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The quantization of a simple dynamical system in which a unitary time evolution appears only
within a certain approximation is studied in detail. The probabilistic interpretation of quantum
mechanics in the regimes in which time is not defined is discussed and shown to be consistent.

I. INTRODUCTION

The idea that quantum mechanics is well defined even
if time evolution is an approximate concept, which
emerges within a certain approximation, has received a
certain amount of attention.! The motivations for con-
sidering quantum systems without time come from
research in quantum gravity and in nonperturbative
string theory. Even though a complete quantum theory
of the gravitational field is still lacking, there are certain
inferences that can be made just from the basic principles
of quantum theory and of gravitational physics (general
covariance). Among these inferences, one of the most in-
teresting is the possibility that at a fundamental level
time is, in a precise technical sense, not well defined. We
will recall the precise statement of this hypothesis and its
motivations in the next section.

If time is not well defined at the fundamental level,
then the following natural question arises: Does the ab-
sence of time imply that standard quantum mechanics
cannot hold at the fundamental level, or does quantum
mechanics still hold even in the absence of a well-defined
time evolution?

The idea that standard quantum mechanics can be
directly applied to physics without time evolution has
been considered and analyzed in detail in Ref. 2. In this
paper we consider a simple model in which this idea may
be implemented. This application is meant to give con-
creteness to the theoretical discussion in Ref. 2. The
model we consider here is complex enough not to be trivi-
al (in particular, it is not linear®); but it is simple enough
to be completely solved (and in more than one way) both
classically and quantum mechanically. This allows us to
discuss the features of the formalism in detail, and, what
is crucial, the possibility of giving a completely coherent
interpretation to the formalism (in the sense of quantum
mechanics).

We will show that a quantum-mechanical system can
be constructed and that the system admits a consistent
interpretation even if time is not well defined. Moreover,
we will show a way in which a standard time evolution
may appear within a certain approximation of the theory.

The paper is organized as follows. Section II recalls
what we mean by a dynamical system with no time, and
the reasons for considering these systems. The model is
introduced in Sec. III and quantized in Sec. IV. In Sec. V
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we discuss how a time evolution appears in a certain ap-
proximation, and in Sec. VI we discuss the interpretation
of the system beyond this approximation. Section VII
contains the conclusions and some relevant considera-
tions.

II. DYNAMICAL SYSTEMS WITHOUT TIME:
DEFINITION AND MOTIVATIONS

A Hamiltonian dynamical system is defined by a phase
space S, which is a symplectic manifold, and by a Hamil-
tonian H, which is a smooth function on S. If o is the
symplectic two-form on S (which defines the Poisson
brackets structure), then the dynamics is given by the
Hamiltonian equations

(below, we translate in coordinate language), where the
motions s(¢) in S are given by the integral lines of the
vector field X:

:i
ot

Many dynamical systems considered in fundamental
physics can be put in this form, but not all of them. Cer-
tain systems admit only a slightly more general formula-
tion, called presymplectic formulation. Any Hamiltonian
system can be put in presymplectic form as follows. Let
R be the real line and ¢ (the time) be in R. Then the man-
ifold P =S X R, equipped with the two-form

m=o0—dH Adt , (3)

(2)

is a presymplectic manifold, and the Hamiltonian equa-
tions (1) can be expressed on S by

The relation is given by the fact that the integral curves
of y in P are the graphs of the motions s (¢) defined by the
integral curves of X in S by Eq. (2). Note that Y is
defined by Eq. (4) only up to rescaling, and therefore its
integral lines are defined only up to reparametrization,
which of course does not affect the corresponding
motions s (2).

Now, there are in physics certain dynamical systems
that admit a presymplectic formulation, but not a Hamil-
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tonian (symplectic) formulation. We call these systems
dynamical systems without time. General relativity, as
well as any generally covariant (nonperturbative) version
of string theory, are, most likely, systems of this kind.
[More precisely, a Hamiltonian formulation of general re-
lativity (in a strict sense) is not known.]

