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Observables, gauge invariance, and time in (2+ 1)-dimensional quantum gravity
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Two formulations of quantum gravity in 2+1 dimensions have been proposed: one based on
Arnowitt-Deser-Misner variables and York's "extrinsic time, " the other on diffeomorphism-
invariant ISO(2, 1) holonomy variables. In the former approach, the Hamiltonian is nonzero, and
states are time dependent; in the latter, the Hamiltonian vanishes, and states are time independent
but manifestly gauge invariant. This paper compares the resulting quantum theories in order to ex-

plore the role of time in quantum gravity. It is shown that the two theories are exactly equivalent
for simple spatial topologies, and that gauge-invariant "time"-dependent operators can be con-
structed for arbitrary topologies.

I. INTRODUCTION

The "problem of time" has long plagued attempts to
quantize gravity. In its simplest manifestation, the
difficulty is that the Hamiltonian of general relativity is a
constraint. H thus annihilates physical states and com-
mutes with observables, making it hard to describe, or
even define, dynamics. Moreover, without a suitable
definition of time —provided in most theories by a fixed
background geometry —such basic features of quantiza-
tion as the definition of an inner product and the normali-
zation of wave functions become ambiguous.

These phenomena reAect the fact that the role of time
in general relativity is quite different from its role in the
rest of physics. Coordinate time is merely a parameter,
which can be changed arbitrarily by a diffeomorphism;
the Hamiltonian is the generator of such transformations.
Information about physical time, on the other hand, is
hidden in the field variables themselves: ' the intrinsic
geometry of a pair of spacelike hypersurfaces determines
their location in spacetime, and thus the time interval
which separates them.

Unfortunately, the extraction of information about
physical time from the gravitational field has proven
quite difficult. Various "clock" variables have been advo-
cated; modifications of general relativity to allow new
definitions of time have been suggested; and changes
in quantum theory —from variations of the sum-over-
histories prescription' to "third quantization""
have been proposed. But gravity is hard enough even
without the problem of time, and no approach is yet gen-
erally accepted.

In the past two years, it has become apparent that
(2+ 1)-dimensional gravity can serve as a useful model for
(3+1)-dimensional general relativity. In two spatial di-
mensions, the constraint equations can be solved exactly.
The resulting physical phase space is finite dimensional,
reducing the problem of quantization to one of quantum
mechanics rather than field theory. At the same time, the
conceptual problems of quantum gravity, including the
problem of time, remain, but now in a context in which
they can be much more easily studied.

II. TWO QUANTUM THEORIES

Let us begin with a brief review of the Moncrief-
Hosoya-Nakao and Witten quantizations of (2+ 1)-
dimensional gravity. We work on a spacetime manifold
with the topology IRXX, where X is a compact surface.
In Arnowitt-Deser-Misner (ADM) variables, the metric

20

s ==Pi' dt —
g, (dxt++ dt)(dx +~ dt)

and the Einstein action is '

(2.1)

Two versions of (2+1)-dimensional quantum gravity
have been proposed. The first, due to Wit ten, ' makes
use of the analogy between (2+1)-dimensional gravity
and Chem-Simons gauge theories. It involves no explicit
gauge fixing; states and operators are built out of mani-
festly invariant quantities (holonomies of tlat connec-
tions), and since time translation is a gauge transforma-
tion, the Hamiltonian on the physical phase space van-
ishes. The second version, due to Moncrief' and to
Hosoya and Nakao, ' use a particular gauge-fixing pro-
cedure based on York's "extrinsic time, " in which the
trace of the extrinsic curvature is used as a time variable.
States and operators are defined in this gauge; the Hamil-
tonian is nonzero, and generally quite complicated. '

By comparing these two quantizations, we may hope to
learn something about time in more realistic theories of
quantum gravity. The goal of this paper is to make such
a comparison as explicit as possible. In particular, I
show that if space has the topology of a torus, one can
construct a canonical transformation between Moncriefs
and Witten's variables, and find an operator ordering
which extends this transformation to the quantum
theories. In principle, this procedure should apply to ar-
bitrary spatial topologies, but in practice the problem of
operator ordering becomes very difficult. I show, howev-
er, that it is possible to construct "time"-dependent
operators acting on Witten s diffeomorphism-invariant
Hilbert space for any spatial topology, making dynamics
manifest even with a vanishing Hamiltonian.
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dt d x m'Jg, - —N' (2.2)

m."=&g (K' —g "K),
where

(2.3)

The momentum ~' conjugate to g, is essentia11y the ex-
trinsic curvature; for solutions of the equations of
motion,

is the traceless part of the momentum. Equation (2.9)
means that ~ 'J is transverse, or, in complex coordinates,
that it is a holomorphic quadratic differential on X.

