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Cosmological perturbations in generalized gravity theories: Solutions
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We have derived second-order differential equations for cosmological perturbations, using gauge-
invariant variables in a Friedmann-Lemaitre-Robertson-Walker background, for each of the follow-
ing gravity theories: f(R) gravity, generalized scalar-tensor gravity, gravity with nonminimally
coupled scalar field, and induced gravity. Assuming a spatially Hat background, each equation is
put into a form suggested by Mukhanov, and asymptotic solutions are derived for the large- and
small-scale limits. We also present conservation quantities which remain constant in the large-scale
limit.

I. INTRODUCTION

Recently, there has been growing interest in modified
gravity theories. Many models have been constructed
that have favorable inflationary scenarios based on
modified theories such as R gravity, Brans-Dicke
theory, induced gravity, etc. The motivation for these
gravity theories is usually based on the argument that
similar corrections to general relativity (GR) can be
found in the following theories: supergravity, super-
string, and Kaluza-Klein models, etc. In constructing
these inflationary models, the density and gravitational-
wave perturbations generated during inflation act as
strong constraints. In many of these models based on
modified gravity theories, it is usual to simply adopt the
results derived from exponential inflation in GR with a
minimally coupled scalar field (MSF). As a step in clari-
fying the situation, in this paper we show that even in a
wide variety of gravity theories one can directly solve the
perturbation equations in analogy with the usual GR
treatment.

In a recent paper, we presented a simple way of deriv-
ing cosmological perturbation equations in a Freidmann-
Lema]tre-Robertson-Walker (FLRW) background
universe in generalized gravity theories, using gauge-
invariant (GI) metric and matter variables. This ap-
proach was applied to generalized f (P,R) gravity theory,
which includes the following theories as special cases:

f (R) gravity, R gravity, generalized scalar-tensor (GST)
theory, Einstein gravity with nonminimally coupled sca-
lar field (NMSF), and induced gravity. Background and
perturbation equations were derived for these specialized
gravity theories. In this paper, we present solutions for
these equations derived from specific gravity theories.
We will first show that the perturbation equations can be
put into a second order diferent-iai equation using a pair
of conformally transformed GI potential variables for
each theory. (However, we will not use the conformal
transformation method in this paper. ) By changing vari-
ables we can transform these equations into a form sug-
gested by Mukhanov and co-workers. ' One can then
proceed following Ref. 3 and find asymptotic solutions for
both large- and sma/l-scale limits. We have also derived

In Ref. 1 a theory with the following Lagrangian was
called "generalized f (P,R) gravity" theory:

PL = f (P, R) —— P,P"+PLl co( )

where P and R are the scalar field and scalar curvature,
respectively, LM is an additional matter component of
the Lagrangian, and p is a constant needed to fix units.
Since we will consider a single-component field, we can
neglect LM in this paper.

For the background, we can use the two equations

K
H @+p K

a 2 a
(2)

where a is a scale factor, 0 is a Hubble parameter
(H=a la), K is a spatial curvature, and p and p are the
"effective" energy density and pressure, respectively. For
a gravity theory of the form considered in Eq. (l), the
effective background fluid quantities are derived in Ref. 1

as

co ~2+ FR f OF-
2F 2F F

FR f F 2 F-
2F 2F F 3 F

(3)

where F=Bf /BR and 8 is the—expansion scalar which is
3H in the background. (We neglect the term "effective"
in the following. )

Perturbed gravitational field equations (GFE's) are de-
rived for this theory using the GI metric variables 4H

conservation quantities for each gravity theory when the
scale lies in the large-scale limit. Einstein gravity with
MSF and R gravity cases have been investigated in Refs.
2 and 3. In this paper we will generalize those results to
the generalized gravity theories mentioned above.

In Sec. II we introduce a Lagrangian which includes
these theories as special cases, and present equations for
both the background and the perturbations. In Sec. III
we solve the perturbed equations for individual gravity
theories. Section IV is a brief discussion about the result.

II. GENERALIZED f (4,R) GRAVITY
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and 4~ in Ref. 1. From these potentials we can recon-
struct the behavior of the Quid and kinematic variables.
The GI energy-density perturbation in the energy frame
and the GI velocity variable, respectively, are

F 3 F H 3 H(a—&F 4& )
= —(@ +&0 ) .

After some manipulation of the GFE [Eqs. (7) and (8)],
we can derive the following second-order differential
equation for NH.

(4)

The electric part of the conformal tensor is E = —(k /
2

C
a )4H, whereas the magnetic part just vanishes for scalar
perturbations. For more details and conventions, see
Refs. 1 and 5.

