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The quantum behavior of the vacuum Bianchi type-IX universe with the cosmological constant is

investigated in terms of the Ashtekar variables. An exact solution to the quantum Hamiltonian
constraint in the holomorphic representation is given. This solution reduces to the Hartle-Hawking
wave function in the spatially isotropic sector and extends in the triad representation to the classi-

cally forbidden region where the determinant of the spatial metric becomes negative. The analysis
of the quantum Robertson-Walker universe indicates that if the superspace is extended to such a
classically forbidden region, the holomorphic representation picks up some restricted class of solu-

tions in general. This observation leads to a new ansatz on the boundary condition of the Universe.
In particular, the behavior of the Lorentzian and Euclidean WKB orbits corresponding to the solu-

tion suggests a new picture on the semiclassical behavior of the quantum Universe: that the
Universe is created from an ensemble of Euclidean mother spacetimes. Further it is pointed out
that the solution is a restriction to the spatially homogeneous sector of an almost exact solution to
all the quantum constraints in the holomorphic representation for generic vacuum spacetime with

the cosmological constant. The latter generic solution has a WKB structure for which the phase is

proportional to the Chem-Simons functional.

I. INTRODUCTION

At present there exist two major approaches to con-
struct a quantum theory of gravity. ' One is to quantize
the Einstein theory or its variants canonically or by path
integration. The other is the superstring theories which
try to unify gravity with the other fundamental interac-
tions based on two-dimensional field theories. Because
there is no reason to believe that the gravitational in-
teraction is described by Einstein's theory on very small
scales or in high-energy regions and also because
Einstein's theory is unrenormalizable at least perturba-
tively, it is generally believed that superstring theories are
more promising. Recent work has, however, revealed
that superstring theories have no predictive power on
low-energy physics, in contrast with expectation at the
early stage. This implies that one must look for phe-
nomena in which nonperturbative quantum effects of
gravity play important roles in order to check the validity
of the theories or pick up the true theory from a huge
number of candidates. In this respect the present super-
string theories are incomplete for they can treat gravitons
and their interactions but cannot incorporate the dynam-
ics of spacetime structure.

Canonical or path-integral quantization of Einstein s
theory has an advantage at this point since they preserve
the fundamental concepts of the classical Einstein theory
and directly treat spacetime dynamics unlike the super-
string theories. In particular when one tries to discuss
quantum gravitational effects on cosmology, the canoni-
cal approach or its path-integral expression is the only
one that we can rely on at present. From this standpoint,
since the interesting proposal on the wave function of the
Universe by Hawking and Hartle and the fascinating
picture on quantum creation of the Universe by Vilen-

kin, ' a lot of work has been done on the application of
canonical quantum gravity to cosmology. Although
various interesting results have been obtained, the present
status of the research along this line is far from complete.
In contrast with its grand motivation only quite simple
minisuperspace models or their perturbations have been
discussed so far. Even the quantum behavior of spatially
homogeneous universes is not known well if we allow for
anisotropy. Apart from the problem of interpretation,
the largest obstacle there was the complicated nature of
the basic equations.

Recently Ashtekar proposed a new canonical formula-
tion of Einstein gravity which may give a breakthrough
to this situation. ' ' In his formulation all of the evolu-
tion and constraint equations are written as simple poly-
nomials with the local SO(3,C)-invariant structure. So
the structure of the equations are much simplified com-
pared with the conventional Arnowitt-Deser-Misner-
(ADM-) Wheeler-DeWitt formulation. In fact it is shown
that a large class of solutions for the Hamiltonian con-
straint can be constructed with the aid of the loop-
integral expression. ' Further it is pointed out that in the
loop-space representation of the theory the solutions to
the full set of constraint equations are classified in terms
of the topological knot and link invariants. '

Although these developments are important and at-
tractive enough to show the power of the Ashtekar for-
malism in quantum gravity, the approach based on the
loop-space representation is too abstract to find a direct
relation to quantum cosmological problems as in the case
of the superstring theories (cf. Ref. 18). From this stand-
point I applied the Ashtekar formalism directly to spa-
tially homogeneous spacetimes in my previous paper. '

There I showed that at least for the vacuum Bianchi
type-IX universe the quantum constraint equations be-
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come quite simple in the holomorphic representation, and
gave a small class of exact solutions to them.