To solve the remaining Hamiltonian constraint &=0,
Moncrief observes that any metric on a surface X of
genus h is conformal to one of constant (intrinsic) curva-
ture k, where k = —1 if h ) 1, k=O if h=1, and k=1 if
h=O. If we write

(2. 1 1)

1
(gkl ~k+I ~l+k )g

2N
(2.4)

where g, is such a constant curvature metric, the Hamil-
tonian constraint becomes a differential equation for A, :

&;= —2V, ir';,
1

g,,g ,(~'"n". ~"m"') &g R—,

(2.5)

which also generate the gauge transformations.
One can alteratively write the action (2.2) in first-order

form, treating the local frame e'„and the spin connection
co,„=—,'e,b, co„"' as independent variables. The action is

then

is the extrinsic curvature of the surface t =const. The
lapse and shift functions N and N' act as Lagrange multi-
pliers for the constraints

,'r e —+,'(g 'g—;,gk&P '"~")e ——=0 . (2.12)2j)(. l ——- 1- — —ik- I —2A,

a
p d xe 77 gi

x Bm
(2.13)

This equation has a unique solution, completely deter-
mining A, as a function of g and Fr.

It is well known that up to spatial diffeomorphisms, the
constant curvature metrics g parametrize the moduli
space A of X. Similarly, the quadratic differentials 5. at g
parametrize the cotangent space to moduli space. If we
choose a set of coordinates I m I for Af, and define con-
jugate momenta by

=2f dt f d x ( —e'je'; &, +e'00, +co,08')

with constraints

0 — ij(g a g a + abc
2 l J J bl CJ

(2.6)

(2.7)

the action (2.2) reduces to

diaz.

S= d~ p ——Hmp
dT

where

f d2 gg 2i.(m, p, r)

(2.14)

(2.15)

The number of constraints has doubled, since the gauge
group is now twice as large —the first-order action is in-
variant under local Lorentz transformations as wel1 as
diffeomorphisms —but both (2.2) and (2.6) are standard
forms for the ordinary Einstein action in 2+1 dimen-
sions.

with A, fixed by (2.12). The physical phase space is thus
the cotangent bundle T*Af, with coordinates m and p
and dynamics determined by the Hamiltonian (2.15).

In principle, quantization is now straightforward. We
promote the m and p to operators on the Hilbert space
of square-integrable functions on A, with canonical com-
mutation relations

A. Moncrief-Hosoya-Nakao quantization [m,P ~]=i5~ . (2.16)
To quantize the action (2.2) or (2.6), we first solve the

constraints, and work directly on the physical phase
space. Moncrief and Hosoya and Nakao begin with the
second-order form (2.2), and choose coordinates in which
the mean curvature

~=g '
g m" (2.8)

is constant on each surface of constant time. The curva-
ture ~ thus serves as a time coordinate, a use first suggest-
ed by York in 3+ 1 dimensions. The effect of this choice
of "extrinsic time" is to decouple the constraints & and

&, . The momentum constraints &, =0 become

The result is a quantum-mechanical system with a simple
space of states, but with highly nontrivial dynamics. In
practice, the Hamiltonian (2.15) will usually be a compli-
cated nonpolynomial function of both coordinates and
momenta, and there will be difficult operator-ordering
problems. It is worth emphasizing, however, that the ap-
pearance of a nonzero Hamiltonian does not contradict
the usual assertion that the gravitational Hamiltonian is a
constraint. We have fixed a gauge and chosen a particu-
lar definition of time; the Hamiltonian (2.15) describes
the evolution of this gauge choice as ~ changes.

V' e'J=o,

where

kl
k1

(2.9)

(2.10!

