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Wormholes have been studied mainly in the semiclassical approximation as solutions of the clas-

sical Euclidean field equations. However, such solutions are rather special, and exist only for cer-
tain kinds of matter. On the other hand, one can represent wormholes in a more general manner as

solutions of the Wheeler-DeWitt equation with appropriate boundary conditions. Minisuperspace
models with massless minimal or conformal scalar fields have a discrete spectrum of these solutions.

The Giddings-Strominger instanton solution corresponds to a sum of an infinite number of these

solutions. Minisuperspace models with a massive scalar field also appear to have a discrete spec-

trum of such solutions, whose asymptotic form is given.

I. INTRODUCTION

Wormholes are Euclidean metrics that consist of two
large regions joined by a narrow tube or throat. Macro-
scopic wormholes may provide the mechanism for black
holes to evaporate and disappear completely, ' while mi-
croscopic wormholes seem to have an important effect on
physical constants, particularly the cosmological con-
stant. Wormholes have been studied mainly as instan-
tons, solutions of the classical Euclidean field equations.
These are saddle points in the path integral. They can
form the basis in a semiclassical treatment in which one
makes the dilute wormhole approximation of neglecting
the interaction between the ends of different wormholes
joining on the same large region.

However, real wormholelike solutions occur only for
certain special kinds of rnatter that allow the Ricci tensor
to have negative eigenvalues. These do not include a
minimally coupled scalar (unless it is pure imaginary), but
include an antisymmetric tensor field whose field equa-
tions in four dimensions are equivalent to those of a sca-
lar field. ' There are no known electromagnetic
wormhole solutions in four dimensions, but there are
Yang-Mills solutions. " These, however, in general do
not seem to be local minima of the action. ' It is not
clear, therefore, that they contribute to the semiclassical
approximation. There are Yang-Mills solutions which
are local minima of the action, but they exist only when
the Yang-Mills field is not coupled to any fields in the
fundamental representation. ' Moreover, these solutions
have a maximum throat size of a few Planck units, which
makes it difficult to see how they could carry away all the
particles and information that are lost when a macro-
scopic black hole evaporates.

Is one, therefore, to assume that wormholes are impor-
tant only in the very restricted class of theories in which

the matter content allows wormhole instantons? This
would make it difficult to believe that wormholes are the
mechanism for black-hole evaporation, because this will
occur for any matter content, or even no matter content,
but just pure gravity. It would also cast doubt on wheth-
er worrnholes are the reason why the cosmological con-
stant is zero. We will, therefore, advocate a different ap-
proach, ' in which wormholes are regarded, not as solu-
tions of the classical Euclidean field equations, but as
solutions of the quantum-mechanical Wheeler-DeWitt
equation. These wave functions have to obey certain
boundary conditions in order that they represent
wormholes. The boundary conditions seem to be that the
wave function is exponentially damped for large three-
geometries, and is regular in some suitable way when the
three-geometry collapses to zero. We shall argue that
there is a discrete spectrum of solutions of the Wheeler-
DeWitt equation that obey these boundary conditions.
We shall illustrate this with a discussion of minisuper-
space solutions of the Wheeler-DeWitt equation with a
scalar field. There is a continuous family of solutions
with a massless scalar field that are eigenfunctions of the
scalar charge operator. They correspond to the instanton
solutions found by Giddings and Strominger. ' The wave
functions are damped at infinity, but they oscillate
infinitely near zero radius. However, these solutions can
be expressed as an infinite sum of a discrete family of
solutions that are well behaved both at infinity and at
zero radius. Such solutions can also be constructed, al-
though only approximately, for a massive scalar field.
We give explicit formulas for their asymptotic form here.

II. THE BOUNDARY CONDITIONS

In the dilute-wormhole approximation, one can treat
each wormhole separately, as joining two asymptotically
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Euclidean regions. We shall, therefore, consider Euclide-
an metrics of topology R 'XS which are asymptotically
Euclidean at each end of the 8 '. The idea is to study the
effect of the wormhole on physics in the two asymptotic
regions at energies low compared to the Planck scale.
For this purpose, one wants to calculate the Green's
functions