In the present paper I extend the analysis to a Bianchi
type-IX universe with the cosmological constant to see
implications of the Ashtekar formalism, especially a pos-
sible new role of the holomorphic representation in quan-
tum cosmology. It is shown that we can find an exact
solution which is physically meaningful and can be ex-
tended to an almost exact solution to the constraint equa-
tions in the holomorphic representation for generic vacu-
um spacetime with the cosmological constant. On the
basis of detailed analysis of this exact solution with gen-
eral considerations on the wave functions in the canoni-
cal quantum gravity, it is proposed that some analyticity
and fall-off conditions in the complex connection space
may yield a new criterion to select a preferred class of
wave functions of the Universe. Further by analyzing the
behavior of the WKB orbits corresponding to this solu-
tion it is shown that it yields a new picture on the semi-
classical behavior of the quantum universe.

The organization of the paper is as follows. In the next
section I discuss the relation between the quantum triad
ADM theory and the quantum Ashtekar theory with the
aid of a generating functional which gives a transforma-
tion connecting these two theories. In particular it is
shown that the quantum Ashtekar theory can be regard-
ed as a noncanonical representation of the quantized
ADM theory if we take the problem of the reality condi-
tion seriously. Further the assumption on the operator
ordering is explained. On the basis of the framework
developed in this section, a possible role of the holo-
morphic representation in quantum gravity is discused in
Sec. III.

Then in Sec. IV the solutions to the Hamiltonian con-
straint for the closed Robertson-Walker universe is exam-
ined in detail in the metric representation and in the
holomorphic representation, and the correspondence of
the solutions in these two representations are studied. In
particular it is shown that the solutions in the holo-
morphic representation contains a wave function which
in the metric representation extends to a classically for-
bidden region where the determinant of the spatial metric
becomes negative. The relation of this solution to the
boundary condition of the Universe, that is, the criterion
to select out special solutions to the constraint equations
representing the wave function of the Universe, is dis-
cussed. Further on the basis of the behavior of the WKB
orbits, it is shown that the solution yields a new picture
on the semiclassical behavior of the quantum universe
that the Universe is created from an ensemble of mother
Euclidean spacetimes. In Sec. V a nontrivial exact solu-
tion to the Hamiltonian constraint in the holomorphic
representation for the Bianchi type-IX universe with a
nonvanishing cosmological constant is given. The behav-
ior of the Lorentzian and Euclidean WKB orbits corre-
sponding to this solution is analyzed to confirm that the
semiclassical picture of the quantum universe given in the
spatially isotropic case can be extended to this case. Sec-
tion VI is devoted to the summary and discussion. There
it is pointed out that the solution found in the Bianchi
type-IX case is a restriction to the spatially homogeneous

II. QUANTIZATION OF
ASHTEKAR'S THEORY

As is well known the Hamiltonian loses the dynamical
role in the quantum ADM formalism because it is written
as a linear combination of the constraints. In the triad
approach this obliges us to extract the dynamics only
from the constraint equations on the physical state vector

c, q)=o,
c,ie)=o,
c„q)=o,

(2.1)

(2.2)

(2.3)

and the fundamental commutation relations among the
tetrad e ~=(e ~

) and its conjugate momentum Pj =(Pjz),

[e "(x),e" (y)]=[PJ~(x),P„J(y)]=O,

[e J (x),PkJ(y)]= —,'i5k5J5(x —y) .

(2.4)

(2.5)

Here, for vacuum spacetimes with a cosmological con-
stant A, about which the present paper is mainly con-
cerned, Cz, CM, and CH are expressed in terms of e ~

and P as Eqs. (A12)—(A14) with Q given in Eq. (A31).
These yield the basic equations for the triad version of
the conventional ADM-Wheeler-De Witt approach to
quantum gravity.

If we assume that quantum gravity theory is complete-
ly described by these constraint equations and commuta-
tion relations alone, we can construct a consistent quan-
tum version of Ashtekar's theory. Although this has al-
ready been shown clearly in the original paper by Ashte-
kar, ' I give here a much simpler proof using the generat-
ing functional relating the triad ADM theory and

sector of an almost exact solution to all the quantum con-
straint equations for generic vacuum spacetime with the
cosmological constant.

