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Scattering in unbroken and broken phases of (2+ 1)-dimensional gravity
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Two-particle gravitational scattering is compared in the Chem-Simons and standard perturbative
approaches. In the limit where one particle's energy dominates, the cross sections agree to order
M'; in general they disagree. This is attributed to the nonexistence of quantum-mechanical fluctua-
tions in the topological theory.

I. INTRODUCTION

New interest in (2+1)-dimensional gravity has been
prompted by Witten's solution as an ISO(2, 1) Chern-
Simons theory, ' which has been interpreted as describ-
ing an unbroken phase of general coordinate invariance.
This point of view differs from more traditional ap-
proaches to quantum gravity and is intimately connected
with the finiteness and renormalizability of the Chern-
Simons version. It is therefore interesting to contrast the
physics of this phase with that of the broken phase. The
theory we choose to represent the broken phase is the
standard gravitational perturbation theory as developed
in the 1960s by analogy with QED. This is manifestly in
the broken phase because we expand about the Min-
kowski metric.

One way of probing to the theory, with the advantage
of being very physical, is to consider scattering of parti-
cles due to their gravitational interaction. Specifically,
we sha11 be calculating the tree-level cross section for two
scalar particles. This becomes particularly simple in the
kinematical limit where one particle is much heavier than
the other; we shall henceforth call this the massive limit.
In this case we merely solve for the motion of the light
particle in the frozen classical geometry due to the heavy
one. The problem reduces to solving the wave equation
on a cone with opening angle aM =M(tc/2) . ' 't Hooft
has argued that this procedure is also correct for the rela-
tive coordinate of two general mass particles in the
center-of-mass frame. The addition formula for deficit
angles must be used to determine a in this case. More
recently, Carlip has shown that a treatment based on
Wilson-line information in the Chem-Simons theory
gives the same intuitive picture.

We shall be comparing these exact results, expanded in
powers of cz, with those derived from standard perturba-
tion theory. We shall always work in a regime in which
all particle energies are much lighter than the natural
gravitational scale ~ . The lowest-order tree-level dia-
gram gives, in the center-of-mass frame,

~ i+ 2 p 1 (EiEz+P )

d8 2vrp q2 2 (Ei+E~)2

Note that this perturbative expression also simplifies in
the massive limit E2=M &&E& in that the s-wave term

vanishes.
After the discussion of broken and unbroken phases

motivating this study, the reader may be perplexed as to
what scattering means in an unbroken theory. In fact,
Carlip s work is based on there being an asymptotic coni-
cal spacetime, and so there is no problem in interpreting
scattering. However, this means that the unbroken
theory looks distinctly broken. It is the purpose of this
paper to show that it still retains unbroken characteris-
tics that are revealed through scattering. Broken and un-
broken should be understood in this context.

We devote Sec. II to working within the massive limit
described above. By carefu1 analysis of asymptotic states,
we shall show agreement between the perturbative result
and the exact result expanded to order a~.

Section III considers the general kinematical situation.
We discuss Carlip's approach in some detail to show that
it does not reproduce the s-wave term in (1). The physi-
cal origin of this term is then proposed and reasons for
the discrepancy discussed.

II. MASSIVE LIMIT

We commence with the perturbative approach and first
make some technical points concerning the formalism.
The variable g" =&gg", which makes the three-
graviton vertex simpler, is used, and as is almost univer-
sal, we work in the harmonic gauge. In the limit we work
in, the source can be taken to be classical of mass M. The
metric signature is (+, —,—). The Feynman rules are
then standard as given below:
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The three-graviton vertex is too long to include here; it
is given correctly by Capper and Namazie.

The relevant diagrams for scattering in first and second
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orders are shown in Fig. 1. The problem is the analog of
Coulomb scattering with a semiclassical expansion in the
source charge. The first-order diagram [Fig. 1(a)] may be
simply computed and is the same as the massive limit of
(1):

2
KJK"=2iM — 2vr5(qp) .

q
2

In second order the diagram shown in Fig. 1(d) van-
ishes; the integrals for the other graphs may be evaluated
straightforwardly. (I thank K. Suehiro for correcting a
factor of 2 in Ref. 4.) An infrared regulator in the form
of a small graviton mass p is introduced. The diagram
shown in Fig. 1(b) yields

—ikrcosb+ ikr in/4f(y)
v'2' kr

i m/4

[e '""5(P)+e'""f(P)] .
2n.kr

(6)