In coordinate language, if g; and p' are canonical coor-
dinates, then the presymplectic formulation is given in
terms of the coordinates (q;,p',t). The presymplectic
form (3) is

m=dp'Ndq,—H(p,q)\dt (5)

and Eq. (4) defines an evolution in a fictitious time param-
eter, generally denoted T:

49 _ dt 3H  dp'

dp' _ _ dt oH
dr dr 3p'’ dr ’

6
drt 9q; (©

These equations are invariant under reparametrization of
7. The physical motions g (¢) are obtained from the solu-
tions of the equations (6) by eliminating 7, namely, by in-
verting ¢(7) and by

q;(t)=gq;(7(2)) . (7

A common form in which presymplectic systems appear
in fundamental physics is as constrained Hamiltonian
systems with vanishing canonical Hamiltonian. These
systems correspond to reparametrization-invariant La-
grangian systems. The constraint surface of these sys-
tems, supplemented by the restriction of the symplectic
form on it, is the presymplectic space.

One reason for using the presymplectic formulation,
for example, is that it provides the only form of a mani-
festly Lorentz-invariant canonical theory. Indeed, any
Hamiltonian formulation always corresponds to a specific
Lorentz time, and therefore breaks Lorentz invariance.
A presymplectic formulation, on the contrary, may corre-
spond to different Hamiltonian formulations, one for
every Lorentz time. For instance, a free particle is
represented on the phase space with canonical coordi-
nates, x and p,, by the constraint

C=pﬂp”——m2~0 . (8)

The constraint surface is the presymplectic manifold, and
the orbits defined by the integral lines of the induced
presymplectic two-forms are of course

xt=pHtr+x§ . 9)

One may identify the Hamiltonian time ¢ of Eq. (5) with

t=x0, (10)

and obtain a Hamiltonian formulation; but one can also
identify ¢ with a different Lorentz time, say,
-1/2
v
x4+ —=x!,

C2

2

v
=73
c

1= (11)

and obtain a different (equivalent) Hamiltonian system
that represents the same physics in terms of a different
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choice of time. (In this case, of course, different times are
measured by the clocks of observers in different inertial
motions.) Thus, the relativistic particle dynamics admits
many equivalent nonmanifestly Lorentz-invariant Hamil-
tonian formulations and one Lorentz-invariant presym-
plectic formulation.

As we said, there are systems that can be formulated in
the presymplectic formulation, but which do not have
any Hamiltonian formulation. Among these a prominent
one is general relativity. The canonical formulation of
classical general relativity can be given by the Arnowitt-
Deser-Misner (ADM) constraints surface equipped with
the induced presymplectic two-form. This formulation is
perfectly generally covariant. [It is often stated that the
ADM formulation breaks general covariance, or breaks
the relativistic symmetry between time and space. This is
wrong. It is a consequence of the unfortunate original
form in which the ADM canonical theory was developed.
The phase space of general relativity (and its structures)
can be introduced as the space of the solutions of Einstein
equations, without any reference to spacelike hypersur-
faces or something similar.*] The absence of a preferred
Hamiltonian formulation reflects the fact that there is no
perferred choice of time in a generally covariant theory.

Moreover, there are reasons to believe that there is no
Hamiltonian formulation of general relativity. This is
suggested first by the fact that no such formulation has
been found up to now, and second by the fact that cosmo-
logical models tend to have this property.

Physically, nothing really strange is going on. Sup-
pose, as an example, that the geometry of the Universe
had just one degree of freedom, its radius R, and that the
only matter field was a constant scalar field ¢. Suppose
the dynamics is such that, for every classical trajectory,
the value of the scalar field is bounded (oscillates) and the
value of the radius reaches a maximum and then de-
creases, so that any classical trajectory turns out to be
closed. Then the evolution cannot be described by a
Hamiltonian system, essentially because neither the field
¢ nor the radius R can be chosen as good clocks for the
entire history of the system. Thus the classical physics of
these “systems with no time” presents no difficulty for
the intuition.

But is there a quantum version of such a model? Note
that no Schrodinger equation can hold for this system,
because any quantum system described by a Schrodinger
equation has a classical limit that is a Hamiltonian sys-
tem.