((t(x))P(x2). P(y))P(y2) . ),
where x,xz, . . . and y&,y2, . . . are points in the two
asymptotic regions far from the wormhole. The points

x],x2, . . . and y &,y2, . . . can effectively be taken to be at
infinity in flat space. One can then factorize the Green
functions by introducing a complete set of wormhole
states:

where ~0) is the vacuum state in the absence of
wormholes, and ~))/, ) are a complete orthonormal set of
wormhole states. '

What are these wormhole states ~(t)), )? Let S be a cross
section, a three-surface that separates the two asymptoti-
cally Euclidean regions. Then the quantum states of the
wormhole can be described by wave functions %k(h;, (I)o)
which depend on the three-metric h; and matter fields ()))o

on S. The wave functions will obey the Wheeler-DeWitt
and momentum constraint equations

2

H%'),. = —
—,'mp h ' (h, (h +h, h (

—h,"h( )
5

m 2h 1/2 (3)g + ) h )/2Tmnmz oi 0'k(h~) ())o)=0

6H' Pk = —2im
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+T"' (t)o, i—
figo

(4)

at all finite nonzero three-metrics h;, . However, if the
wave functions are to correspond to wormholes rather
than other kinds of spacetime, they should also obey cer-
tain boundary conditions when the three-metric h, de-
generates or become infinite.

The boundary conditions when h, degenerates should
express the fact that the four-metric is nonsingular. It is
not clear what these boundary conditions should be in
the full superspace of all three-metrics, but in minisuper-
space models, such as those considered in the next sec-
tion, it seems reasonable to suppose that the wave func-
tion should be regular, or (depending on the factor order-
ing) maybe go as a power of the radius a as a approaches
zero. It certainly should not oscillate an infinite number
of times.

The boundary conditions when h, is large should ex-
press that the four-metric is asymptotically Euclidean.
One can interpret this as saying that there are no gravita-
tional excitations in the asymptotic state. If one also im-
posed the boundary condition that there were no matter
excitations in the asymptotic region, one would get a
"ground state" or vacuum wave function +o. Like the
no-boundary wave function, one can obtain the vacuum
wave function from a path integral

o(h, /
(t'o)= fd[g„, ]d[(t)]e,

In the case of the no-boundary state, the path integral is
over all compact metrics and matter fields with the given
boundary values. But in the case of the vacuum state, the
path integral is over all asymptotically Euclidean metrics,
and all rnatter fields that are zero, or gauge equivalent to
zero, at infinity.

In minisuperspace models, the no-boundary wave func-
2 /ption increases as e', where a is the radius of the three-

surface S. On the other hand, the vacuum-state wave
2 /2function decreases for large a like e ' . This difference

comes about because the main term in the gravitational
action is the surface term

2

f d x&hK,
8~

(6)

where K is the trace of the second fundamental form of
the outward-directed normal to the surface S. In the case
of the no-boundary wave function, the stationary phase
metric for zero matter field is flat space inside a three-
sphere of radius a. The outward normals are diverging,
so the action is negative. This makes the no-boundary
wave function grow with the size of the three-surface.
On the other hand, the stationary phase metric for the
vacuum wave function is flat space outside a three-sphere
of radius a. The outward normals will be converging, so
the action will be positive, and the wave function will be
damped at large radius a.

However, there are other solutions of the Wheeler-
DeWitt equation for the minisuperspace models that are
also regular at a =0, and are damped at large radius.
Some of then solutions can be expressed as superpositions
of solutions that have a nonzero flux of a conserved quan-
tity across the three-surface S. Such solutions cannot
close off with a compact four-geometry, for then the flux

would be zero. The behavior at large radius indicates
that these solutions are asymptotically Euclidean, and the
regularity at a =0 indicates that it is nonsingular. Thus,
these solutions must correspond to wormholes that con-
nect two asymptotically Euclidean regions.

The ground state for the wormhole will be defined by a
path integral over all metrics of the topology S XR '

which are asymptotically Euclidean at each end of the
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R '. The matter fields in the path integral will be gauge
equivalent to zero at each end of the R '. This means that
the wave function for the ground state of the wormhole
will be identical to that for the vacuum state, and will be
given by a path integral over all asymptotic Euclidean
metrics and all asymptotically zero matter fields that
have the given values on the surface S. On the other
hand, the other solutions of the Wheeler-DeWitt equa-
tion that are regular at a =0, and damped at large radius,
can be interpreted as "excited states" of wormholes.
Such solutions were interpreted in Ref. 13 as excited
states of a closed universe. This was because the wave
function oscillates at small a, and so corresponds to a
Lorentzian closed Friedmann metric. However, one can
equally well interpret the wave function at large a, where
it is exponential, as corresponding to a Euclidean
wormhole metric. In fact, the wormhole metric is the an-
alytic continuation of the Friedmann metric.