Finally in the Appendix I comment on the difficulty as-
sociated with the so-called reality condition in quantizing
Ashtekar's theory by repeating the proof of the
equivalence between the triad ADM theory and
Ashtekar's theory at the classical level. This appendix is
added because, though this difficulty is well known, it has
not been discussed explicitly enough so far as far as the
author knows (cf. Refs. 20 and 21). This appendix also
gives the detailed definitions of variables and some for-
mulas used in this paper as well as an important identity
which leads to the generating functional of the transfor-
mation from the triad ADM variables to Ashtekar's vari-
ables.

Throughout the present paper units 16m G =c =fi = 1

are used and the signatures of the fundamental tensors
such that (r),b ) =( —,+, +, + ), eo, 23 E]$3 1 are adopt-
ed. As for the index convention, the greek letters
p, v, . . . denote the spacetime coordinate indices running
from 0 to 3, the Latin indices j,k, . . . their spatial part,
the Latin letters a, b, . . . the internal indices running
from 0 to 3, and the capital letters I,J, . . . their spatial
part.
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Ashtekar's theory (similar arguments have been already
given by some authors' ' }. It also makes clear the role
of the reality condition (as for the background of this
condition see the Appendix; there a critical argument on
this problem is given). The key point is the fact that from
the identity (A32) QJ given by Eq. (A31) is expressed by
the functional derivative of a generating functional F as

(2.6)

where

F:=f d'x E'"e;Ie JeIIB&e'

= f d x(e XB&e') e" .

(2.7)

(2.8)

Aj+=P~+—ig~[e] . (2.9)

Then it follows from the commutativity of the functional
derivative 5F/5e ~(x)5e "(y)=5F/5F "(y)5e '(x) that
A*'s with the same chirality commute with each other.
Hence Eq. (2.5) yields the canonical commutation rela-
tions among the quantum Ashtekar variables:

First let us define the quantum operator corresponding to
the complex Ashtekar momentum A J

—+=(AJI ) in terms

of the operators e and P as

tional constraint which is expressed as the operator equa-
tions

A —(A ) =+i EIJ/('Cl)'Jj('(e)
+ (2. 19)

A =e+FP—.eF— .
J J (2.20)

For example, in the usual representation of the ADM
theory in which e ' becomes diagonal,

lq ) e[r],
1 6p.~—
2 i5eJ

(2.21)

(2.22)

%e can impose this condition as the operator equation
simply because we have neglected the formal time-
evolution equations (see the argument in the Appendix).
Further we can calculate the commutation relations be-
tween A- and (A —

) with the help of the original
definition of A,—+, though the results are quite complicat-
ed.

Since this constraint equation contains the Hermitian
conjugation, it is a requirement on the inner product in
the state space. In general it is diScult to find an inner
product which satisfies such intricate conditions. In the
present case, however, we can reduce the problem to a
much simpler one in the mathematical sense because the
definition (2.9) is written as

[e "(x),e "J(y)]=[A,I(x),A RJ(y)] =0,
[e "(x),A„+—J(y)]=—,'i5'„515(x—y) .

(2.10}

(2.11)

which is referred to as the e representation for simplicity
from now on, the Hermiticity of P fixes the inner prod-
uct to be the natural one given by

Further, since Cs =e "
FR =D, (V'XP")=0 for QJ[F]

given by Eq. (2.6) or equivalently by Eq. (A31), we obtain
the following relation between the constraints 8G, C'MJ,

and C~ in Ashtekar's theory [see Eqs. (A18)—(A20)] and

those in the ADM theory:

CG=CR+tCR —+iCR )

('Ill+):= f [de]+[e]+[e] .

If we introduce the new representation

l4) ql+—[e]:=e—%[e],
with the inner product

(2.23)

(2.24)

=Cz+iD (e~ CR ) . (2.14)

Hence, noting that Cp Pj Pj Cp from the commutation
relation

[C„'(x),P, (y)]=iE' P, (x)5(x—y), (2.15)

we find that the constraints (2. 1)—(2.3) are equivalent to
the following constraint equations expressed only in
terms of the Ashtekar variables:

(2.16}

(2.17)

(2.18)

Thus the basic equations of the quantum triad ADM
theory are formally written only in terms of the Ashtekar
variables. However, if we require that e and P are
represented as Hermitian operators, we obtain the addi-

C MJ:—CMJ + 2ie " (F & +P X P& ) = CM +iC„P, (2.13)