It is an old idea that time is a property of macroscopic
objects, which loses its meaning at the Planck length.
(The relation between very short distances and global
properties of the classical orbits will be discussed later.)
General relativity teaches us that the role of the Poincaré
group and the fundamental role played by the Hamiltoni-
an are just consequences of a particular vacuum solution
of the equations, and have no fundamental significance.
Thus, it is natural to inquire whether quantum mechanics
can deal with systems in which a Hamiltonian plays no
fundamental role. It is generally accepted that, at a fun-
damental nonperturbative level, any theory that includes
gravitation, for instance nonperturbative string theory,
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should be generally covariant; therefore, not only quan-
tum general relativity, but any theory that claims to in-
clude high-energy gravitational physics, has to face prob-
lems of this type. The class of the presymplectic dynami-
cal systems was singled out in Ref. 2 as a natural class of
systems for dealing with the absence of time. Indeed, this
class includes general relativity, it contains systems
which may have no time, but the presymplectic systems
are still close enough to Hamiltonian systems so that
quantum mechanics can be applied. In the following sec-
tions we will introduce a simple presymplectic system
that does not admit a Hamiltonian formulation and study
its quantization.

III. THE MODEL AND ITS CLASSICAL DYNAMICS

We consider the phase space with canonical coordi-
nates

91,9:P1-P2  {9ip;1 =8 (12)
and the constraint
C=1lpi+tpi+tqi+tg;)—M~0. (13)

The constraint surface C=0 is a presymplectic space.
No Hamiltonian system can correspond to this dynamical
system, since the presymplectic space is compact and
therefore cannot contain any S XR structure. It is
straightforward to integrate the equations of motion,
namely, to find the integrals lines of Y [see Eq. (4)].
These are

qg;=a;sin(7+¢;) . (14)

The orbits on the constraint surface are the ones for
which

al+aj=2M , (15)

and since orbits with the same support describe, by as-
sumption, the same physics, we should restrict ourselves
to the orbits

g,=V24 sin(7),
N (16)
q,=V2M —2A4 sin(t+¢) ,
where the range of the integration constants is
0< A<M, 0Z¢<27. (17)

Any other orbit described by the parametric equations
(14) can be obtained by a 7 reparametrization. Note that
for m<¢ <27 we have the same orbits as for 0=¢ <,
but with reverse orientation.

This set of orbits is given by the manifold of the el-
lipses that are inscribed in a rectangle with diagonal
equal to M. This manifold constitutes the physical phase
space S, of the system. For 4 =0 and 4 =M the orbit
does not depend on @, so that the topology of the physi-
cal phase space is the one of a sphere.

The parameter evolution (16) is not, by itself, observ-
able. In other words, it has no physical meaning. What
does have physical meaning is, for instance, the evolution
of one of the coordinates in terms of the other one. By el-
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iminating 7 we have
g,(q;)=V'M/A —1[cosdq, tsinp(24 —q?)'"*].  (18)

The function g,(-) given by Eq. (18) defines a one-
parameter set of physical observables: For every real
number ?, g,(¢) gives a classical physical observable
which is interpreted as “the value of g, when ¢, has the
value ¢ In other words, we may see g, precisely as a
time variable, but with two differences. First, the choice
of it (rather than any other function of ¢, and q,) as the
time variable is arbitrary; second, not likely a true time,
the range of ¢, is bounded and depends on the orbit. For
certain orbits the question “where is g, when g, has the
value #” has no answer, because g, never reaches the
value ¢ in that orbit.

Two other observables are simply 4 and ¢. They are
given in terms of the original coordinates by

4A=2M+pi—pi+qi—q},
_ P19 Py

tang
PP 14,9,

A and ¢ (as well as, of course, any function of them) are
constant along the orbits and therefore are good coordi-
nates on the physical phase space S,;,: They are physical
observables. Note, in fact, that they have vanishing Pois-
son brackets with the constraint, as required for physical
observables by the general theory of constrained systems.
It is interesting to note here that also the observable
q,(1), for every real t, has vanishing Poisson brackets
with the constraint, and is therefore well defined on Sph
(the space of the orbits). (It is sometimes stated that if
gauge invariance, as here, is related to evolution, then
also non-gauge-invariant objects are physical observables.
We believe that it is essentially a matter of terminology.
See Ref. 2 for a detailed discussion of this point.) The
Poisson brackets between A4 and ¢ are easily computed

(6, 4]=1. (20)

In the quantum theory the operators corresponding to A
and ¢ must have, up to # terms, this commutator algebra,
and they must have a spectrum included in the rectangle
(17).