This procedure leads to the series form of the complete
wave function:

flat metric.
The exact solution of the wave equation is most easily

determined in the flat, wedge form of the metric. The
coordinates are (r, p), n.—/p&p&a/p, where it is con-
venient to define p=2m. /(2m —a). The general solution
may be written as a sum of Bessel functions. The
coefficients are fixed by matching onto the incoming part
of the following asymptotic form:
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A, ' '=i in++1 —ln
7T q P p

2m.5(qp) . (3)

P y e i
I
n

I Pn/2 J—
,
„(k'r

)e in PP

The diagram shown in Fig. 1(c), which has a symmetry
factor of —,, consists only of a logarithmic infrared diver-

gence. In the full second-order amplitude these logarith-
mic terms cancel leaving

2 2

A' +'+ '=i in++1 2.vr5(qp) .
7T q P

(4)

The remaining infrared divergence corresponds to an
infinite phase shift and will not appear in the cross sec-
tion. Neither are there any difficulties with bremsstrah-
lung because there are no free gravitons.

Using the matrix elements determined above, the cross
section can be evaluated to order a:

a)
c)

de 2~p q2

To understand the meaning of this coordinate-
dependent quantity, we can work out the expectation
value of the metric. The first term leads to a spatial
metric dr =[1+(a/m. )Kp(ps)](ds +s d8 ). Beyond
the cutoff s » I /iM, space is unperturbed and fiat. Within
the cutoff s « I/p, we recognize the expansion of a
cone in conformal coordinates (s, 8), d r
=(ps) (ds +s d8 ). Incidentally, this allows a
direct comparison to be made with an alternative method
which starts with the Klein-Gordon equation (in confor-
mal coordinates) and perturbs in the opening angle of the
cone. For example, the Born term comes from the
Fourier transform of the leading a lnps correction to the

Using the techniques of Ref. 10, this is readily shown
to be the same as the contour form in Ref. 6. The scatter-
ing amplitude f(P) of Eq. (6) is simply determined by for-
mally summing the outgoing asymptotic waves:

f(P) = —cot —(P —m}—cot —(P+n )
p p p
2 2 2

—p sinpm

(cospp —cosp~)

The form of incident wave e '"""'~ in (6) is physically
correct for the problem of scattering on a cone. It is
what an experimentalist would set up in a local region of
flat space on the cone but away from the apex. However,
we can imagine a different form of incoming wave that
would be appropriate if asymptotically the cone were to
become globally flat —imagine a witch's hat placed on a
table. This is the situation that occurs if the infrared
cutoff in the conical metric is finite and, as we shall argue,
is relevant to the perturbative calculation. A plane wave
in background space becomes refracted when it starts to
move onto the cone. It develops a curved wave front,
and a simple geometric optics argument shows that the
beam will be defocused.

To analyze this effect we consider a sharp boundary be-
tween the cone and background. The boundary is asymp-
totically far from the apex, and we expect the approxima-
tion of a sharp cutoff to be negligible. The calculation
leading to the wave function (7) is repeated, but this time
matching onto an incident plane wave in the external re-
gion. %'ithin the cutoff we work in conformal coordi-
nates (s, 8), dH=(ps) /"(ds +s d82), —m. &8&~. The
general series solution, with unknown coefficients a„, has
the asymptotic form

b) d)

oo 2
P(s, 8)~ g g„

p vr(kP/p)(ps)'/~

1/2

FIG. 1. Scattering in the massive limit.

X cos (ps) ~ pn ——c—os(n—8) . (9}kP
p 2 4

In the external region, using ordinary radial coordi-
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&2~k'
[e '"'5(0)+e'"'g(0)] . (10}

The waves are matched at the boundary in the asymp-
totic region s=s=1/phoo to leading order in p. Both
the wave function and radial derivative are to be continu-
ous. We thereby derive the following form for the
scattering amplitude in the external region:

g(&) = f(&I—P)e "~1

The defocusing effect gives the same angular depen-
dence to the scattering amplitude, but reduces its
strength.

The above formalism is appropriate for making a com-
parison with perturbation theory. In perturbation theory
an incident plane wave is set up in the flat space outside
the range of the perturbation, in this case limited by the
cutoff p. The cross section is determined using g(8} and
may be expanded in o, for comparison with the perturba-
tive result (5):

nates (s, O), the wave function consists of an incident
plane wave and scattered pieces:

g }
iks cos9+ 1 iks i vr/4

( g }
&2~ks

i m/4

extension of the static case, but the matching is no longer
under simple rotations.