B. Witten's quantization

Witten's alternative approach to quantizing (2+ 1)-
dimensional gravity starts with the first-order action
(2.6). He observes that the constraints 8' and 8' gen-
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crate the Lie algebra ISO(2, 1), and that the frame e', and

spin connection ~„ together constitute an ISO(2, 1) con-
nection on X. 8' and 8 ' are the curvatures of this con-
nection, and the conditions 8'=8'=0 require the con-
nection to be flat. At the same time, the constraints gen-
erate local SO(2, 1) gauge transformations, thus requiring
us to identify gauge-equivalent connections. The physical
phase space is therefore the moduli space of equivalence
classes of flat ISO(2, 1) connections on X.

Like Moncriefs phase space, this rnoduli space is a co-
tangent bundle, in which SO(2, 1) connections co

parametrize the base space and frames e which satisfy the
constraints are cotangent vectors. Indeed, if we consider
an infinitesimal variation co=coo+5co of a flat SO(2, 1)

connection, the constraints 8'=0 for ~ imply the
remaining constraints 0 '[coo, e =5'�]=0 for the co-
tangent vector 5'. The phase space is thus T'JV, where

Juris

the moduli space of flat SO(2, 1) connections on X.
More concretely, a flat connection is determined,

uniquely up to gauge transformations, by its holonomies
around the nontrivial loops in X, that is, by a group
homomorphism mi(X, e )~SO(2, 1). Under a gauge
transformation 0: X~SO(2, 1), holonomies are conju-
gated by 9( e ). Hence

%=Horn(~, (X, e ), SO(2, 1))/-
where

f, -f~ if f~=h f, h ', h ESO(2, 1) .

(2.17)

(2.18)

(2.19)

This is not quite the whole story, however. Witten has
shown that the constraints 8 ' generate transformations
equivalent to those diffeomorphisms which can be de-
formed to the identity. But the gauge group of gravity is
the full group of diffeomorphisms, including those which
are not isotopic to the identity. The group of
equivalence classes of diffeomorphisms not isotopic to the
identity —that is, the mapping class group 2) of X—acts
on ~, (X, e ), and this action must still be factored from
(2.17), leaving a physical phase space T'JV/S.

Once again, quantization is straightforward. Our Hil-
bert space is the space of L functions on Ã/X). We can
take as coordinates for A'/Xl a set of independent SO(2, 1)
holonomies m (the tilde distinguishes these coordinates
from Moncrief s), which determine co„up to gauge trans-
formations. As in (2. 13), we define canonical momenta

and have been studied by Martin and Nelson and
Regge. '

At first sight, Witten's Hilbert space L (Ã/2)) and
Moncrief's Hilbert space L (JM ) appear to be quite
different. In fact, they are closely related. The moduli
space A of flat SO(2, 1) connections on X is not connect-
ed. One component JVD corresponds in (2.17) to the
discrete embeddings of rr, (X) into SO(2, 1), and it can be
shown that this component is horneomorphic to the
Teichmiiller space of X. " Moreover, the action of J)
on A'0 is precisely the ordinary action of the mapping
class group on Teichmuller space, so JVo/S is the moduli
space% of X.

We must still worry about the remaining components
of A; those which are not homeomorphic to any
Teichmuller space. In principle, their existence implies
that Witten's Hilbert space is larger than Moncrief's.
The difference is probably not important, however. It is
believed that the mapping class acts ergodically on these

remaining components, " which implies, for instance,
that any new operators on the Hilbert space L (Ã/8)
would have to be constant.

But while the Witten and Moncrief Hilbert spaces are
identical, the two descriptions of dynamics seem com-
pletely different. Moncrief finds a nontrivial, time-
dependent, and generally very complicated Hamiltonian.
Witten's Hamiltonian is zero, his states are manifestly
diffeomorphism invariant, and the dynamics seems to
have disappeared. Moreover, in Moncriefs quantization
inner products are defined at fixed ~, while in Witten's
quantization no such time dependence appears. It is far
from obvious that these theories should describe the same
physical system.