It will be useful for what follows to consider also the
observables

L.=3(pipr+9:9)),
L,=+1(p1g,—P2q1), 21)
L.=lpi—pitqi—q3}) .

They are related by

2
L3+L3+L3:—A§— . (22)
They are related to 4 and ¢ by
M
L,=A4— 5
L=V A(M — A)cosé , (23)
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Ly=\/A (M — A)sing ,
and their Poisson brackets are

{L,,L,}=L,, {L,,L,}=L,, {L,L,}=L (24)

X

y -
In terms of the L observables, g,(¢) is given by

q,()=(M /2+L,) '[L,t+=L (M+2L,—t*)'*]. (25

IV. QUANTIZATION

Let us assume that a quantum version of the system ex-
ists. Then the observables L should be represented by
self-adjoint operators L with commutation relations given
by i# times the Poisson brackets (24).>% Moreover, in or-
der that Eq. (22) be preserved in the classical limit, we
must have

L}4+L2+02==— . (26)

It follows, using the well-known representation theory of
the su(2) algebra, that the theory can be quantized only if

2

—Ai—=h2j(j+1) , 27)

where j is integer or half-integer. Then the Hilbert space
of the quantum theory has dimension 2j+1 and on the
basis vectors |m ), m=—j, ..., +j, defined by

Lim)=m|m), (28)

the operators L are given by the standard expressions
that can be found in any textbook of quantum mechanics.
It follows that

AlmY=M/24+m)\m) (29)

and

Ve N ~ ~
singlm y=(M?/4—L}) V4L (M?*/4—L}) /%,
(30)

e ~ ~ ~
cosp|lm ) =(M?*/4—L}) V*L,(M?/4—L})""* .

These operators are well defined, and self-adjoint; they
have the correct commutation relations (which repro-
duce, up to # terms, the classical Poisson algebra), and in
the A—0 limit their spectrum goes to the classical range
of variability of the corresponding classical observables.
This provides a linear space, a scalar product, and a
complete set of self-adjoint operators that represent ob-
servables. In any given state, we may measure any of the
elementary observables, and the standard rules of quan-
tum mechanics will provide us with the probability distri-
butions of the outcome of the measurements. Since all
the operators that we have introduced are self-adjoint,
the properties of their expectation value required by the
probabilistic interpretation are necessarily satisfied.
However, the most intuitive set of observables is given
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by the ‘“evolutionlike” observables g,(¢). Let us intro-
duce on the Hilbert space H the two symmetric operators

2, (=f(L )L, =(M+2L, — )L,
X(M+2L,—tH"*1f(L,),

R _ (31)
fiLH)y=vM/n2—-L,,

which are well defined, because functions of self-adjoint
operators are well defined. These operators can be used
to describe “evolution” in the quantum context. We will
discuss these operators in detail later.

V. THE EMERGENCE OF TIME

In the next section, we will discuss the physical inter-
pretation of the theory in the general case. In this section
we discuss how classical evolution is recovered from the
quantum theory. Indeed, is it possible that the dynamics
of the classical system, in which we see two coordinates
(g, and gq,) evolving one with respect to the other, may
emerge from the 2j +1 states |m ) and from the L opera-
tors?

We start by casting our system in a more intuitive
form. We define the Fock coordinates

—ig,), a,-+=-—_2~(pi-+-iqi), N,=ala, . (32

Note that these functions on the phase space do not com-
mute with the constraint; therefore they are not physical
observables, nor do we expect that they will be well-
defined observables on H. We have

fa,a,}=i (33)
and

L.=ala,+ala,), (34)

Lyzé(a}raz—a;al) , (35)

L,=Yaja,—aja;). (36)

This suggeits that we may consider a Fock-space quanti-
zation of @; and a,:

alln,m)=Vn+iln+i,m), (37)
alln,m)=Vm+1iln,m+1), (38)
a,ln,m)=vnln—1,m), (39)

a,ln,m)=Vmln,m—1) . (40)