This equation may be rewritten in terms of exponen-
tiated SO(2, 1) generators [we use the representation
(J')",= —e'" rib„]. The combination LQL i' is equal to

p J ~ - mJ'
e ', where if the rotation is 0=e, then p, is a boost
of the timelike vector (m, 0, 0) by L. So according to the
picture of Ref. 7, where L ' is the boost required to
bring a particle to its rest frame, p, is the momentum in
the center of mass:

(1)Ja (2 Jae~' =e' e' (14)

H 1 m) m2
COS =

2
COS COS

2 1+p 2 2

which, with the above interpretation, we recognize as
Carlip's definition of the center of mass. H=a„„]is the
total opening angle of the asymptotic cone (we have ab-
sorbed the gravitational scale in all these formulas). In
this form the equation leads simply to the following rela-
tions between masses, momenta, and Hamiltonian:

m] 1 m&
sin p&

= sin p2=p,
m) 2 m2 2

n 1

2rrk 2 sin9/2

4

1+—+O(a ) . (12)

Despite apparent difficulties due to the infinite range of
the perturbation, a careful treatment has led to agree-
ment. The calculations we have presented for this mas-
sive limit are based on earlier unpublished work in Ref. 4.

III. GENERAL KINEMATICAL SITUATION

The general kinematical situation in which neither
particle's energy dominates can be approached by analyz-
ing the ISO(2, 1) Chem-Simons theory in the presence of
Wilson lines, each containing an infinite-dimensional par-
ticlelike representation of SO(2, 1). Carlip is able to give
a concrete description of the quantum-mechanical Hil-
bert space and Hamiltonian that constitute the theory.

One is obliged to work in the center-of-mass frame. In
the present context this means the frame in which space
is asymptotically conical; it is only then that time
translations are asymptotic symmetries and a Hamiltoni-
an can exist. This frame can be analyzed classically using
the techniques of Ref. 7, where flat pieces of spacetime
are patched together by ISO(2, 1) transformations. The
condition that the matching of two particles yields an
asymptotic cone is that

m j m2 E)E2—sin sin
2 2 m)m2

Once we have fixed the frame, the Hilbert space
reduces to wave functions of a momentum variable p (for
example, the symmetric one in Ref. 8), which obey the

(2n. —0)Jbraid constraint e ' f(p)=P(p). It is convenient to
Fourier transform the wave function and work in terms
of r, which is some kind of relative vector. The braid
constraint becomes

g(r, P+2n a) =g(r—, P) . (16)

The resulting picture is very similar to that in the mas-
sive limit. The wave function lives on a cone with open-
ing angle a=H (becoming aM in the massive limit). To
calculate amplitudes we may simply take over the expres-
sions developed in the previous section:

where we must use a given by (15) in the definition (8) of
f(P).

tot.]=L]&]L] 'L22L2 ' (13)

where 0, are rotations by a, , the respective masses in
gravitational units; and L ' are boosts that bring the
particles to their respective rest frames. This geometry
(shown in Fig. 2 for zero impact parameter) is a simple

FIG. 2. Classical two-particle geometry in the center-of-mass
frame.
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Expanding this expression in a, as in (12), we find the
leading term.

do
d0

2
2

p
2

2%P q
(18)

du &M 1 5
2 2

+—(1+2cos8)
d8 2mp 4 sin 8/2 4

(19)

where we have put tildes on the variables so as not to for-
get that this calculation is done in the rest frame of the
massive particle.

To make a comparison with the first-order perturbative
result (1), we must reevaluate it in this new frame. Al-

b= bp

FIG. 3. Cone with spherical cap cutoff.

This is in clear disagreement with the direct perturbative
evaluation (1). The s-wave term is completely missing.

Before going on to discuss the origin of this discrepan-
cy in detail, it is useful to have a physical interpretation
for the origin of the s-wave component in the perturba-
tive cross section. Such intuition is easy to come by. Let
us start with the massive limit and consider moving away
from it in some expansion in E, /M. Familiarity with
quantum mechanics leads us to expect that the massive
particle would fluctuate on the scale of its Cornpton
wavelength. This would cause the apex of the cone to be-
come fuzzy and would affect the low-angular-momentum
waves that penetrate close to it.