The perturbation equations can be simplified if we use
the conformally transformed potential variables intro-
duced in Ref. 1:

~ ~

4H+ a F F—+3——2—
F F H

k —2K aF F aF+3—————2——
a' aF F aF

Defining

aF (av'F )'u=, 4H, z= a'F'

+a=0. (12)

(13)

AF is a GI and frame-independent perturbation variable
for F introduced in Ref. 1. Using 4H as the variable, the
perturbed GFE can be written as

where a prime denotes a derivative with respect to a con-
formal time (dt =a 1vI },Eq. (12) can be written as

z"
2~

(a'F')'l(a F')
(a&F )'/(a&F )

4~ +4H =0, (6) For K =0, this equation becomes

a F 3FEF 1e
eH+ —+ eH= ——

a 2F 4 F 2F
II

u "+ k— u =0. (14)

T

a 3 F+ 4—+——
a 2F

+
k' —5K

a

3F FR f—
2F 4 Fz 2F

3 F F 3 F2 2 co 2 hF—2——8—+—
4 F F 2F' 3F F

1 ~ a F+— f + 3cog ——+
a 2F

These follow from Eqs. (35), (34), and (36) of Ref. 1, re-
spectively. In these equations b, P is a GI and frame-
independent perturbation variable for P, and k is a wave
number. Using Eqs. (7) and (8), we can derive single
second-order differential equation for 4H for each of the
specific gravity theories.

III. SOLUTIONS IN SPECIFIC GRAVITY THEORIES

A. f (R) gravity

This is a special case of Eq. (1) with f =f (R), co=0,
/=0, and P= l. The background fiuid quantities become

This is a form of the equation derived in Refs. 2 and 3 in

their study of MSF and R gravity. Following their
treatment, we can derive asymptotic solutions in the
large- and small-scale limits. (For all asymptotic solu-

tions, we will assume K =0.)
(i) k «z" /z. In the large-scale limit, Eq. (14) has the

solution

dx/
u =cdz +c z

Z
(15)

where cd and c are constants indicating a decaying and a
growing mode, respectively. Using Eq. (13), it follows
that

{a~F) 4 4 F3/2
u = . cd ——c aFdt +—c . , (16)

a F g e 7

hF F 4
cd — c„aFdt

aF
(17)

Using Eqs. (10), (13), (16), and (17},we find the following
solutions for the original potential variables:

where we have used the identity, F
= ——', F5~~[(a &F )' /( aF) ] , derived from back'ground

equations [Eqs. (2) and (9)]. From Eqs. (11), (13), and
{16),we can show that

The conformally transformed potential variables are

From Eq. (7) and Eqs. (6) and (10), we have

{10)

4 4
c ——c aF dt ——cd 3 g g 7

a 4 4
c ——c aF dt + —cH 2F d 3 g 3

(18)
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From these solutions we can derive the following GI con-
servation quantities in the large-scale limit:

2

(a&/)'
u =— —4H, z=

1))vw a pvw
(26)

(aF)
aF

1

[(aF)' /aF]
T

(aF)

a 1 a . 4
a F [d l(aF)] '

a
(19)

u =c&e' "+c2e ' "=c&e' "+c2Xc.c. , (20)

where c.c. denotes complex conjugation. Using Eqs. (10),
(11), (13), and (20), we have

These conservation quantities do not depend on a change
of background scale factor and equation of state, etc. , as
long as the scale remains large. Note that the decaying
mode does not affect these conserved quantities. (These
comments will also apply to the other gravity theories an-
alyzed later. )

(ii) k ))z"/z. In the small-scale limit, Eq. (14) has the
oscillatory solution

Eq. (25) can be written as

II

u "+ k— 2~ (a'P'&w)'/(a'P'&w )
0 =0.

(a &P )'/(a &P )

For K =0, this equation can be written as Eq. (14) and we
can find asymptotic solutions as in the f (R ) gravity case.

(i) k &&z"/z. From Eqs. (15) and (26) we have

(aQP)' ' P3/2
u =

2
. cd —2cg amdt +2cz . , (27)

a P&w . . P&w

where we have used the identity
= —2P w '[(a&/) /(aP)], derived from Eqs. (2) and
(22). Using Eqs. (24), (26), and (27), we have

ay2 d gcd —2c f amdt (28)

Finally, using Eqs. (23), (26), (27), and (28), we can find
the potential variables

2c& ik (aF ' F)—+3v'F a aF '~ F
e' "+c2Xc.c. ,

(21)

1

aP
cd —2c a dt —2c

2c& ik (a &FF)—+ . e'""+c,Xc.c.
3 F a aVFF a

cd 2cs f a P
—dt +2cs .