It is easy to check that with the ordering given in Egs.
(34)—(36) the correct commutation relations of the L
operators are preserved. In terms of the L operators, the
constraint is given by Eq. (22), so that the quantum Dirac
constraint equation is

(L2+LI+L2=M*/4)|n,m)=0. (41)

Since
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N, +HN,

LI+L2+L}= S

(42)

-~ 2
N,+N,
2

we have that the Dirac quantum constraint (38) is solved
by the states with

(N, +Ny)n,m)Y=2jln,m) , 43)
where, as before,
jU+H=M?/4. (44)

The states that solve Eq. (43) have n +m =2j. There are
precisely 2j+1 of these states, so we obtain again the
previous result: The subspace of the Fock space spanned
by these vectors is unitarily equivalent to H, the relation
being given by

ImYe|2j—m,2j+m) . (45)

This reformulation [which is a standard technique for
building representations of SU(N) groups in terms of
Fock operators] is interesting here because it allows us to
represent the states in an intuitive way. Indeed, let ¢,(q)
be the nth eigenfunction of the harmonic oscillator; then
we may represent the states |n,m ) in terms of the
L,[R?] functions ¥(q,,q,) as

ln,m)d(q,q,)=1,(q,)¥,,(q;) . (46)
Our physical states |m ) are represented by the functions
|m><—>¢m(¢11,‘h):¢21—m(‘h)¢2j+m(‘12) ) 47

so that a generic state in the “‘coordinate representation”
has the form

+J
¥g,9,)= 3 lcm¢2j—m(ql)¢2j+m(q2)’
m=—j
+j (48)
S len*=1.

m=-—j

Note that these functions satisfy the differential equation

o’ o? .
—ﬁzg—ﬁzw +gi+q3—(2j+1) [¥(q,,4,)=0,
1 2

(49)

which is (up to the crucial issue of ordering) the
coordinate-picture Dirac constraint equation. The repre-
sentation (48) of H allows us to visualize the quantum
states in the same ¢,,q, space in which the classical or-
bits were considered, and they will also allow us to visual-
ize the classical limit of the theory.

Consider for a moment a fictitious Hamiltonian system
with Hamiltonian given by the constraint C. Let
Y(q,,q9,,t) be a solution of the time-dependent
Schrodinger equation

i g1,92,0)=Cilg ,q0) (50)

Given any of these solutions, we may obtain a state of our
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constrained system by a time average. Indeed, the func-
tion

. 1 27
¢(q1,q2)—2~7;f0 W(g,,q,,1)dt (51)

is in H, because the integral projects out the zero energy
component. Note that since everything is periodic in ¢
with period 2, it is sufficient to integrate in the bounded
interval. Now, the time-dependent system is a double os-
cillator on an additional constant negative potential. Let
us assume from now on that M is very large compared to
#i. Consider a coherent state of the double oscillator
which follows a classical trajectory. Its time average has
support on the smeared support of the classical trajecto-
ry. Therefore, for big enough M, there are states of our
system that are described by a wave function ¥(q,,q,)
which looks like the classical trajectory, but a bit
smeared (see Fig. 1). Let the state

v-j
d}(A.dbl(ql’qz): S .C,(,,A’Mll/zj—m(ql Wi+ m(qy) (52)

m=-—j

be this coherent state that has support around the classi-
cal trajectory (A,4). On such a coherent state, the ex-
pectation value of A will be given by A, and the spread is
small (recall that j >>1). Therefore,

¢,,~0 unless (M/24+m)~A4 . (53)

Let us consider a measuring apparatus that is able to per-
form the following measurement. It measures whether,
at a given value ¢ of g,, the coordinate g, is or is not in
the interval [g,,q9, +Aq] (see Fig. 1). The apparatus is
also able to perform a sequence of measurements for a se-
quence of successive t. Let us assume that the interval Ag
is big enough compared with the quantum spread of the
wave function around the classical trajectory, so that the
projection of the wave function is negligible. It is clear
that the sequence of measurements cannot be dis-
tinguished from a sequence of classical measurements of
a system evolving in the time z.

Can such an apparatus be described in the quantum

classical orbit

support of the coherent
state wave function

FIG. 1. A classical orbit and a coherent-state wave-function
support in the extended configuration space.