The wave functions of the excited-wormhole states can
also be represented by path integrals. The metrics in the
path integrals are asymptotically Euclidean, which means
that there are no gravitational excitations asymptotically.
But the matter fields have sources at infinity, which can
be interpreted as saying that there are matter particles
passing through the wormhole. Here, "at infinity" means
at distances large compared to the characteristic scale of
the wormhole. This will be true of sources introduced to
calculate low-energy Green's functions, and also, in the
dilute-wormhole approximation, of the effective sources
provided by other wormholes. One can interpret the
dilute-wormhole approximation as the statement that the
wormholes are "on shell. " One then has boundary condi-
tions on the Wheeler-DeWitt equation that, at least in
minisuperspace examples, allow only a discrete spectrum
of solutions. However, when one goes beyond the dilute-
wormhole approximation and considers wormholes that
are close together, one will have to include a continuous
family of "off-shell" wormhole states in the sum over
states used to factorize the Green's functions.

III. MINISUPERSPACE MODELS WITH A MASSLESS
SCALAR

We shall consider metrics of the form

ds =o [N (t)dt +a (t)dQ3],

where cr =26/3m and dQ3 is the metric of a three-
sphere of unit radius. If N is imaginary, this is the
Lorentzian metric of a Friedmann universe, while if X is
real, it is the metric of an Euclidean wormhole. Howev-
er, solutions of the Wheeler-DeWitt equation are in-
dependent of N and t. So they can be interpreted either
as Friedmann universes, or as wormholes, according to
whether the wave is oscillatory or exponential.

We shall consider first a zero-mass minimally coupled
scalar field P. The Wheeler-DeWitt equation is

1 0 0 1
a — —a 0'(a, P) =0,

a~ Ba Ba a3 QP~

where the factor ordering is the one that is invariant un-

d~c 1 dc

da 0 da
k —a c=0.
Q

(10)

The two independent solutions are' '
l

+ k/~

—a /2There is a linear combination of these that goes as e
at large radius a. However, near a =0, the solutions go
like a+—', so they oscillate an infinite number of times.

These solutions are eigenstates of the quantum-
mechanical operator n&= iB j8—$ with eigenvalue k.
Classically,

(12)

Thus these solutions carry a conserved scalar flux

q =2m. k where

q =i f P „der" . . (13)

They will oscillate in a for 0 & a (k' . Thus in this re-
gion they can be interpreted as corresponding to classical
Lorentzian-Friedmann solutions with a scalar flux q.
These solutions will expand from a =0 to a maximum ra-
dius a =(q/2n )' and collapse again to a =0. The
infinite number of oscillations of the wave function near
a =0 will correspond to the initial and final singularities
of the Friedmann solution.

For a )k ', the wave functions will decrease exponen-
2 /ptially like e ' . This indicates that they will corre-

spond to asymptotically Euclidean classical solutions.
The lower bound k' on the radius a, and the existence
of the nonzero scalar flux q, indicate that the solution will
have the form of a wormhole connecting two asymptoti-
cally Euclidean regions. For real q, the gradient of P on
the Euclidean solution will be imaginary. This means the
energy-momentum tensor of the scalar field will be of the
opposite sign to that of a scalar field that was real on the
Euclidean section. The classical Euclidean solution will
be the same as that found by Giddings and Strominger. '

This is just the analytical continuation of the classical
Friedmann solution with real P.

In the semiclassical approach to wormholes, one con-
siders instantons, which are classical Euclidean solutions.
If one requires that the matter fields be real, such solu-
tions exist only in special cases, like an antisymmetric
tensor field, ' or the Yang-Mills field. "' They do not
exist for pure gravity. This would suggest that
wormholes would not be a general solution to the
cosmological-constant problem. On the other hand, in
the quantum-mechanical wave function approach, one
might expect that solutions of the Wheeler-DeWitt equa-
tion with appropriate boundary conditions would exist
for all reasonable forms of matter.

der changes of coordinates in minisuperspace. ' One can
separate the Wheeler-DeWitt equation by writing

%(a,P) =c (a )e'"~,

where
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Of course, the solutions given above do not satisfy the
regularity condition at a =0. However, we shall show
that there is another class of solutions of the Wheeler-
DeWitt equation, that are regular at a =0, and are
damped at large radius. We introduce new coordinates in
minisuperspace defined by

x =a sinhP, y =a cosh/ .

