a (k)ai i

qq n nqq
a=1 n=0

m s(i)«(D(A)ii H(). )( ~ ~ g() )ii (D(k)ii'
qq T ~ ~ ~ qq' qqi=lq=0

i =1, . . . , m, q=0, , s(i), i'=1, . . . , m, q'=0, . . . , s(i) . (42)
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We see that (41) and (42) is a system of first-order par-
tial differential equations which can be rewritten in a
compact way as

8ll BQ BQ=F q p. .
p

(43)

IV. DIRAC'S CONJECTURE

This section is devoted to present the proof of Dirac's
conjecture for a general class of systems obeying our
basic assumptions.

Considering a trajectory [q(t),p(t), A(t)] being an ex-
tremal of the equations of motion Eqs. (29)—(31), let us
define the corresponding trajectory in the phase space for
a particular set of )((t) by rt) (t) =[q (t),p (t)].

Dirac showed that all the primary first-class con-
straints are generators of gauge transformations of the
Hamiltonian problem with HT. ' The conjecture states
that this property is also valid for all first-class con-
straints.

Let us consider a point (qo,po) in M&. The
infinitesimal canonical transformation

We consider that all the functions on the right-hand
side of the equations are analytical functions of their ar-
guments. Then, the functions F are also analytical.

Thus the Cauchy-Kowalevski theorem guarantees the
existence of the solution of (43) whenever the functions
C' ', (q,p, t) are arbitrary inside the class of analytical
functions of their arguments. The quantities w,' ' may be
expressed through the C' ', by the relations

m —r r(a')

[
C(A, )a H(i. )

~
+ + y y C(A, )a'ya'a (A. )

a'=1 n'=0

(44)

In this way the existence of the generator P'"' has been
shown for a very wide class of systems.

gy(k) Bg'„
(qo po to)=

&
(qo po)

Bp Bp

gq(i. ) a@'„
(qo po to)= (qo po)

Bq Bq

gy(iL)

Bp

gyle. )

Bq

(47)

(48)

(49)

(50)

We work with the function g(" (q,p, t) as was defined in
Sec. III. )))' ' is a first-class function and the coefficients
C' ' and D '"' satisfy Eqs. (41) and (42).

Let us choose the extremal which passes through the
point (qo, po) to have a vanishing k (A,,(t)=0, Vt). This
condition simplifies relations (39) and (40). Then we have

[P'„,HT )] = [P'„,H'I, a =1, . . . , m r;—
n =0, . . . , r(a),

yq HT I:tyq H I
i:1 m q:0 s(i)

(51)

(52)
If we substitute (24)—(27) in Eq. (33) we find the system

of equations

aco + I C('), H'I + g C„'(, )F„'(, ),'=(J, ;
Bt I

(53)

(qo,po). This is due to the arbitrariness of the Lagrange
multipliers A.„(t). In the previous section it has been
shown that for each of these trajectories (for a given set
of multipliers) there is a function 1()( '(q, p, t) transforming
it into another extremal (for another set of multipliers)
via an infinitesimal canonical transformation.

Therefore, in order to prove that (qo,po) and (qo,po)
related by (45) and (46) are physically equivalent it is only
necessary to find the function it)( '(q, p, t) for some ex-
tremal [))(,, (t) fixed] which passes through (qo,po) and
also satisfies the conditions

I

qo =qo +& (qo po)a
(45) + I C„',H'I +C;, , + g C„'(,.)F„'(, )'„=0,

Bt r

a
I n

po(=po( &
~

(qo~po) r

Bq;
(46)

where g'„ is any first-class constraint, transforms the
Point (qo,Po) into (qo,Po)EM&. The conjecture says
that both points belong to the same physical state.

We must then prove that through the point (qo,po)
Passes an extremal q))(t) (qo=q(to), Po=P(to)) and that
through the point (qo,po) passes another extremal ri),(t).
(qo=q'(to), po=p'(to)) in such a way that both trajec-
tories join together at the time t = t, ( to. In other
words, starting from the same initial conditions
q(t, )=q, ,p(t, )=p, we arrive after the time interval
(to —t, ) through two different extremals up to the points
(q(),po) and (qo, po), which, therefore, describe the same
physical state.

There is an infinite number of externals of the total
Hamiltonian problem which pass through the point

i =1, . . . , m, q =0, . . . , s(i),
i'=1, . . . , m, q'=1, . . . , s(i');

aa,",
+ [D''oH']+ g I',

,o(D",—.

,
+D', —,

' )—.