III. CLASSICAL EQUIVALENCE

To solve this paradox, let us begin by comparing the
classical theories based on the actions (2.2) and (2.6). For
simplicity, we first consider the simplest nontrivial spatial
topology, that of a torus T . ' Hosoya and Nakao have
studied the evolution of the torus in the ADM formalism
with the time variable ~. As expected from the general
analysis, they find a two-dimensional configuration space
homeornorphic to the usual torus moduli space. This
moduli space can be parametrized by a single complex
number m =m, + im2 lying in the upper half-plane; the
mapping class group is generated by the two transforma-
tions

The action is then simply 1S: m ——,T: m~m+1,
rn

(3.1)

dm~S= dtp (2.20)

[co„(x),e, (x')]= ——5,"e„5'(x'—x) (2.21)

Alternatively, we can define operators corresponding to
the full ISO(2, 1) holonomies of the connection ) cu„,e', (,
involving both coordinates and mornenta. Their commu-
tation relations can be derived from the cornrnutator

and a fundamental region is given by —
—,
' m ~

—,',
mi & l.

Hosoya and Nakao find a nontrivial dynamics for rn:
m (r) describes a semicircle centered on the real axis, i.e.,
a geodesic in rnoduli space with respect to the usual Poin-
care metric for the upper half-plane. This result is not
hard to derive from the action (2.14); for the torus, g and
m are independent of x, and the unique solution of (2.12)
is
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Qg 2k (2g g
—ik- jl)1/21

IJ kl (3.2) giving

also independent of x, so the equations of motion become
fairly simple.

A. Classical solutions from holonomies

do = a +, (dx''+dy' ),

which is periodic under the shifts

(x',y')~(x'+ l,y'),

(3.10)

To compare these results to Witten's formalism, we
must first find the possible ISO(2, 1) holonomies for the
torus. The fundamental group of the torus is Z@Z, so the
physical phase space is parametrized by two commuting
elements of ISO(2, 1), that is, two commuting (2+1)-
dimensional Poincare transformations, up to overall con-
jugation. The SO(2, 1) projections of these transforma-
tions stabilize either a null vector, a timelike vector, or a
spacelike vector, but only in the latter case is the map-
ping from n &(T ) into SO(2, 1) a discrete embedding. For
that case, we can conjugate the two elements of ISO(2, 1)
to the form

k2
(x',y')~ x'+ a + b+ AP

(3.1 1)

+
—

1

7+ .2
ay —kb

7

m = a +
1

b+ AP

(3.12)

From the definition of the modulus m, d 0. is therefore
the metric of a torus with

A, : (t, x,y)~(t cosh', +x sinhA, ,x cosh', +t sinhA. ,y +a),
(3.3)

A2. (t, x,y)~(t coshp+x sinhp, x coshp+t sinhp, y +b) .
i.e.,

A.
2

m2= a+2 ap —kb
)

It is easy enough to write down a flat connection with
these holonomies: for instance, l A,

m =m1+lm2= a+ b + (3.13)

e' '=a dx +b dy, co' '=k dx +p dy (3 4)

where x and y are periodic coordinates with period 1 ~

The metric coming from this choice of local frame is
singular, however; we should instead find a gauge-
equivalent connection for which dete'„%0. Such a con-
nection is

1 2 — 2
p = —2ak, p = —~ a

2
(3.14)

We will later need the momenta conjugate to
Im~, m2I, which can be derived from the definition
(2.13), using (2.3) and (2.4). We find that

e = p(t)dt, —
e ' "=P( t )( A, dx +p dy ),

=a dx +b dy

co'"=o
~"'=o
co =Xdx +pdy

(3.5)

i.e.,

P =P1 +iP2 = —i~ a—
2

lk
(3.15)

where p(t) is an arbitrary function of time. The metric is
then 32

d&2 P2dt2 (a2+P212)dx
2 2

The modulus m and its conjugate p have precisely the
properties we desire. In particular, a simple calculation
shows that

2(ah+—P Ap)dx dy (b +P p )d—y, (3.6)

and the mean curvature of a slice of constant t is

m —-' &+-b
a

+m '=-' b
4

A, a
(3.16)

1;-~ 1K = g"g
2N 'J

/3
(3.7)

so m describes a semicircle, reproducing the results of
Hosoya and Nakao. Further, under the modular trans-
formations of the holonomies,

so to reach Moncrief's coordinates, we should choose

(3.8)

S: (a, l, )~(b,p), (b, p)~( —a, —A. )

T: (a, A. ) (a, n, ), (b,p)~(b +a,p+A, ),
(3.17)

x'=x + a +

A'y'= a +
~2

A,pab+ y
7-2

ap —
A, b

(3.9)

At fixed r, the spatial part of the metric (3.6) can be di-
agonalized by the transformations

m transforms according to (3.1); moreover, the momen-
tum p is fixed by T and transforms as p ~m p under S,
so the symplectic form dm dp +dm dp is invariant.