Cz=C~+iD, (e J CR)+D (e JXe ).P&

(+lql) = f [de)e ++—[e]+—[e], (2.25)

which is referred to the chiral e representation from now
on, the action of the operator A J

—on
l
4 ) is represented

as

(2.26)

It is obvious that these two representations are equivalent
and A —satisfies the reality condition (2.19). Further in
the chiral e representation, which is a kind of noncanoni-
cal representation of the ADM canonical variables, the
constraint equations become simple polynomial
differential equations. From this standpoint the impor-
tant achievement of Ashtekar formalism is that it explic-
itly gives us the generating functional F which transforms
the canonical representation to a noncanonical represen-
tation in which the constraint equations become simple.

Thus, as far as we require that e J and P are represent-
ed as Hermitian operators, the quantized Ashtekar
theory is just a convenient exotic representation of the
quantized triad ADM theory. However, if we look into
the content of the theory in detail, we find that the Her-
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miticity requirement on e ~ and P- has no firm ground. In
fact, solutions to the quantum constraint equations are
not normalizable with respect to the inner product (2.23)
even in the minisuperspace models. Thus we cannot ap-
ply the usual probability interpretation to the inner prod-
uct. Since the Hermiticity requirement on observables in
quantum mechanics is closely connected with the proba-
bility interpretation of the inner product, this implies
that there exists no direct connection between the Hermi-
ticity of operators with respect to the formal inner prod-
uct and the classical reality of them in the ADM-
Wheeler-DeWitt approach to quantum gravity. Of
course this does not imply that the classical reality of
physical quantities loses meaning, but indicates that it
should be formulated in a way different from convention-
al quantum mechanics. For example, in the WKB-type
interpretation to the wave functions, the reality condition
on the physical quantities is used to pick up a region of
superspace where the Universe behaves semiclassically.
In such an approach the reality condition does not re-
strict the acceptable wave functions. Hence the quantum
triad ADM theory and the quantum Ashtekar theory be-
come completely equivalent. The complex nature of
Ashtekar momentum or its relation to the ADM vari-
ables becomes important only when we find the semiclas-
sical regions. This problem as well as problems connect-
ed with the inner product will be discussed in the follow-
ing sections in more detail.

In order to make the quantum theory well defined, we
must eliminate the ambiguity associated with the order-
ing of operators in the constraint equations. If we do not
introduce the inner product of the state vectors, the only
requirement on the operator ordering is that the algebra
of the constraint operators close and that the constraint
equations (2. 16), (2. 17), and (2.18) are consistent. This
problem was extensively discussed by Jacobson and Smo-
lin. ' As pointed out there, there exist two natura1 order-
ings. The first one is the ordering suggested by Ashte-
kar' in which all e &'s are gathered left to A —.This or-
dering formally guarantees the consistency of the con-
straint equations even when the cosmological constant
exists. Actually for this ordering, from Eq. (2.11), the
commutation relations among the constraint operators
are given by

G~ g2' G
=+ N1 N2 G ~

h, ~„h2

=i f (h~a, h, —h, a, h~)(e" e. )CM„, (2.32)

where g (x),f&(x),h(x), . . . are smooth functions of the
space coordinates with compact supports. Thus the con-
straint algebra closes weakly. Further, from the commu-
tation relation between C G and an arbitrary quantity
V (e(x), V(x) ) which transforms as an internal vector,

g 1 Gs ~2 V + g1 g2 (2.33)

d$2 — +2dt2+e2a(e2P) y&gy& (2.34)

the fundamental variables are parametrized by functions
only of time, alJ, PIJ, and AIJ as

it follows that CG(x) V(x)= V(x) CG(x). Thus the con-
straint operators are located at the right ends in all of the
terms on the right-hand sides of the commutation rela-
tion, which guarantees the consistency of the constraints.
As pointed out by Jacobson and Smolin, however, this or-
dering has the difficulty that CM, differs from the genera-
tor of the spatial coordinate transformation by a diver-
gent constant.