(55)

'I+ P r(a) r(a)qO
aa 1

i=1, . . . , m, q=0, . . . , s(i),
i'=1, . . . , m . (56)

a =1, . . . , m —r, n =1, . . . , r(a); (54)
BD" ~

+ t Dq'q H'
I
+ ( D 'q, +D ' '

( )
dt
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Thus we have to prove the existence of a solution of
Eqs. (53) and (54) with the additional conditions

1, a=a, n=n,
C (, , t )='

0, a%a or nWn;

C„'(q, ,p, , t, )=0,

(57)

a =1, . . . , m —r, n =0, . . . , r(a) . (58)

The existence of D' ) satisfying (55) and (56) is
guaranteed by the Cauchy-Kowalevski theorem. It is not
difficult to notice that the additional conditions (57) and
(58) allow P( to satisfy Eqs. (47)—(50).

From (53) and (54) it is clearly seen that all the C„'(,)

functions may be taken as arbitrary analytical functions
except for their values at (q0,p0, t0) and (q„p, , t, ).
Moreover, the set (53) and (54) may be rewritten as
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APPENDIX A: EQUIVALENCE OF THE CONSTRAINT
SETS j(()j AND tyj

Here, we want to show that the original set of con-
straints If} given in (6) is really equivalent to set (y j
defined in (17). A proof by induction will be given. In or-
der to prove this let us suppose that up to the step k it is
true that

nCa

Btn
~(k) —y(k) +L (k) (y(0) y(1) y(k —1))

~k —1 ~k —1 ) k —1 I —1 ~0 ) k —2
(Al)

a =1, . . . , m —r, (59)

in which I'„' is a polynomia1 in all the possible partial
derivatives of the functions C„'~,

~
in which the order of

the derivatives runs up to the value n in the case of the q
or p variables but reaches the maximum value n —1 for
the time derivatives.

From the examination of (59), one can conclude that it
is always possible to choose the values of the C„'~,

~
quanti-

ties and of its first r(a) time derivatives to bring about
arbitrary selected values to the C„' (a =1, . . . ,
m —r;n =0, . . . , r(a)) quantities at the instants t0 and

t, . In this way Dirac's conjecture is proved.

~(k+1) t~(k) HI
} (A2)

will satisfy

(k+1) y(k+1)+L (k+1)(~(0) ~(l) ~(k)
)I'k ~&—1'~I'0' ' ' ' ' +~k —1

(A3)

The expression (A2) may be rewritten as

where L' ' is a linear combination of all the constraints

up to the step (k —1). The validity of the hypothesis is
evident for k =0 (g()=P('). Then, it should be demon-
strated that the constraints of the next step

~(k+1) Iy(k)+L (k) (y(0) y(0) y(k —1)) ~~ jlk lkjk —1) —1 lo lk —2

I
y(k) H(k+1)+ y(0)

j~k

+ Ilinear combination of (I}(" ",8,'"'+cr ((}' ' j+
+ I linear combination of P„' ', H,'"+o (A4)

In (A4) a new type of subindices vk is used in which an
overbar over the greek letter (in this case v) means that
the set vz includes all the indices of the sets v,

'

(i =k, . . . , fl.
All the terms on the right-hand side of (A4) vanish ex-

cept the first one. this is a result of relations (7), (13),
(14), and (15).

Using again (15) the expression (A4) takes the form

It is easy to prove also that

This is a consequence of (13). Then the

~(k+1) I~{k) Hi}

(A7)

(A8)

(k+1) —Iy(k) H(k+1)j
pk M pk' c

(k+1) y(k+1)+I (k+))(y(0) y(1) y(k) )I'o' ' '

(A5)

(A6)

Relation (A6) tells us that the restrictions introduced
by the constraints y„'" "in Mk are completely equivalent

to the restrictions determined by the constraints (t)'"+".

are not actually constraints.
We see that the new set of constraints Iyj has the

structure (18). Thus, (A6) and (A7) finish the proof of the
equivalence of the sets of constraints I P j and Iy j.