2y s

(29)

B. Generalized scalar-tensor theory

Compared to f (R) gravity case [Eq. (18)], F has been
changed into P (in fact, 2P) and c ~—', cs. From this we
can derive conservation quantities

This is a case of Eq. (1) with f =2$R —2 V( P ),
p= 16m, and to~2to(p)/p. The background fluid quanti-
ties are

p= +— -8-', p=- +— +-'+ —8-'.V to P 6 V to P tb 2

2P 2 p (() 2P 2 p $ 3

(a P )

aP

X 4q+
(a/).

1

[(aP)'/(aP)]'

(22)

@H=@H+ @~=@~+
2

'
2

(23)

The conformally transformed potential variables become
(30)

1
O'H —

2 . . 4 H+ —4 H
——2cg

a
a'y [a/(ay)] a

(ii) k ))z"/z. Using Eqs. (20), (23), (24), and (26), we
find the solutions

From Eq. (7) we have

'~=-2 ~(.~ye ) .
aPw

(24)

C)

V'Pw

+c2 Xc.c.

ik (a(( 'P&w )'

ay ' j&w

~ ~

4H+
~ ~

—'+3+ —2+ ——i„

From Eqs. (7) and (8) one can derive a second-order
differential equation for 4H: ik (aP 'Pv'w )

VPw a a/ ' yv'w

+c2 Xc.c.

(31)

a—+
a 2P

NH =0,

where w =co+ —,'. Defining

k 2IC—
a a P

~ ~—"+2+
w

(25)

C. Nonminimally coupled scalar field

This is a case of Eq. (1) with f =aR —
gP R —2V(P),

where a = 1, co = 1, and P= l. (For generality, we keep a
in the following equations. ) The background fluid quanti-
ties are
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2

+ V+2(8$$
Eq. (19) with c ~—', c .

(ii) k »z "/z. Using Eqs. (20), (33), (36), and (34), we

(32) can derive
2 —1' —20 04+ 3044+0'

L

r

F 2ci F ik (a/rEF ')
F ~EF j a a itiv'E F

ikg

The conformally transformed potential variables become +c2 XC.C.

From Eq. (7) we have

bF —2gP bP 8g P &F
F a —g aEF

(33)

(34)

j( ikq+ —ikq)
3/P I 2 2FF

j( i k (i + —ik (i
)

(40)

From Eqs. (7) and (8) one can derive a second-order
differential equation for 4H:

a p a —
gP a+ g(6g —1)P

D. Minimal coupling

This is a case of NMSF with E =F=a=1. Although
this case has been studied in detail in Refs. 2, 8, and 9, we
will present an analysis here to show its similarity to the
other gravity cases. From Eqs. (5)—(7) we have

k —2K+, —2—.+,[ —it '+2@(it 9$))—a' 'j a 2 . (a@H) (41)

2g(6g —1)PP a g itp

a+ g(6g —1)p a a —g
4H=O .

(35)
Thus Eq. (35) can be written as

~ ~ ~ ~

aF (aV F )'
u—= —4H, z=

P'&E a P'&E
(36)

where F=a —
gP and E=—a+((6g —1)P, this equation

can be written as

u "+ k- 2&
(a'P'&E )'/(a'P'&E )

z (a &F )'/(a &F)
Q=O.

This equation becomes simplified in both the minimally
coupled case and in the conformally coupled case where
(=0 and —,', respectively. Defining This equation was derived in Refs. 2 and 8 for the E =0

case. From Eq. (36) we have

a a'u= —4, z=
Pl H(

Qy(
(42)

Directly calculating or reducing the results derived in the
NMSF case, we can find the asymptotic solutions on
large scales:

For K =0 this has the same form as Eq. (14).
(i) k «z" /z. From Eqs. (15) and (36) we can derive

(a&F ) F3/2

z
. cz —2c aF dt +2c . , (37)

a P E . . Pv'E

where we have used the identity EP
2F ~ [(a&F ) /—(aF)], derived from Eqs. (2) and

(32). Using Eqs. (36), (34), and (37), we have

cz —2c f a dt +2c

a

T

cz —2cg f a dt

a 10—:~'H— a' (a/a)
a ~

4H+ —4H =2C
a

From this we have the conservation quantity

(43)

(44)

1

(
aF cz —2c f aF dt —2c

eH cd 2c aF dt +2cgH a2F d

F
c —2c f aFdt

aF

Finally using Eqs. (33), (36), (37), and (38), we find that

(38)

(39)

2 1g=4H+—
3 1+@/p

1
4H +—4H0 (45)

which is also the case for a perfect-fluid medium. ' In
the small-scale limit, we have

@H =Pc, e'""+c,X c.c. ,

This is the large-scale limiting case of the same variable
used in Ref. 9. This equation can also be written as

These equations have the same forms as in the f (g)
gravity case [Eq. (18)] with c ~—c . Thus the conserva-

tion quantities can be written exactly the same form as in
6$=2c, —+ik (a(b)

a ap
e' "+c2Xc.c.