The Wheeler-DeWitt equation then becomes

a' a' —y +x 4=0.
By Bx

(14)

(15)

'1' = i)'j„ lx )g„(y),
where

(16)

This is the equation for two harmonic oscillators with op-
posite signs of the energy. The solutions that are regular
at the origin and damped at infinity are just products of
harmonic-oscillator wave functions"

82

Ba

82 —a'+g' 0 =0,
B(

(24)

where g=aP. This obviously has harmonic-oscillator
solutions in a and g. However, one can always use the
freedom to make a conformal transformation of the
metric, to establish an equivalence between the conformal
and minimal scalar fields coupled to gravity. ' ' In the
present case, one can see the equivalence by defining a
new radius and scalar field

oscillator solutions. Similarly, the harmonic-oscillator
solutions can be regarded as superpositions of di8'erent K
eigenstates, ' just as wave-packet solutions of the wave
equation can be thought of as superpositions of plane
waves. Thus, the harmonic-oscillator solutions can be in-
terpreted as coherent states of classical solutions.

There is a similar discrete spectrum of harmonic-
oscillator solutions for a minisuperspace model with a
conformally invariant scalar field P. The Wheeler-
DeWitt equation is (modulo factor ordering)

(x) (2nn ()
—1/2+ (x)e

—x /2 (17) a =a+1—P, P=arctanhP . (25)

x = —(a„+a„),1

2
(18)

These harmonic-oscillator solutions, which will be denot-
ed ~n &, form a basis for solutions of the Wheeler-DeWitt
equation that are regular at the origin, and damped at
infinity. Thus they must transform into each other under
the symmetry of the Wheeler-DeWitt equation, generated
by adding a constant to P. One can regard this as a
Lorentz transformation in the x,y plane. This is generat-
ed by the Killing vector B/'By =y BjBx +xB/By. One can
express this in terms of annihilation and creation opera-
tors for the two harmonic oscillators, using

In these variables, the Wheeler-DeWitt equation becomes
the same as for the minimal massless scalar field. Thus
there will be K eigenstate solutions. These will be singu-
lar at a =0, which is the singularity at a =0 in the
analytically continued Euclidean wormhole instanton.
They will also be singular at /=+1. This corresponds to
the fact that the Newtonian gravitational constant 6 be-
comes infinite and changes sign where /=+1. However,
the harmonic-oscillator solutions are well behaved at
both a =0 and /=+1. Thus they can provide a
quantum-mechanical description of wormholes in a
theory with a conformally invariant scalar field.

a —(a„—a„) .

The symmetry generator E

=i've&

is then

(19)
IV. MINISUPERSPACE MODELS WITH A MASSIVE

SCALAR

=(a„a —a„a ) .a = (20)

~k&= y c„(k)~n&.
n=0

Operating with K, one gets

ikc„=(n + 1)c„+,—nc„

(21)

(22)

One can solve this iteratively for c„(k) in terms of c0(k),
which can be fixed by normalization. One gets'

c„(k)=(—1)"ir sech( ,'rrk)F( —n, —,'+ ,'ik—;1;2)—

=m / sech( ,'hark)F( —n, —,
' —~ik;—1;2) (23)

One can use this to express the I( eigenstates in terms
of harmonic-oscillator states and vice versa. Let

Conformally invariant and massless minimally coupled
scalar fields are rather special forms of matter. Are there
solutions of the Wheeler-De Witt equation, for other
forms of matter, which are regular at a =0 and damped
at large radii? This is difficult to answer with complete
confidence, because one apparently cannot get explicit ex-
act solutions in closed form, even in the simple case of a
minimally coupled scalar field with a nonzero self-

coupling potential U(((), such as U= —,'m P for the free

massive scalar field. However, one can find explicit
asymptotic solutions for the massive scalar-field case, and
similar methods of construction should work for a rather
arbitrary potential.