42 QUANTUM MECHANICS WITHOUT TIME: A MODEL

formalism that we constructed? Consider the operators
@5 (1) defined at the end of the preceding section. Since
they are symmetric they can be diagonalized. Let

P[iqz‘qﬁAq](t) be the projection operator that projects on

the eigenspace of @it(t) with real eigenvalues contained in
the interval [¢,,9, +Aq], and

—_p+ —
Pl +8q1 TPy g 1 ag) (T Prg, 4 +ag1(1) - (54)

It is clear that this operator represents exactly the mea-
surement that we described. Note that the projection
remains in H, namely within the finite-dimensional sub-
space defined by Eq. (45).

Let us assume that the system is in one of the coherent
states described above. As long as ¢ is smaller than V2 4
[see Eq. (16)], we have

(YIPr, 4+ (D) ~1. (55)

As long as the interval [g,,q, +Aq] is large compared to
the width of the coherent state, the measurements do not
disturb the quantum state. The evolution in ¢ observed
by a sequence of measurements described by
P[qz,qz+Aq](t) is precisely the evolution that we expect

from the classical dynamics.

If we decrease the width Ag of the interval, the wave-
function collapse begins to become nontrivial. In the col-
lapse, components other than the ones that satisfy Eq.
(53) become excited. As long as the c¢,, components that
we excite are still in the range m >M /2—1t2/2, i.e., as
long as after the wave-function collapse

m>M/2—t*/2=c, ~0, (56)

Eq. (55) continues to hold. The quantum properties of
the system appear, but the evolution in ¢ is well described
by a regular unitary evolution. Within this approxima-
tion, the operator, say, @;(t) is the precise analog of the
Heisenberg operators

q(n)=eMige 1A (57)

of standard quantum mechanics in the Heisenberg pic-
ture.

The nonstandard behavior appears if we further de-
crease the width, or if we reach a value of ¢ such that Eq.
(56) does not hold anymore. At this point we have

(1/1|P[o,+co](t)|l/1)<1 . (58)

Therefore, the evolution in ¢t becomes nonunitary.

Thus, there is a certain range of states and a certain
range of measurements within which the system behaves,
in the first approximation, precisely as a standard quan-
tum Hamiltonian system. This regime is defined by Eq.
(56). We shall refer to this regime as the Schrodinger re-
gime. Therefore, there is no contradiction between the
quantum mechanics of the systems that we are consider-
ing and the experimental evidence of the flow of time. In
the next section, we inquire about the behavior of the sys-
tem beyond this Schrodinger regime.
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VI. INTERPRETATION OF THE SYSTEM
IN THE ABSENCE OF 1‘IME:
THE OPERATORS g, (?)

In the preceding section we have shown that, in a cer-
tain class of states, there is a class of observables that
have an *‘evolution” which reproduces the standard uni-
tary time evolution and the standard wave-function col-
lapse of Hamiltonian quantum mechanics. This con-
clusion is not new, since it has been suggested several
times that a standard Schrodinger quantum mechanics
may appear as the approximation of a Wheeler—DeWitt-
like theory such as ours. The crucial question, however,
is whether or not the theory admits an interpretation also
beyond this approximation.

Let us consider the problem in two steps. First of all,
we note that the quantum system and its interpretation

are well defined. For instance, the observables /T, STI’I\(I),

and cT)Ed) form a complete algebra of observables. Any
classical measurement on the system can be described by
a function of 4 and ¢ [as we saw is possible for g,(#)];
any quantum measurement, according to the standard in-
terpretation of quantum mechanics, corresponds to a
classical measurement, and it therefore can be described
by a suitable function of the operators A, s/i;(b, and cgs\dn
or of the operators L.

The outcome of the measurements on any state will be
given by the rules of the standard probabilistic interpreta-
tion of quantum mechanics. Since the basic operators are
self-adjoint operators, no contradiction will emerge as far
as probability amplitudes are concerned. Thus, we may
conclude that the quantum system is well defined both
within and outside the Schrodinger approximation.