Finally let us show that the constraints Iy } satisfy rela-
tions (19) and (20) which are similar to relations (15) and
(16) for the constraints Igj. The proof proceeds as fol-
lows.
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The fact that

[~"',X "j = o, detl[X'" X"'}l«pp' p
0

Po vO M 0

(A9)

is evident because y( '—:()()„' which satisfies (15) and (16).
For a superindex k ~ 1 we have

[+(k) +(0)
} [p(k)+L (k)((t)(0) p(1) y(k —1)) /{0)

jPk Pk —
1 Pk Pk P —1 PO Pk —2 Pk —1

properly by this hypothesis. Let us suppose that the
property stated in the lemma is valid for p =0, 1, . . . , S.
Then it is necessary to demonstrate that it is also valid
for p =S + 1. In other words, all the PB

} are equal to zero except

det~ [~(R+s+1) ~( )

j ~
~ ()

PR+S+i+1 PR+S~i+-1 ~RR+S+i+1

and also
[y(k) y(0)

}
—()

pk —
1 Mk —

1 k

(Alp) I~(R+S+1) ~(i)
j p

PR+S i+s PR+S+t MR +S+i +1
and

[
y(k) y(0)} ()

Mk —1 k

(Al 1)

In obtaining (Alp) and (Al 1) we have used relations (15).
The fact that the determinant (20) is not equal to zero re-
sults from the relations

I~(k) ~(0)} [y(k)+L (k)(y(0) y(1) y(k —1)) y(0)
jPk

'
vk Pk Pk P —1 P0 Pk —2

' v

[~(k) ~(0)
j [(t)(k) +L (k) ((I)(0) p(1) p(k —1)) ()I)(0)

jPk —1 Pk Pk —1 Pk —1 P —1 PO Pk —2 Pk

[s =0, 1, . . . , i —1;
i =0, 1, . . . , R —(S+1)] .

Using the Jacobi identity we may write

I~(R +S+1) ~(i)
}
—

I
{~(R+S) H~

j
~(i)

PR+S+i ' Pt —
1 PR+S+i''

=-IIH X" }X(R'S)
}Pi —

1 PR +S+&

I
I+(i) +(R+S)

pR +s+I (B5)

[y(k) y(0)
j p (A12)

and from (16).

APPENDIX B: THE PROOF OF THE THEOREM

PB commute with all

The main objective of this appendix will be to prove
the theorem stated in Sec. II. For this purpose two auxi-
liary lemmas will be demonstrated.

Lemma'. Whenever they' '
Pk+i —

1

except g', ' and y", satisfying

I~(R +S+1) X(i)
jpR+S+t p, MR +S+(+1

I I
+(i) HI

j
+(R+S)

pi pR +S+I (B6)

This is equal to zero in MR+s+; because [y '", ,H'} van-

ishes in M; and

But, the second term in the last line is equal to zero in

M&+s+, + &
according to the hypothesis

( [~(i) ~(R +S)
j p)

PR +S-t
Let us analyze relation (B5) for each set of constraints

y", and y" in which the set g" can be decomposed.

Then we have

k+i
(B1) [+(i )+(R'+S)

}
— 0 (1~ pPR+S+(

R +S+i

and in addition

= O, s=p, . . . , ( —1,
Pk+s Pk+I —

1 Mk+ i

i =0, 1, . . . , R, k =i,i+1, . . . , R, (B2)

by hypothesis.
It follows from (B5) that

[~(R +S.+1) ~(i)
j t~(( +1) (R +S)

pR +s ) & pi M PR+S+iR+S+(+1
(B7)

then it follows that all y'"+ ' PB commute with y"
PR +p+i —1

except g', + ' and y", which obey
PR +p+i PR+p+i

det~ [y' +p' y", j ~

A 0
PR+p+i PR+p+1 MR +p+i

and it also follows that

[~(R +p) ~(i)
j ()

PR +p+s PR +p+i —
1 MRR +p+i

where

(B3)

(B4)

s=0, 1, . . . , i —1,
i =0, 1, . . . , R —p

for all p =0, 1, . . . , R.
The proof will be by induction in the index p. The va-

lidity of the thesis in the first step (p =0) is guaranteed

I~(R +S+1) ~(ii
} [ [~(R +S) H~} ~(i)

PR+S+1+v R S ' PR ~S+1+s R+S+'

Using the Jacobi identity and that

I+(il +(R+S)
PR+S~ i PR+S+1-+ s MR +S+i

(B8)

s =0, 1, . . . , i —1, i =0, 1, . . . , R —(S+1),

By hypothesis we have that all the PB
} are equal to zero, except

det~[g', + ),g ', +''
j ~%0, where i+1=1, . . . ,

PR +S+ i +1 PR +S+& +1
R —S. Then we obtain that all y' + +" PB commutePR+S+t
with y„" except det

~ t y', + + ', y', j ~
Wp

PR +S+1+i PR +S+1+i
[i =0, 1, . . . , R —(S+ 1)].