The second ordering which is proposed by Jacobson
and Smolin is the reversed one of the first ordering, which
gives the commutation relations in which the orders of
the constraint operators and the coefficient operators are
reversed on the right-hand sides of the above equations.
For this ordering CM exactly generates the spatial coor-
dinate transformation. However, it does not yield a con-
sistent system of quantum constraints at least formally.
Although the inconsistency is shown to disappear for a
family of solutions to the Hamiltonian constraint
represented as a loop integral due to the degeneracy of
the metric, ' ' it seems to be not the case for general
solutions representing regular spacetimes. Furthermore
it cannot be denied that the anomaly associated with CM&

in the first ordering may be removed by some regulariza-
tion of the operator products. For these reasons I adopt
the first ordering in the present paper.

Finally note that the relation (2.9) is a generalization of
the relation between the Ashtekar and the ADM momen-
tum given in my previous paper. ' In fact for the Bianchi
spacetime with the metric

jgc, , ff c, =o,

fg CG, jhc. H =0,

ff'iCM, ffiC.Mk

(2.28)

(2.29)

e' = o»(t)lyly, o. »=20e

I',&
=I'»(t )X&,

A,+—&
= A&&(t )y, ,

(2.35)

(2.36)

(2.37)

=+ff )f & CG Vqk+i j[f) f~ ]"PMI,.

ff&c,„,, fhc„
(2.30) where g =g dx ~ is a basis of invariant forms normalizedJ

by

=i f (f&a, h ha, f&)c„— dX = —,'C J~L RX (2.38)

+f'h C~. e X O',„——E «e ' l, (2.31) lyl is the determinant of y, f1:= Jd x lyl is the coordi-
nate volume of space, and Xj are the invariant fields dual
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to g . In terms of these variables F is written as

F=
&

o'~(o'o')vLEatJC tJ (2.39)

. ar
AgJ PJJ l

Bo JJ
(2.40)

where a is the transposed matrix of o and Eq. (2.9)
reduces to

with the Hamiltonian H(q, p ) into a time-
reparametrization-invariant form by introducing a pa-
rameter time 7. and treating the time t as a canonical vari-
able with momentum ~, it becomes a canonical system
with the Hamiltonian H=N(~+H) and a constraint
P:=vr+H=O (Ref. 24). Dirac quantization of this sys-
tem yields the quantum constraint P~+) =0. Solutions
lose time dependence like the quantum gravity case.
However, if we expand

~
4 ) by the eigenstates of the time

operator t as

III. HOLOMORPHIC REPRESENTATION ~W)= fdt~+(t))a ~t), (3.l)

As explained in the previous section the quantum
theory of Ashtekar's formalism can be formulated as a
noncanonical representation of the quantized triad ADM
formalism as far as the constraint equations are con-
cerned. As is well known, however, the quantum con-
straints alone do not yield any sensible quantum theory of
gravity even formally. First the solutions to the quantum
constraint equations in the e representation of the triad
ADM theory are not normalizable with respect to the
natural inner product which makes the momentum
operator Herrnitian. Thus the wave function does not
represent a state in the usual quantum-mechanical sense.
Second the wave functions do not depend on time and,
hence, we have no concept of evolution.

Although, generally speaking, all of these difficulties
arise from the general covariance, i.e., invariance under
the general coordinate transformations of Einstein's
theory, it is more appropriate to classify them into two
types. Those belonging to the first class are the spatial
coordinate transformations. In the triad formulation we
must also include local triad rotations into this type. In-
variance of this type is quite similar to the local gauge in-
variance in the gauge field theories. If theories with such
invariance are quantized by the Dirac procedure without
gauge fixing, it makes the inner product divergent be-
cause, naively speaking, wave functions become constant
along the gauge orbits. For example, in the Abelian
gauge theory the gauge invariance leads to the constraint
on the state vector ~%), d, EJ~'Il) =0. In the presenta-
tion in which the potential A is diagonal, this quantum
constraint implies that the wave function 4[ A ] does not
depend on the longitudinal part —0 P of the potential.
Thus the inner product JDA %[ A ]~ diverges along the

P integration. This type of divergence can be, however,
eliminated by introducing 6-function-type terms to the
integration measure in the definition of the inner product.

The second type of invariance is the one associated
with the time coordinate transformation and can be re-
garded as the time reparametrization invariance. This
type of invariance does not exist in the usual local gauge
theories and have properties quite different from the first
one. In particular it is due to this invariance that time
dependence of the wave functions disappears. Actually
in a theory with the time reparametrization invariance,
the same value of the parameter time can be assigned to
any physical time. Thus any state which is invariant un-
der the time reparametrization should be a superposition
of states at arbitrary physically different times.