However, there still is an open question. How do we
relate the Schrédinger behavior in the approximation and
the apparent no-time behavior beyond the approxima-
tion? We introduced two different sets of operators for
describing the system in the two different regimes. How
are they related? Of course there is no problem in
measuring A and ¢ also in the Schrdodinger regime. The
problem is when we want to measure the g,(t) observ-
ables outside the Schrodinger regime.

Mathematically the problem is that the operators
45 (1) are not self-adjoint. They are self-adjoint if re-
stricted to a suitable subspace of the Hilbert space
[defined by Eq. (56)]. The Schrodinger regime is precisely
the regime in which the state is restricted to live in this
subspace, and we do not perform measurements precise
enough to project the wave function out of this subspace.
The problem comes from the term

(M+2L,—1*)'? (59)

in Eq. (31), which becomes imaginary for large ¢. There-
fore the eigenvalues of the symmetric operator ijf (t) are
complex for states outside the Schrodinger regime.
Physically, it is easy to see what is going on. The
operator §, (t) measures the value of g, on a certain state
|¢/) when g, is t. The imaginary term obtained by
operating on certain states simply means the state does
not arrive at ¢t. Precisely the same effect happens classi-
cally: On an orbit singled out by a given 4 and ¢, the ob-
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servable is well defined only if ¢ is within a certain range;
otherwise it is imaginary.

The physics and the mathematics of the situation is
quite clear. The problem is how to interpret this effect in
the quantum system. In the classical system, if we want
to measure g,(¢) for an incorrect ¢, the measurement sim-
ply cannot be performed. (For instance, the prescription
for the measurement may be ‘“wait till the clock g,
reaches ¢, and then do such and such,” and clearly this
prescription could never be carried out until the com-
pletion.) But a quantum system may be in a superposi-
tion of a state in which the measurement could be comp-
leted and a state in which the measurement cannot be
completed. What would happen if we try to measure
q,(t) in such a state?

This question, we believe, is a physically meaningful
question. But it is not particularly deep. In everyday
physics there are plenty of situations of this kind: In
high-energy physics we may measure the angle 6 at
which an electron comes out from a scattering reaction,
but there may be out states of the reaction in which there
is no electron at all. Thus there is no reason to assume
that the electron “must have gone somewhere”: if Py is
the projector on the state in which the electron is emitted
at an angle 6, then

2T
JTdoPg <1, (60)

and this does not contradict the probabilistic interpreta-
tion of the theory. (Of course, in the electron example
there is an underlying unitary theory.)

Similarly, if we measure g,(¢) for our system we may
obtain a certain real value g,, or we may obtain nothing
at all, precisely as in the classical situation. The opera-
tors @zi(t) have real eigenvalues only on a subspace of H,
precisely as an operator 8 for the electron would have.”®
Everything can be formulated in terms of well-defined
self-adjoint operators by using the projection operators
(54).

Note, however, that these projection operators are
completely different from the projection operators intro-
duced in the context of Wheeler—-DeWitt quantum
mechanics in certain earlier works,' because, unlike
those, they do not take the state out of the physical Hil-
bert space of the theory.

VII. CONCLUSIONS AND REFLECTIONS

In this paper we have addressed the question of wheth-
er or not the systems in which the evolution is described
by a constraint, rather than by a Hamiltonian, are incon-
sistent with quantum mechanics and its probabilistic in-
terpretation.

We have displayed a simple model which does not ad-
mit a Schrodinger unitary evolution, but has the follow-
ing characteristics.

(a) It can be completely quantized: The Hilbert space
(including the scalar product), a set of self-adjoint opera-
tors, and a set of t-dependent projection operators can be
defined.

(b) In a certain regime, given by certain states and cer-
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tain observables, or, more precisely, in the regime defined
by the relation (56) between the states and the ¢ parame-
ter, the system behaves as a standard quantum-
mechanical system with a unitary evolution in z.

(c) Outside this regime unitarity in ¢ is lost, but the pro-
babilistic interpretation, as well as the entire structure of
the theory, still holds.

To what extent can we generalize these conclusions?
And how are they relevant to the problem of defining a
quantum theory of the gravitational field? The model
that we have considered is certainly very simple, and it
may be risky to extrapolate conclusions to infinite-
dimensional theories such as quantum general relativity.
However, certain tentative conclusions can be drawn.