We may write that



ON DIRAC'S CONJECTURE FOR HAMILTONIAN SYSTEMS. . .

we have

{+(R+S+1) +(i)
} {{+(() H)} +(R+S)

)"R +S+1+ R +S+' M R +S ' ) R +S+1+(R+S+1

{
+(i +1) +(R +S)

R+S ' PR- S+1, s* R +S+1-, 1

i +1, . . . , R.
The modified thesis may be enunciated in the following

way.
Statement: All y' +" PB commute with all g" ex-~R+i ~r —

1

cept g', " and g", which satisfy
I R»+1 ~R ~i+1

R +S+1-i-1
p (by hypothesis) . (89) det~ {q(R, +",q(,)

} ~
W p

R +1 1-1 R +1+1 AfRR +1+1
(812}

Relation (89) completes the proof of the lemma.
In close analogy with the above discussion the follow-

ing lemma may be proved.
Lemma 2. If all the constraints g„'' PB commute

~1 +1 —1

with all y„" except g', ' and g", which satisfy
~I;+1 ~x+t

and also if

p
pl + ) k+i —

1 M
)t +1'

where s =01, . . . , i —1; i =01, . . . , R, and k =i i
+1, . . . , R, R +1, then all the constraints y' +'+~' PB

~R+p+t

commute with y„" except g', + '+ ' and y",'
) R +1+p+1 )"R+1+p+t

which obey

and also

{+(R+1) +)i)
JR+1+ ) R+( MR +1+i

(813)

where s =0, 1, . . . , i —1 and i =0, 1, . . . , R + 1.
Firstly let us consider the cases i =0, 1, . . . , R —1.

The validity of the thesis in these steps is a direct result
of lemma 1, taking p =1. Then, the only cases left to be
considered are i =R andi =R +1.

1. Casei =R

In this case after using the iterative definition of the
constraints and the Jacobi identity we have

{~(R+1)~(R)
} {{+(R) H)

}
~(R))2R)R —1)2RJR—

1

= —
{{H' X„"„',},X„'",„'}

det~{y'"+'+" y("
} ~

A p
~R + 1+p+& ~R + 1+p ~& MR + 1+ + {{+(R) +(R)

} (814)

and also is valid that

{+(R+1+p) +(i)
} p

PR +1+p+s R +P+' MR +1+p+(

where s =0, 1, . . . , i —1; i =0, 1, . . . , R —p, for all

p =0, 1, . . . , R.
After all these previous statements we may begin the

proof of the theorem which was enunciated in Sec. II.
Let us observe that the theorem predicts the PB rela-

tion properties among the constraints of two arbitrary
lines (defined by the constraint superindices k and i) up to
the step SM=f/2 (f even) or S))r =(f —1)/2 (f odd).
However, for the constraints in a line staying below the
step SM, the PB relation properties are predicted only
with the constraints belonging to lines situated above SM.
Then it can be seen that we should demonstrate the
theorem by induction up to the step S~, and then lemma
1 guarantees the validity of the theorem completely.
Below, the theorem will be demonstrated in the men-
tioned modified way, that is, up to the step SM.

The modified hypothesis reads as follows.
Hypothesis. All g„'

' PB commute with all g„'"

except y', ' and y",' which give
~a+( )"a +(

(B10)

and also

The second term in the last line vanishes in Mzz+ &
due

to the fact that by hypothesis the brackets {y„'"),y(")
}

vanishes in M2R. Then from (814) it follows that

{~(R+))~(R)} {~(R) ~(R+))}
I 2R 1 R I ~2R I R

2R +1

and also

{~(R+1)~(R)} — p
)"2R R M2R+1

because

{~(R) {+(R)H)
} } pP2R' f'R' M 2R

(815)

(816)

by hypothesis. {y(, ', H'} being equal to zero in MR is a
)"R

linear combination of the constraints defining this mani-
fold.

Note that relation (815) expresses that the brackets
considered in (814) is equal to the same type of expres-
sion with the minus sign in which the superindex R + 1 is
diminished in a unit and the R superindex is increased
also in a unit. The basic facts determining this property
are the annulation of {g( ),y(")

} in M2„and the van-)"R —1' )"2R

ishing of {H', y', '} in MR.