For example, if we rewrite the dynamics of a system

the quantum constraint is translated to the ordinary
Schrodinger equation for the decomposed states ~%'(t ) ):

ll3,
~
P(t)) =a~ P(t)) (3.2)

Although the inner product of
~
4 ) diverges, the decom-

posed states
~
4(t ) ) have a constant and finite inner prod-

uct.
It is expected that the similar treatment can be applied

to the quantum gravity case. Unfortunately, however,
the quantum gravity system differs from the simple
reparametrized quantum mechanical system in two
respects. First there exists no natural time operator or a
momentum conjugate to it. Actually the Hamiltonian
constraint is second order in rnomenturn. Hence no fun-
damental variable can be adopted as the time operator in
the exact sense. Second the time reparametrization in-
variance in the general relativity has an infinite degrees of
freedom. Hence a single time variable does not eliminate
the degeneracy of the state. In other words a field-type
time variable is required. In general it is difficult to find
such a field variable which can play the role of time over
the whole space. These two difficulties are intimately
connected and seem to be deeply rooted in the local na-
ture of the general relativity. Actually it is generally im-
possible to find a global coordinate condition which can
be applied to any spacetime even in the classical level.
Thus they are not intrinsic to the Wheeler-DeWitt-type
approach and cannot be avoided also in the gauge-fixing
approaches. Anyway without a field-type time variable
which completely eliminates the degeneracy of the state,
we cannot introduce the inner product or the concept of
probability into the theory.

One possible approach to resolve this difficulty is the
one based on the WKB-type approximation to the wave
functions or the Wigner function. In this approach
the variables are classified into semiclassical ones and
quantum ones, and the Hamiltonian constraint yields
semiclassical evolution equations for the former in some
region of the superspace or of the corresponding phase
space, and an approximate Schrodinger equation for the
latter there. The semiclassical variables play the role of
the field-type time variable and the Schrodinger equation
is derived for a reason quite similar to the simple example
of the time-reparametrization-invariant quantum-
mechanical system explained above. One large difference
is that the inner product and the probability interpreta-
tion cannot be defined exactly in this approach. Howev-
er, it may not be a defect of this approach. In fact, if we
take seriously the wave-packet reduction problem in the
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a:=P+if(q)=e~Pe, f(q)=d F(q),
and its eigenbras

(a~a=(a~a .

(3.3)

(3.4)

standard quantum mechanics, the final theory describing
the whole Universe should take a form different from the
conventional quantum mechanics. It is quite possible
that the probability concept has a limited applicability
and depends on the semiclassical history of the Universe
(cf. Ref. 31). Although these arguments do not fully jus-
tify the WKB-type approach, they at least suggest that it
is meaningful to investigate the behavior of the solutions
to the quantum constraint equations.

Provided that the Universe is described by a solution to
the constraint equations, one must find a rule to pick up
solutions which are physically meaningful. In the stan-
dard quantum mechanics, this rule is given by the nor-
malizability of state vectors on the basis of the probabili-
ty interpretation. However, we have no inner product in
the quantum gravity case, at least in the usual sense.
Furthermore, in the final theory, we must select one solu-
tion. In the framework of the Wheeler-DeWitt theory,
various Ansa'tze have been proposed to give such cri-
terion, so called the boundary condition of the
Uniuerse. ' ' ' ' ' ' The most famous one is the
Hartle-Hawking proposal based on the Euclidean path
integral. Although it is quite elegant and attractive, re-
cent work shows that it does not work well due to the ill
definedness of the Euclidean path integral.

New aspects brought about by the polynomial formula-
tion is that we can consider the so-called holomorphic rep-
resentation which is a kind of momentum representa-
tion. ' Here we discuss the possibility that we may utilize
this holomorphic representation to give a new criteria to
select out the wave function of the Universe.