For a Friedmann-Robertson-Walker three-sphere
geometry (k =+1) of radius a coupled to a homogene-
ous scalar field P, the Wheeler-DeWitt equation with a
suitable choice of units is

in terms of the hypergeometric function F, which here is
an even or odd polynomial of degree n in ik. One can,
therefore, regard the singular E eigenstates as being su-
perpositions of an infinite number of regular harmonic-

W'4—= a a—— —a +2a U(P) 'P(a, P)
'0 (3 4

Ba Ba

=0 —0"—a4% +2a'U% =0, (26)
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I —I' —a +2a U=O (27)

where an overdot denotes aB/Ba and a prime denotes
8/BP. As a starting point, construct a zeroth-order
WKB approximation e, where I(a,g) is the action of
the classical Euclidean solution which goes from the
point (a, P) to a = ~ and to P at a minimum of U(P)
(which will be taken to be at /=0; the value there must
be U =0 in order that the solution be asymptotically Eu-
clidean).

The Euclidean action I(a, g) obeys the Hamilton-
Jacobi equation

Only F(P) is nonzero at /=0 (where F = 1), so the ac-
tion is exactly I(a,0)=—,'a along the /=0 line, which
corresponds to the empty flat-space Euclidean solution.
One may readily see from Eqs. (29) and (30) that E(P)
and F(P) are both monotonically increasing functions of

as one goes away from /=0, provided that U(P)
stays non-negative or at least does not drop down to

', E—(P) (where E' would become zero, giving a caustic),
as we shall henceforth assume.

For U(P)=1m P and for P «1, one can find
power-series solutions for E, F, 6, and H:

(The signs of the quadratic terms in I are opposite what
they would be for a Lorentzian action. ) For large a one
may write the action in the asymptotic form

I(a, g) =a E(P)+ —,'a F(P)+aG(P)+H(P)+O(a '),

E($)=m —,'1f) +—p+ —p+, /+0''

37 39
y12 y14+O(F16)

21 2247
(33)

where

—9g =2U

(28)

(29)

2 2 3

F(P) =1+—'P + P +—P'—

341 Ip 32603 12 3904417 14

2155 2215 22472

+O(F16) (34)
with E(P) having a minimum value of 0 at /=0, and
where one gets differential equations for the other func-
tions of P that may be integrated to give

G($)=m ' 31)I12
3 ~4+3X41~6+3115~s

219

F(~) f 4 6E(x)dx
p E'(x) (30)

3410953 111 32319221
22152 22552

G($)=[F(P)]' 'f [E'(x)] '[F(x)]
+O(P ) (35)

X [ U(x)[F(x)] —
—,'[E'(x)] jdx,

(31)

H(4)= -2 —3 42-3'04-4346+ 3'2626708
24 2' 2' 222

H(P) = f [E'(x)] '[F(x)G(x)—,'F'(x)G'(x)]dx .
0

(32)

I

31377457 Ip 12

21955

For U(P) =(k/2p)P ~, one gets

(36)

F=1

3 P + 3 (3p+1)$ 3 (5p'+ 15p —5p+1)P
p p+1 2(p+1)(p+3) 2'(p+1) (p+3)(p+5) 2"(p+1) (p+3) (p+5)(p+7)

3(h 3 p(p+4)P + 3(p"+10p +23p —34p+6)$
O s

p+1 2(p+1)'(p+3) 2(p+1)'(p+3)(p+5)

3(2p —1)P ' 3(4p —14p —61p + 134p —39) 2 O 4

p 2(p+1) (3—p) 2(p+1) (p+3)(2p —l)(5 —p)

(38)

(39)

H=—
I

32 —1) [I+O($ )](p+1)'(3—p)
(40)

If we write the asymptotic expansion (28) as

I(a, g)= —,'a+ g a 'FI(P),
I= —3

(41)

so E =F 3, F =1+2F 2 G =F
1 and H =F„,then we

seethat for small/, FI goesasA. ' '
p ' '" ",soIf

p&1, this expansion breaks down at small p f'or
l&(4—2p)/(p —1). However, for U= —,'m p', the p=1
case, the expansion is apparently valid at small p for all l.
Hence we shall assume that at small enough p the poten-
fialgoesas —,'m P withm &0.