First of all, the model shows that it makes sense to con-
struct a quantum theory without a well-defined time evo-
lution, and that the problem of recovering the time evolu-
tion can be faced at a second stage, once the theory has
been constructed. Therefore it is not strictly necessary to
work hard to extract an exact internal time variable from
general relativity, in order to face the quantization prob-
lem: Quantum theory does not necessarily require a
Hamiltonian operator.

Second, there is the issue of the observables. The
quantization of our model shows that on the physical Hil-
bert space we should define only the observables that
commute with the constraint. It is extremely important
to emphasize that this does not wash away the evolution.
Indeed, the observables g,(t) that we defined are perfectly
gauge invariant and commute with the constraint, and
still they represent evolution.

One may object that the game was too easy in the mod-
el, since we were able to solve the equation of motion,
and therefore to write g,(¢) explicitly as a function of the
constants 4 and ¢. But this is not the point. The point
is that, even if we were not able to write them down ex-
plicitly, the quantum operators §,(¢)™ nevertheless do ex-
ist and are gauge invariant. It is therefore not true that
one has to introduce non-gauge-invariant objects in order
to recover an evolution. In a situation in which the equa-
tion of motion cannot be solved one may construct a per-
turbation expansion for ¢,(¢), or find some other approxi-
mation method, but this should always produce gauge-
invariant objects, namely, objects that commute with the
constraint that defines the evolution.

Accordingly, there is no necessity in general relativity
of drawing a distinction between the constraints that gen-
erate gauge symmetries and the constraints that generate
evolution. The model shows that a constraint that gen-
erates evolution can be treated precisely in the same way
as we treat a standard gauge constraint.

Another conclusion that one can draw from the model
is the importance of the global properties of the physical
phase space. Unfortunately, very little is known about
these in general relativity. A systematic way for quantiz-
ing a presymplectic system taking into account the global
properties of the phase space was developed in Ref. 9
along the lines of Ref. 6. Again, the poor understanding
that we have of the dynamics of general relativity prob-
ably prevents us from using these precise methods. How-
ever, once more, one should distinguish between the im-
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possibility of doing something for reasons of principle,
which would force us to abandon a project, and the tech-
nical difficulty of finding certain solutions, which simply
forces us to develop some approximation scheme.

In our model there is an approximation within which
the variable g, behaves as a time ¢, and the evolution is
unitary in ¢. This approximation is defined by a condition
on the precision of the measurement and also by a condi-
tion on the “time” t. We expect this feature to be quite
general.'®!! Let us speculate how it may apply to a real-
istic model of the Universe. Let us assume that the
Universe may be described in some approximation, by a
coherent state around a cosmological solution of the Ein-
stein equations. Then we expect that the time parameter
t loses its standard evolution properties at particular
points like initial singularity. Far away from these points
the evolution is described by a Schrodinger equation, pro-
vided that measurements are not accurate enough to pro-
ject the wave function also in regions of the phase space
where also at the present ¢ some nonunitarity may ap-
pear. These measurements, of course, may be only very-
high-energy measurements; thus, we are led to recover
the relation between small space time distances and the
global properties of the orbits. Since this is just a vague
speculation, we do not want to engage here in any naive
numerology.
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Finally, let us mention, for clarity, the problems that
have not been addressed in this paper. First, we have
made use of quantum mechanics and its standard
(Copenhagen) probabilistic interpretation. We did not
question this theory. We do not see any reason for the
problem of the absence of an exact time in the fundamen-
tal theory to be related to the old difficulties of quantum
mechanics. Perhaps it is related, but we believe, with
Heisenberg, that a good physicist has to be conservative,
and change the rules only if forced by experiment. The
absence of a Hamiltonian in gravitational physics forces
us to consider quantum systems without a well-defined
time; nothing, up to now, suggests that quantum mechan-
ics itself is wrong.

In this paper we have noted that systems without a
Hamiltonian are well described within the framework of
presymplectic dynamics, and we have discussed a simple
model in order to show that they admit a complete and
coherent quantization. A more extended theoretical dis-
cussion of the general case can be found in Ref. 2.
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