Before going to its application to quantum gravity, we
first review its definition and fundamental properties for
the case of quantum mechanics. For a quantum system
with the fundamental canonical variables (q, p) let us
consider a non-Hermitian operator a defined as

O(q ) = e—f da e'"~4(a),1

(2' )" c (3.9)

where the integration path is along the real axis.
An interesting point of this representation is that the

requirement of the holomorphicity of 4(a) yields an cri-
terion to select out the normalizable wave functions for
some cases. For example, let us consider a one-
dimensional harmonic oscillator with the Hamiltonian

1 2 1H= p + —mcoq
2m 2

(3.10)

The eigenvalue equation of this Hamiltonian in the q rep-
resentation,

HV(q)—:— + —mao q 4(q)=E'l(q),1 d 1

2m dq 2

has two parameter families of solutions:

4(q ) = AD, , ( &2m to q )+BD,
&
(i &2m cu q ),

(3.11)

(3.12)

where 3 and B are arbitrary constants, E =(v+ —,
' )co, and

D„(z) is the Weber function. If we require that 4(q) is
square integrable, only the first term with non-negative
integer ~ is allowed and we get the correct energy spec-
trum.

By introducing the operator

What is different from the usual momentum representa-
tion is that o. takes complex values and the corresponding
eigenbras form a nonorthogonal overcomplete set in gen-
eral due to the non-Hermiticity of a. As a result 4(a) is
a function defined in some domain of a complex plain.

An important property of this a representation is that
for the normalizable state vector ~4) for which %(q) be-
longs to L (q), i.e., square integrable, 4(a) becomes a
holomorphic function in the whole complex plane of a if
e ' EL (q) for any complex value of a. This is the
reason why this representation is called the holomorphic
representation. In this case we can find the inversion for-
mula to Eq. (3.6):

In the q representation these eigenbras are expressed
apart from the normalization as a =P +i m coq, F( q ) = —,

' m toq (3.13)

(a~q) =e ' ' F (3.5)

In terms of these eigenbras we can introduce the a repre-
sentation of the state vector ~%') defined by

we can solve the same problem in the a representation,
which corresponds to the so-called coherent-state repre-
sentation. In this representation the energy-eigenvalue
equation

4(a):=(a~%)= f dq e ' q %(q), (3.6)
1 COH4(a)—: a a+2mto +—4(a)

2m dc' 2
where %(q) is the q representation of the state vector.
Since o. acts as —i 8 on the wave function
4(q)=e %(q), N(a) is the wave function in a kind of
momentum representation to the noncanonical represen-
tation of p. In particular the operators q and a are ex-
pressed as

=(v+ —,
' )co@(a)

has a single-parameter family of solutions
1'

CX

exp
4m co

(3.14)

(3.15)

q %)~i 4(a),. d
da

a~4)~a4(a) .

(3.7)

(3.8)

Here if we require that N, , is holomorphic in a, v is re-
stricted to non-negative integers. Thus we obtain the
correct energy spectrum.
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What is happening here is that the transformation
from the q wave function to a wave function,

4(a)= f dq exp(iaq —
—,'mcoq )0'(q), (3.16)

(3.18)

gives holomorphic functions in the whole complex plane
only for the case when v is a non-negative integer. In fact
the transform of D (&2m' q) exists only in the region
Ima) 0 for v~ —1 and Imp~0 for v& —1 and
v%0, 1,2, . . . , though the corresponding 4(a) is always
given 4,(a). The solution D „,(i&2mcoq) has the
transform only for v) —1 and on the real axis of a. Fur-
ther it does not even have an analytic extension because
the corresponding 4(a) is proportional 4,, for a) 0 but
vanishes for a (0.

Thus in the case of the harmonic oscillator the require-
ment of holomorphicity on the wave function in the
coherent-state representation yields a necessary and
sufficient criterion to select out the normalizable wave
function. Of course this result cannot be extended to the
general case because the requirement of holomorphicity
is weaker than the condition of square integrability of the
wave functions in the q representation in general.

In the case of quantum gravity A+—representation in
which A — becomes diagonal corresponds to the holo-
morphic representation. From the relation (2.20) the
wave function @[A+—] in this representation is connected
with the wave function 4'[e] in the canonical e represen-
tation by

@[A ]=f de exp i f d x—A* e J+F V[e] . (317)