2660 S. W. HAWKING AND DON N. PAGE 42

F (y)=c e (42)

where the c&'s are constants that depend on U(P) which
could in principle be evaluated by solving Eqs. (29)—(31)
numerically. Clearly both c 3 and c z are positive.
Thus for large

Assuming that U((()) does not grow faster than a con-
stant times e ~', one can see that for large

~ P ~
the a ' ex-

pansion coefficients for I & 0 go as

a factor of 1+O($ ) for P «1 and is apparently correct
to within a factor of order unity everywhere.

Once one has a solution of the Euclidean Hamilton-
Jacobi equation (27) or (47) for the action I, the integral
curves of the gradient vector field VI, with indices raised
by the inverse of the minisuperspace metric

ds2= —a da +a dP =(y —x )' (
—dy +dx )

= —u' v' du dv

a =y —x =uv

and large absolute value of

X l V

P =arctanh —=
—,
' ln —,

y
' u

the action is roughly

I=c 3a e'ldl=c 3(y+~x

=c 3max(u, v ),
where the minisuperspace null coordinates

(43)

(44)

(45)

give the trajectories of the classical Euclidean solutions.
The Euclidean time derivative along each of these

curves is given by

d = —VI V= ' ()I () — BI
dr c)a Ba BP BP

r)I 8 "dI 8
au av av au

or df /dr=a '(If I'f') in—the notation used above.
In terms of the Laplacian corresponding to the metric

(49), the Wheeler-DeWitt equation (26) is proportional to

u =y —x =ae ~, v =y +x =ae~ (46)

each range over non-negative values. One can see the
form of the Hamilton-Jacobi equation (27), rewritten in
terms of these null coordinates,

—'a W4=( —
—,
' V + V)q'=0,

V(a, g)= —
—,'a+a U(P),

(51)

(52)

and the Hamilton-Jacobi equation (27) or (47) has the
form

r)I BI
) ) 2 2 )

V=—'uv ——'u v U —'ln-
Bu Bv 4 u

(47) ,'(VI )'= V —. (53)

that the asymptotic form (45) for the action is also valid
near one of the null boundaries of the minisuperspace
(say, v =0) as long as the other null coordinate (say, u) is

large, even when a =uv is taken to zero.
For the purpose of visualizing roughly how the action

behaves over the whole minisuperspace, it may be useful
to have an explicit expression that is a crude approxima-
tion everywhere. To get one, take the first two terms of
(28) with E =

—,'m sinh —,'P, which is a simple function
chosen to give the first term of (33) when U= —,'m P and
to have the correct asymptotic form (42), though with the
wrong coefficient c 3. This E would actually solve (29) if
the scalar field potential were U =

—,'m sinh —,'P, so it is
somewhat too large if the actual potential grows less rap-
idly, but for large P, E' and 9E will each go roughly as
9c 3e ~ and be much larger than the 2U term if the po-
tential does not rise this rapidly. The approximate E
should be correct for all P to within a factor of order uni-
ty (e.g. , 18m 'c

3 for large p). By Eq. (30), it would
give F =cosh / ,'P, which do—es match the first two terms
of (34) and have the correct asymptotic form (42). These
two approximate functions then give

I(a, g)- —,'ma sinh' —,'P+ —,'a cosh / —', P

—2m( Iu3/2 1 v3/2)2+ 1( 1u3/2+ I 3/2)4/3
9 2 2 2 2" 2

(48)

If U =
—,
' m P + 0 (P ), this expression is correct to within

If one then writes an exponential WKB wave function
based on I as

V=C(a, g)e:==e" (54)

then using Eq. (50) in the resulting Wheeler-DeWitt equa-
tion gives

h = f [—'V'I ——'(Vh)' ——'V'h]dr, (55)

where the integral is taken along each classical trajectory.
In the WKB limit in which I varies much more rapidly
than h, the first-order WKB approximation, which con-
sists of dropping the terms involving h on the right-hand
side of (55), is an accurate approximation. If one desires
more accuracy, one can put the resulting left-hand side
back into the right-hand side and iterate for higher-order
WKB approximations.

Equation (55) has a constant of integration for each of
the (n —1)-parameter set of trajectories tangent to VS in
an n-dimensional minisuperspace. (Here n =2.) By
specifying the prefactor C =e to be a slowly varying but
otherwise arbitrary function on a hypersurface of codi-
mension 1 {here a line) that intersects the classical trajec-
tories, one can get a family of WKB solutions all based
on the same action I but that depends on this one func-
tion C of n —1 variables. Here the action is well behaved
and is everywhere positive (except at a =0, P finite,
where it is zero) for a positive-semidefinite potential U(P)
that goes as —,'m P for small P. For large a the action
tends to ~ as —,'a plus a times a non-negative monoton-

ically increasing function E (p). Therefore, qi = Ce will
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be well behaved, bounded everywhere, and damped at
infinity if C is well behaved and either stays bounded or
else does not diverge as fast as e at infinity.