Witten's coordinates and momenta t a, b, k, pI can thus
be viewed as parametrizing Moncrief's phase space
Im, pI. Indeed, the two sets of variables are equivalent
under a (time-dependent) canonical transformation

p &
dm

&
+p &dm z

=2a dp —2b d A +H d &+d+, (3.18)
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where

ap —kb
7

(3.19)

is Moncrief s Hamiltonian and

F(m&, m&, p, l)= — [(p,—m&A) +mz k~]
1

mp7
(3.20)

generates the transformation. The passage from
Moncrief's to Witten's variables thus represents a stan-
dard procedure in classical mechanics: we solve the
equations of motion by finding a time-dependent canoni-
cal transformation to new time-independent coordinates
and momenta.

B. Classical solutions as quotient spaces

1 1
t =—coshu, x =—sinhu .

7 7

The Minkowski metric is then

ds =—d7 ——du —dy
1 p 1

4

(3.21)

(3.22)

It is instructive to consider an alternative derivation of
the metric (3.6). As elements of the Poincare group, the
holonomies A, and A~ are isometrics of the Minkowski
metric. Together, they generate a subgroup H of
ISO(2, 1). If we can find a fundamental region 9' of Min-
kowski space upon which the action of H is properly
discontinuous, the metric and spin connection induced on
the quotient 2/H will have exactly the right holonomies.
This is a variation of the construction described by
Deser, Jackiw, and 't Hooft ' for point particles in 2+1
dimensions, in which elements of the Poincare group are
used to glue together Aat coordinate patches to form con-
ical spacetimes.

To find 7, let us define new coordinates

eralized to surfaces of arbitrary genus, allowing powerful
techniques of hyperbolic geometry to be brought to bear.
Using such techniques, Mess has shown that for any to-
pology of X, each equivalence class of discrete embed-
dings m. , (X)~ISO(2,1) gives rise to a unique maximal
Einstein spacetime. While the metric of such a spacetime
cannot ordinarily be written explicitly, many of its prop-
erties, such as the existence of an initial or final singulari-
ty and the behavior near that singularity, can be studied.

IV. COMPARING QUANTUM THEORIES

It remains for us to see whether the classical
equivalence of these two approaches to (2+ 1)-
dimensional gravity extends to an equivalence of quan-
tum theories. To investigate this question, let us begin
with Witten's Hilbert space, and try to define operators
m and p to represent Moncrief s coordinates and momen-
ta.

Witten s Hilbert space is characterized by self-adjoint
operators a, b, A, , and p, with commutators, derived from
(2.21), of the form

[a P]=P b]=—. (4. 1)

We can try to construct operators m „m z, p, , and pz by
replacing the holonomies in the classical expressions
(3.12) and (3.14) with the corresponding operators. The
results are not self-adjoint, however, and the reordering
of operators to make m and p self-adjoint is not unique;
we need some principle to fix an operator ordering.

Modular invariance provides such a principle. If the
two theories are to be equivalent, the modular transfor-
mations (3.17) of the holonomies must induce modular
transformations (3.1) of m~ and m&. To achieve this, we
can start with the complex expressions (3.13) and (3.15),
and define

and a simple calculation shows that the surfaces of con-
stant 7 have mean curvature 7, so 7 is Moncriefs time
coordinate. In the new coordinates, the transformations
(3.3) are

lkm= a+
7

—1

b+ P
7

lkp= —i7 a—
(4.2)

A&. (r, u, y)~(r, u+A, ,y+a},
Az. (w, u, y)~(r, u +p, ,y +6} .