It can be seen, for the following steps, that the validity
of

{
+(k) +(i)

}
— p

~k+S ~1'+ &
—' Mk+1

(811}
{~(R+p) ~,(R

—p)
} () (g

)"R +p —1'
2R

(817)

where s =0 1, . . . , i —1; i =0 1, . . . , R, and k =i,
{~(R+p) H~} p

)"R+p
R ~p

(818)



2734 ALEJANDRO CABO AND DOMINGO LOUIS-MARTINEZ 42

implies the general relations

[X(R +1) X(R)
)"2R R +p M2R

(B19)

[X(R+1) X(R)
j ( 1)p+1[X(R—p) X(R+p+1)j

~2R ' I"R+p )"2R ' )"R +p
2R +1

(B20)

for p =0, 1, . . . , R, because of the iterative use of the
Jacobi identities.

Result (B17) is a direct consequence of lemma 1, and
(B18) follows automatically from the Dirac algorithm.

Putting p =R we obtain

det~ [X(R +1) X(R+ 1)
j ~

@ ()
~2R +2 2R -)-2 M2R +2

and also

[X(R + 1) X(R + 1)
j

— 0 &
—0

~2R +1 ~R +1+s 2R +2

(B27)

(B28)

This finishes the proof of the statement for the step
i =R +1.

Relations (B25) and (B26) together with the PB rela-
tions (19) and (20) for k =28 +2 enable us to obtain the
expected result: All the constraints y' +" PB commute

)"2R +1
with all the constraints g'" +"except g'", +"which obey

[X(R+1) X(R)
j

— 0
)"2R M2R

(B21)
APPENDIX C

[X(R+1) X(R)
j ( 1)R+l[X(0) X(2R+1)j

) 2R ) 2R )"2R
' 1"2R

2R +1
(B22)

But using the PB relations (19) and (20) among the x con-
straints by substituting k =2R + 1 we obtain

[X(2R+1) X(0)
j 0)"2R+1 '

2R +1

[x(2R+1) x(0)
~2R ~2R +1 M 2R +1

(B23)

det~[X""'" X"' j~ &
~2R +1 ~2R +1 M2R

(B24)

2. Casei =R+1

In this step the thesis is demonstrated in very close
analogy with the case i =R, but the role of lemma 1 is
played by lemma 2. Then, we shall not repeat the steps
and only the basic results are enunciated below. The re-
lations being analogous to (B19)and (B20) become

[x(R +1) x(R + 1)
P2R+1' I R+ +1 MP 2R +2

(B25)

[X(R+1) X(R+1)
j ( 1)p+1[X(R—p) X(R+p+2)j

) 2R+1 l R+p+1 ) 2R+1 ~R+p+1
2R +2

p =0, 1, . . . , R . (B26)

Relations (B22)—(B24) and those which were obtained
in previous steps give the expected result that all the con-
straints y'"+" PB commute with all the constraints

except y'", +"and y'", ' which satisfy
1"R —

1 ) 2R+1

det~ [X'"+' X' j ~
P 0

~2R +1 ~2R +1 M2R +1

The rest of the relations

[x"+" x"'
j

— o =o
~R +1+ s 2R

M2R +1

are a direct result from formula (B20) for p =0 and for-
mula (B19)for p = 1, . . . , R.

Thus the statement is proved in the level i =R.

Here, we will present the proof that the determinant of
the matrix formed with the PB among all the second-
class constraints is different from zero. By the theorem in
Appendix B it follows that all second-class primary con-
straints PB commute with all second-class constraints ex-
cept for the constraints entering in the relations

detl [X",X",'j
I

W 0, s =0, 1, . . . ,f . (C 1)

This property means that the considered determinant
is (with an indefinition only up to a sign) equal to the
product of all the determinants in (Cl) multiplied by the
determinant of the PB matrix for all the constraints not
appearing in any of the expressions in (Cl).

According to the theorem, for the set of constraints
not appearing in (Cl) it follows that all the constraints
g„'" PB commute with all the second-class constraints of

P1

the considered set except for the constraints entering in
the relations

(C2)

Again, this property implies that the determinant of the
matrix formed with the PB among all the constraints not
appearing in (Cl) reduces (up to sign indefinition) to the
product of all the determinants being presented in (C2)
multiplied by the determinant of the PB matrix for the
constraints not appearing in (C 1) and (C2).

From the first two sketched steps it may be noticed
that the validity of the relations

det( [X'p', X'p+'j
( W 0, s =0, 1, . . . ,f —2p,

~p+s "p+s M 2p+s

P=o 1 ~M

will allow us to demonstrate that the determinant of the
matrix formed with the PB among all the second-class
constraints is equal (up to sign) to the product of all the
determinants appearing in (C3). But relations (C3) are
direct consequences of the theorem. Then the considered
determinant is different from zero.

d«1[x"),x()'"jI c o, s=o, i, . . . , f 2. —
)"1+s ~1+s M, +2
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