There do not appear to be any caustics in the trajec-
tories generated by I, which stay well separated in the
(u, v) plane as one follows them in from a = oo to a =0,
so there appears to be no difficulty integrating Eq. (55) in-
ward from some hypersurface where the prefactor is arbi-
trarily specified, and the resulting solution should be well
behaved. However, in integrating (55) outward, one does
have the difficulty that the trajectories all exponentially
approach the line /=0 as a goes to oo, assuming U 0- P

2

near /=0 as is necessary for I to be regular there. This
means that the Vh component across the converging tra-
jectories will become large, eventually dominating over
VI, so that the WKB approximation will break down and
integrating (55) might even lead to a divergence. Hence
one must use another scheme to get well-behaved wave
functions near /=0 for a going to ~. Once one has
them there, Eq. (55) may be used to integrate them down
to arbitrarily small a and large P. By starting at
sufficiently large a, one can also get to arbitrarily large P
at any finite a, i.e., to anywhere in the minisuperspace.

After some trial and error, a scheme was found that
seems to work for U= —,'m P (and which presumably
could be modified to work for other potentials which also
behave quadratically near /=0). The idea is to start
with

+„0=/"e (56)

= —n(n —1)P (57)

which is equivalent to

L L' L—„+L„—"+2ng 'L„' a+m —a P =0, (58)

and which has an asymptotic series solution of the form

for each non-negative integer n, where L„ is a positive
analytic function of a and (t which makes %„0 solve the
Wheeler-DeWitt equation (26) as nearly as possible. This
form cannot solve (26) exactly, for the —qi'„'0 term in-

cludes a n(n ——1)p %„0 term which cannot be can-
celed if L„ is analytic at / =0 (e.g. , does not include a in/
term there). However, one can solve

8"P„0—= 111„0—0'„'0—a q1„0+m a Q 0'„0

L„= g a 'L„,(P)+c„lna
t=o

=a'E(P)+ ,'a F(P)+a[G—(P)—(n+ ,')mF'i (P)—]+[—,
' ,'n ——

—,-—(2n+1)m ]lna+ g a 'L„(P)
1=3

33 35 37 39
1 ma 3y2 1+ y2+ y4+ y6+ 0y8+ y10 y12+ O(y14)

7

+ 1 2 1+ 3y2+ y4+ y6 y8+ yl0 yl2 y14+O(y16)
26 28 216 2155 2215 22472

+ 3 1 2
1

3-'
2+ 41 4+ 345 6 3698577 8 20872989 10+O

2' 5 2 '5

—(lna )[—n —
—,'+ —„'(2n +1) m ]+(normalization constant arbitrarily set to zero)

—m + n+ —+——(2n+1) m P — —m ——n—3 2 3 3 3 2 2 2 3 2 3 335

24 24 25 25 2' 2" 2'
33

(2n +1) m

m + n+ + (2n+1) m
2 2 2 29 12 13 12

3 26267 2 3 149 3 79
222 220 221

—m + n+
36

(2n+1) m

3 1377457 2 3 111481 3 119581
21952

I
22152 22252

n— 39
(2n +1)'m P' +O(P' )+O(a ') .

2215
(59)

Then for each non-negative integer n, one can get a well-behaved exponentially damped wave function of the asymptot-
ic series form

(60)
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where f„o=P" and where the f„k with higher values of k are analytic functions of ())) chosen so that %„satisfies the
Wheeler-DeWitt equation (26) order by order in the expansion parameter a '. One can get the successive f„k's recur-
sively from the indefinite integrals

kf —
gnat

k&2 f ~
y npk&2 y [8 g" 2L' f '

1=1

+ [2n p 'L„'&+2( k —l)(1 —3 )L„& (k——l)(2c„+k —1)5(3]f„(k (61)

In each successive integration, the constant of integration
is to be chosen for f„k so that no term with a nonanalytic
In/ factor occurs in the following integration, for
fn(k+()'