We can support this intuition by performing a
quantum-mechanical calculation on a smoothed-off cone.
Explicitly, consider a spherical cap cutoff (Fig. 3), though
we do not expect precise details to matter. The dimen-
sionless cutoff 5 is the smoothing distance b, measured in
incident wavelengths. We shall set it to be of order
&-~M/~Inc-S /M

In the exterior region we must also now include Bessel
functions of the second kind, Y&„, in the expansion of the
wave function. These components, notably Yo and Y&,
will be responsible for the change in scattering amplitude.

Rather than perform the straightforward calculation,
which would require peculiar limits of the interior Legen-
dre functions in the matching condition, it is helpful to
remember that we will only work to leading order in a.
The sphere can be taken to have a large radius which al-

lows the Legendre functions to be expanded about Bessel
functions, and we set up the problem perturbatively in 5
from the start.

The coefficients of the Y&„ in the exterior scattering
wave function are suppressed by powers of 5. At leading
order 5 only n =0,1 contribute to the cross section:

though in the center-of-mass frame leading corrections to
the E, /M=0 case are order 1/M, in the lab frame the
first terms are order 1/M;

dO 1 p
d 0 2vrp 4 sin-0/2 4M

2
m&

2
COSO

4M

2

(20)

IV. CONCLUSION

In the massive limit, after taking account of subtleties
concerning the form of asymptotic states, we have
demonstrated that the direct solution of the wave equa-
tion on a cone and gravitational perturbation theory give
the same cross section to order eM. On the other hand,
when neither particle's energy dominates, even at the
lowest order in o., the cross section distinguishes broken
and unbroken phases. The difference, an s-wave term
which only arises in the broken phase, is physically due
to quantum-mechanical fluctuations which cause uncer-
tainty in the position of the conical apex. Such fluctua-
tions are suppressed in the massive limit. The unbroken
theory is topological in nature, and fluctuations such as
this form no part of it.

The difference can also be seen in terms of the scale of
the conical spacetime. In the topological theory it is
fixed by the relative momentum scale, but in the broken
theory there is an additional scale from the fluctuations.
In the Arnowitt-Deser-Misner (ADM) canonical
theory, " which is presumably broken, a dynamical scale
appears.

Bearing in mind that the cutoff 6 is order p /M, we find
qualitative agreement that the corrections are both of or-
der 1/M . We should not be too concerned about the
slight differences in angular dependence because the
quantum-mechanical calculation is not treating recoil
correctly. We conclude that this result supports the
physical picture of quantum-mechanical fluctuations
causing the s-wave terms.

The origin of the discrepancy becomes clear if we re-
turn to the basis of Carlip's approach and look at how its
topological character affects the scattering calculation.
The very description of the Hilbert space is in terms of
topological information: the holonomies about the punc-
tures in the spatial slice due to the Wilson lines. Usually,
to obtain particle amplitudes, we must sum over all world
lines. In this theory world lines in the same topological
class give identical contributions because the fXle X)co

has rendered the theory general coordinate invariant.
Here the sum is only over world lines with a difFerent to-
pology, which gives rise to the braid constraint (16). In
ordinary quantum mechanics it is precisely the sum over
world lines in the same topological class, differing slightly
in action as they take slightly different trajectories, that
gives rise to the characteristic spatial fluctuations. This
is what happens in the perturbative treatment, which cor-
responds to the broken phase.

So we see that in the unbroken phase the fluctuations
are necessarily dismissed, and hence we do not see the s-
wave terms that would characterize such behavior.
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Throughout this paper, broken and unbroken phases
should be understood only in terms of the short "dis-
tance" behavior which is relevant to the differences in
scattering that we have been discussing. As mentioned in
the Introduction, at long distances, both theories are bro-
ken; they have asymptotic spacetimes and scattering
makes good sense. This phenomenon of breaking at long
distances has been identified as being the underlying
reason for the difficulty of coupling second-quantized
matter fields to Chem-Simons theory. Even in the
present case, the situation is not completely clear. Car-
lip, by working with noncompact space, implicitly as-

sumes asymptotic spacetime. This is reasonable in the
light of Witten's argument; that the infrared divergences
in the partition function for manifolds allowing a classi-
cal solution lead to spacetirne becoming macroscopic.
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