(3.23)

Hence on a surface of constant 7, a fundamental region 7
for the action of ( A, , A~ ) is simply the torus
(u, y)-(u A+, ,y +)a-( up+, y+ )bTo put this. in a
more standard form, we can define new spatial coordi-
nates (at fixed r )

which are easily seen to transform correctly. m and p are
not self-adjoint, of course, but they should not be, since
the classical variables m and p are not real; the "real"
and "imaginary" parts

m, = ~ (m+m ), p, =
—,'(p+p ),

(4.3)

x'= a +
72

y'= a +
72

ay+ —u
72

Ay
—au

(3.24)

m =—(m —m ), p =—(p —p ),
Zl 2l

are manifestly self-adjoint.
It follows from (4.1) that m and P satisfy the standard

canonical commutation relations

It is easily checked that the spatial metric is again (3.10),
with the periodicities (3.11)

The advantage of this approach is that it may be gen-

[m, ,p, ]=[m, ,p~]=i (4.4)

with all other commutators vanishing. Moreover, if we
define the Hamiltonian operator
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H= Q P
7

we find that

(4.5)

i =[m, H], i =[p,H] .
dT

(4.6)

V. TIME-DEPENDENT OPERATORS

On a two-torus, of course, gravity is simple. If we try
to generalize these arguments to more complicated topo-
logies, we quickly encounter technical difficulties. For
higher-genus surfaces, no explicit representation of the
metric analogous to (3.6) is known; the work of Mess on
the construction of metrics from holonomies is the closest
thing we have to an exact characterization of the classical
phase space. Nor is the solution of Moncrief's Hamil-
tonian constraint (2.12) known, although it is known to
exist classically.

Nevertheless, we can try to generalize the construction
I

Moncrief's moduli I and their conjugate momenta can
therefore be viewed as "time"-dependent operators in
Witten s Hilbert space, satisfying the appropriate Heisen-
berg equations of motion. Alternatively, we can pass to a
Schrodinger picture by diagonalizing m, (i) and m2(r);
the equations of motion (4.6) then guarantee that states
built from linear combinations of such basis elements
with ~-independent coefficients will satisfy the gravita-
tional Schrodinger equation. Observe also that the time-
independent inner product of Witten's Hilbert space is
equivalent to the inner product of such Schrodinger wave
functions at fixed ~. Inner products and norms can thus
be defined without ever referring to the choice of time
variable.

From this point of view, ~ is simply a new parameter
introduced into Witten's quantization to label certain
operators and states. No new physics is added in this
process. "Time" can be "measured" only by solving for v

in terms of the moduli, and this is equivalent to eliminat-
ing v and looking at correlations among operators built
purely out of holonomies. Nevertheless, v is a useful pa-
rameter. Its physical interpretation comes from examin-
ing the behavior of solutions; for instance, by construct-
ing wave packets which approximate classical solutions,
we can recover the interpretation of ~ as a mean curva-
ture. This viewpoint is close to that of Rovelli, who ar-
gues that quantum mechanics can be defined in terms of
variables which are constant on each classical trajectory,
without any explicit reference to time; a similar approach
follows from the covariant phase-space methods of
Ashtekar and Magnon and Crnkovic and Witten.

Dn'=de'+e' 'co&n, , (5.2)

and the zero-form p is determined by the condition that
n, have unit norm:

p =("'g""B„TB„T)' (5.3)

Given the function T(x), we can define the Hamiltoni-
an H, as the area of the surface T(x)=r The a.rea ele-
ment dp is determined by the condition

(n, e')dp=p 'dTdp=dV, (5.4)

where d V =(dete'„)d x is the spacetime volume element,
so

H, = f dp, = f dV p5(T —r} .
T=7

(5.5)

Similarly, for any two-form a which commutes with H„
we can define a "time"-dependent operator

A(~)= f a= fadT5(T r) . — (5.6)
T=7.

It may now be checked that such an operator obeys the
Heisenberg equations of motion, at least up to possible
ambiguities in operator ordering. We need one basic
commutator,

[H„T(x)]5(T(x) —r) = i5( T(x) r), —(5.7)

which follows from quite general considerations: for any
spacelike surface, the extrinsic curvature and the area
element are always canonically conjugate. This result
can also be verified directly from the definitions (5.1) and
(5.5) and the commutator (2.21). We then have

of v-dependent operators to more complicated topologies.
The key ingredient in the construction of the moduli m
and p was the identification of the ~ dependence of the
metric (3.6). Although this identification was phrased as
a coordinate choice, it can be expressed more invariantly.
As Tsamis and Woodard have stressed, a quantity
defined in a particular gauge or coordinate system can al-
ways be "invariantized" and viewed as a (usually nonlo-
cal) gauge-invariant object. In our case, r can be defined
as follows: it is the value of the scalar function T(x)
which is given at x by the trace of the extrinsic curvature
of the unique surface of constant mean curvature through
X.