For example, evaluating (61) and avoiding In)))) terms
gives

One can see from (69)—(71) that for a large and P small,
where the series (60) may be evaluated to a good approxi-
mation, it gives

'k
nt —1%„=P"e

o k!(n —2k)! 4ma P

yn

„)=0,
(62)

(63)
X 1+0 — +O($2) (72)

f„2= ,', n(n ——1)(t)"F

=
—,', n (n —1)(I')"( I ', ((')+—O-(P"+ ),

f = — (t" 1 — 1+ m)13 4 4

+O(pn +2)

(64)

(65)

where [n /2] =—[largest integer & (n /2)]. For
4ma (I) ))n (n —1), the k =0 term dominates and gives

)I(„=))))"e ", ,'n(n ——1)m 'a «()!) «(n +1)

(73)

whereas for 4ma (t) «(n+1) ', the k =[n/2] term
dominates. If n is even, say n =2l, the latter case gives

f = — [24m +277n —233n +60
3n (n —1)

2048

—12(2n +1) m ]P"+O((t"+2),

q)2& =(21 —1)!!e "(—2ma )

(I) « —,'(2t +1) 'm 'a «(2l+ I )

(74)

(66) but if n is odd, n =2l +1,

+O(P"), (67)

f = [4m +(n —1)(13n +8)m ']()))"
128

q'2(+) =(2l +1)!!e "+'( 2ma —
)

—
Lzl +1

P « —,'(l+1) 'm 'a '« ((I+I) (75)

n (n —1)(n —2)(n —3) p" +O(p" ) (68)
32m

Jn[
j!(n —2j)! 4m

+O n
pn

—2j+2nI

(n —2j +2)! (69)

n —2jfm(3j+))
( —2 )1

~ (70)

n —2j
fn(3j+2) O

(
—2 )' ~ (71)

It is clear from (61) that when the Laurent expansion of
the integrand has no (t.

' term (which would integrate to
a nonanalytic In/ term), each f„k(P) has a Laurent ex-
pansion with only non-negative powers of P, so it is an
analytic function of )I) in a neighborhood of /=0 if the
L„,(P) functions are analytic so that the power series in P
all converge. One can also readily see that 0'„ is sym-
metric or antisymmetric in P, depending on whether n is
even or odd: %„(a,—(t ) = ( —1)"%„(a,)t) ).

For (n +1) '-4ma p &n(n —1), intermediate terms in
k dominate, and the solution (72) is more complicated.

It would be interesting to try to construct Lorentzian
WKB wave packets by superposing 4„'s with very large
n. Perhaps one could then overcome the difficulty
Kiefer' had in trying to construct wave packets follow-
ing the classical trajectories near their turning points in
a. However, this may require extending L„ inward from
the region a )&m '+1+nm where the explicit asymp-
totic expression (72) applies, because that expression
gives %2((a, / =0) monotonically decreasing in magnitude
as a increases. To get a peak in the truncated asymptotic
expression for %2((a,0) at large a requires n &m ', but
then the peak would occur roughly at a -nm, where the
asymptotic expression breaks down by having the succes-
sive terms in (60) of comparable magnitude for k ) ,'n-

One might also wish to expand the no-boundary wave
function in terms of the O'„. Because the no-boundary

2 /pwave function goes as e' ~ at large a when /=0, it
would need to be expressed as an infinite sum of 4„'s,
and the sum of the squares of the coefficients in an ortho-
normal basis of +„'s would not converge. One can see
that the exponentially growing part of the no-boundary
wave function at large a and small P, say as given in the
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—L
asymptotic expression (11) of Ref. 19, is simply +o=e
with m replaced by im, a replaced by ia, and P left alone.

Thus in minisuperspace models with both massless and
massive scalar fields, there are, or at least appear to be,
infinite discrete spectra of solutions of the Wheeler-
DeWitt equation that are regular everywhere (including
a =0, /=+ac) and exponentially damped at a=Do.
These may be considered to be wormhole wave functions.

We do not know which other minisuperspace models
allow such regular, bounded wormhole wave functions,
but the fact that we have found them for the first two
models we have investigated suggests that they may
occur rather generally, thereby describing wormholes in
theories with rather arbitrary matter content. Then one
would not need a highly restrictive theory in order for

wormholes to exist and perhaps mediate black-hole eva-
poration and/or set the effective cosmological constant to
zero.
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