(46)
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E. Conformal coupling

This is the case of a NMSF with E =a = 1 and
F =1—

—,'P; thus,

aF3~~ (a V F )'

pl H» 2 p
Z =

a P'
(47)

F. Induced gravity

This gravity model can be considered as the case of a
NMSF with a=0. The equation becomes

~ ~

@H+ ——2++4+ H

aP (aP)'
u — 4H, z

a 00'

Eq. (48) can be written as

(49)

gg+k2z(ff) /(PP)
z (aP)'/(aP)

Q =0.

Since this case is a special case of the other gravity
theories analyzed above, the asymptotic solutions can be
derived easily and we will omit them.

IV. DISCUSSION

Although the gravity theories we have considered may
be quite different in nature from each other, we have seen
that the perturbed equations in a FLRW background can
be managed very similarly. This may be due to their con-
formal transformation (CT) properties discussed in Ref.
1.

The asymptotic solutions and conserved quantities we
derived in the large-scale limit deserve particular atten-
tion. The comoving scales we are interested in at the
present epoch go outside the Hubble radius, defined as
a/k—:H ', in the early stages of the evolution of the
Universe. If we consider the inflationary scenario, most
interesting scales are pushed outside the Hubble radius
during the inflationary epoch and come back inside the
Hubble radius during the radiation- or matter-dominated
epochs. Since we want to know about the perturbation
spectrum, of the energy density or the potential, mea-
sured at the second Hubble radius crossing time, usually
all we have to know are the initial spectrum calculated at
the erst Hubble radius crossing time and a transfer func
tion coding the euolution of the spectrum while the scales

k' 2E—
a a p

~ ~

24+4 a 4 j) =() (48)
y2 P a

One can easily check that this can also be derived from
GST theory by substituting"

1 2 1

2
'

4g

De6ning

1
0=@H— . , @H+—+H

H —H- H
H

(50)

Comparing this to the conventional result for perfect-
fiuid Einstein gravity [Eq. (45)], we notice two differences.
First, there is an additional term in the denominator. Al-
though H )) H[= —,

'(—p+p)] during the usual

inflationary epoch, one needs to check the importance of
this additional term in each gravity theory. Second, in
the conventional case, if p ~ p, one can see that the grow-
ing mode part of 40 is a constant and we have

2 11+— @0=&.
3 1+p/p

(51)

However, depending on the background evolution, it is
not obvious that one can treat 4H as a constant in the
corresponding limit in all generalized gravity theories.
4H is a constant if a and F evolve as power laws in t.
However, if the background evolution is known, the euolu
tion of 4H in the large scale limit can be determined from
the integral form of solutions we haue in Eqs (18), (29), .
and (39). In some cases people have employed the con-
formal transformation properties of these gravity theories
to the conventional Einstein theory with a minimally
coupled scalar field with a special potential.

In this paper we have shown that one can treat the per-
turbation equations in a rigorous manner even in these
complicated gravity theories and solve them in a simple
way. The connection between these results and previous
work, and the physical implications of the solutions de-
rived in this paper, especially during some realizable
inflationary models, will be presented elsewhere. '

ACKNOWLEDGMENTS

We thank Dr. E. T. Vishniac for his helpful reading of
the manuscript and encouragement during the work.
This work has been supported by the Texas Advanced
Research Project Grant No. 4132.

spay outside the Hubble radius. In gravity theories with

MSF, as we have seen in Eqs. (41) and (43), there is one
independent perturbed potential and g is the conserved
(usually called "frozen") variable on a large scale. [4H is

directly related to a GI density variable, and at the Hub-
ble radius crossing, from Eq. (4), we have e =—', 4H. For
a detailed discussion, see Refs. 2 and 9.] We have shown
that there also exist GI conservation quantities g expres-
sible in two ways even in the more complicated gravity
theories considered in this paper.

There have been many studies of cosmological pertur-
bations in generalized gravity theories, e.g. , R gravi-

ty, ' Brans-Dicke theory, ' ' NMSF theory, ' ' and in-

duced gravity theory. ' ' However, many of these stud-
ies of the last three gravity cases were approximate. As
we have seen, although one can treat these gravity
theories in a similar way, it is not necessarily true that
one can naively adopt a result [Eq. (45)] obtained for the
Einstein gravity case with the perfect-fluid assumption.
From Eq. (19), which is similarly true for the other gravi-
ty cases as in Eq. (30), we have
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