This definition of T(x) holds for a spacetime of arbi-
trary spatial topology, and takes a rather simple form in
terms of Wit ten's variables. If we define one-forms
e'=e'„dx" and co'=co'„dx", T(x) satisfies

dT=pn, e', e' 'e, eb(Dn, ,'Te, )—=—0, (5.1)

where D is the covariant exterior derivative,

[ A (~),H, ]= f a(x)[dT (x)6( T(x) ~),H,]—
= fa(x)[d([T( )x, H, ])5(T(x)—r}+dT(x)[&(T(x)—&),H-, ]I

= f a(x)d I[T(x),H, ]5(T(x) r}I+fa(x)[dT(x)[—5(T(x) ~),H, ]—[T( x),H, ]d5(—T( x)
—~)I . (5.8)



42 OBSERVABLES, GAUGE INVARIANCE, AND TIME IN. . . 2653

The first term in (5.8) is

f a(x)d I [T(x),H, ]5(T(x) r—)]

=i fda(x)5(T(x) r—) . (5.9)

In the classical limit, in which we replace commutators
with Poisson brackets and operators with commuting
classical observables, this becomes

—i ax Tx 'Tx —~=i (5.10)

The second term in (5.8) vanishes in the classical limit,
since in that limit

dT(x)[5( T(x)—r), H, ]=dT(x)5'(T(x) r)—
X [T(x),H, ]

=d5(T(x) —r)[T(x),H, ] .

(5.11)

a+ =(e '+ie ")„,lk
7

b + P (e{2)+.e(l))
(5.12)

VI. DISCUSSION

The quantum analog of these relations will depend on the
operator ordering in T(x) and H„but if we can find a
suitable ordering, A (r) will obey the Heisenberg equa-
tions of motion. In particular, this means that the prob-
lem of finding operators to represent Moncrief's moduli
for an arbitrary spatial topology reduces to one of finding
a complete set of commuting operator-valued two-forms
a(x) which also commute with H, . In this regard, it is

worth noting that the torus modulus (4.2) can be written
without any explicit r dependence, since, by (3.5),

operators in his Hilbert space can be constructed, and
dynamical questions can be asked and answered. Fur-
ther, at least for the case of the torus, where the Hilbert
spaces can be written down in detail, the natural time-
independent inner product in Witten's variables is
equivalent to the fixed-time inner product of Schrodinger
wave functions in Moncrief's variables. No modification
of general relativity is needed in order to formulate a sen-
sible quantum theory.

The important question, of course, is whether these
conclusions can be generalized to 3+1 dimensions. The
details certainly cannot. We have no explicit characteri-
zation of the space of solutions of the constraints, and
hence cannot work directly on the physical phase space.
In particular, holonomy variables cannot be used to
parametrize solutions of the constraints, although the
loop variables of Rovelli and Smolin may come close.
Furthermore, operator ordering, already a problem in
2+1 dimensions, becomes much more difficult when the
physical phase space is infinite dimensional.

Nonetheless, some of the lessons of (2+1)-dimensions
should still apply. We have seen that dynamics can be
described even when the Hamiltonian vanishes, and that
an inner product can be defined without reference to
time. The problem of time does not force us to reformu-
late general relativity or quantum mechanics; there is no
need to alter classical gravity to introduce a physical time
variable, and "third quantization" of the Wheeler-
DeWitt equation, while an interesting idea, is not re-
quired. The (2+1)-dimensional model strongly suggests
that while the problem of time is a difficult technical
problem —that of solving the constraints —it need not be
anything more.

Note added. After completing this paper, I received a
paper from Moncrief which advocates a related but
somewhat dift'erent view of the relationship between
holonomy and ADM variables.

We have seen that, up to possible problems of operator
ordering for genus greater than one, the time-dependent
quantization of (2+1)-dimensional gravity proposed by
Moncrief and Hosoya and Nakao is equivalent to
Witten s time-independent quantization. Despite the fact
that Witten's Hamiltonian vanishes, "time"-dependent
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