Although we cannot apply the reasoning leading to the
holomorphicity of 4(A+—) now, it seems natural to re-
quire some analyticity condition on it for the following
reasons. First for the physical degrees of freedom which
correspond to the gravitational waves in the weak-field
limit the Hamiltonian is positive definite and wave func-
tions are expected to damp rapidly enough for large exci-
tations like the harmonic oscillator. Hence the wave
function in the .A — representation will be holomorphic
with respect to the A +—'s conjugate to this freedom. Ac-
tually it is shown by Ashtekar that the holomorphic re-
quirement is appropriate in the weak-field limit. Second
the gauge freedom associated with the local triad rotation
and the spatial coordinate transformation can be elim-
inated by introducing the gauge-fixing 5 functions in the
definition of the transform. Finally to see the behavior in
the sector associated with the freedom of the local time
evolution, let us recall the case of the quantum-
mechanical system written in the reparametrization-
invariant form. As noted above, the state vector ~+& is
decomposed as in Eq. (3.1). Since ~%(t ) & obeys the
Schrodinger equation with the Hamiltonian H, it is writ-
ten in terms of the eigenstates of H as

IV. CLOSED ROBERTSON-WALKER UNIVERSE

The spacetime metric of the closed Roberston-Walker
universe is given by

s = —~dt+e 3 (4.1)

where d 0,3 is the metric of a Euclidean three-sphere and
written in terms of an appropriate one-form basis
X =X,dx~ which is invariant under the SO(3) isometry
group as

d 0'=y'e y' (4.2)

We normalize the one-form basis by

(4.3)

which determines the sectional curvature to be K =
—,
' and

the volume 0=16+ . For this metric the triad variables
e ~ are parametrized by a single variable o as

(4.4)

where ~X~ is the determinant of X and Xi=(Xj) is the
vector field basis dual to g . Hence normalizing N and A
as

—3aN
6Q

1 —A,186

the ADM Lagrangian is written as

L = —o.P+nC&,

(4.5)

(4.6)

(4.7)

where P is the ADM momentum conjugate to o. and C&
is given by

becomes analytic in the lower half complex plane of a.
In quantum gravity solutions to the quantum constraints
can be also expanded in the form like Eq. (3.1). The
difference is that the variable t can be regarded as a time
variable only in a limited range of values and the
Schrodinger-type equation holds only in this range. If
the solutions represent quantum states of the Universe
with a beginning, this range will have a lower bound and
below this range ~%(t) & will damp or vanish. Thus the
wave function in the A —representation is expected to be
analytic in the lower half plane with respect to the A —'s

conjugate to the time variables.
Thus these observations suggest that we should require

that the wave function in the A+— representation should
be holomorphic in the half complex planes with respect
to the components of A—+ which correspond to time, and,
in the entire complex planes with respect to the remain-
ing components. In the next section we will examine
whether or not this is the case for a simple system.

C~ =o.-( —P +A, o. ——,
'

) . (4.8)

Hence the Laplace transform of
~
4( t ) &,

J dre "~%(r)&, (3.19)

Since we have only the Hamiltonian constraint in the
present case, the quantum constraint in the ADM for-
malism gives the following Wheeler-DeWitt equation for
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the wave function 0'(o ):

o. +A.o ——ql(o. ) =0 .d
do-' 4

{4.9) %(o ) =C,Ai(x )+CzBi(x ), (4. 18)

Wheeler-DeWitt equation (4.9) again gives a two-
parameter family of solutions:

Here we have adopted the operator ordering such that o.

sits left to P on the basis of the general argument on the
operator ordering in Sec. II.

Because of the spatial homogeneity and isotropy the
Ashtekar momentum A — is parametrized by a singleJ
function of time, A —as

(4. 10)

Since the generating functional F in the present case is
given by

where Ai(x ) and Bi(x ) are Airy functions and x is given

by

1
—4ko
4g2/3

(4.19)

4(A)=e ' D3+ f
l A, oo

dA(D, +D~ A )e' (4.20)

However, the corresponding equation in the A represen-
tation (4.14) is now third order and has a three-parameter
family of solutions:

0F=—,
2

' (4. 1 1) S=— + —A
1 A i

3 2
(4.21)

the Ashtekar momentum A-- is related to the ADM
momentum P simply as

A —=P+—
2

(4.12)

For simplicity we shall omit the index on A in the rest
of this section as far as no confusion occurs. Then CH is

expressed in the A representation as

CH = cr [ —A ( A + i ) + A, cr ] . (4.13)

Thus the wave function 4( A ) in the A representation
should satisfy

d2

dA
—A(A +i )+ik&. (A)=0 .

dA
(4.14)

4(o )=C,e +C~e (4.15)

The corresponding equation in the A representation
(4.14) has also a two-parameter family of solutions:

Di D
4(A)= +A+i A

(4.16)

This general solution is analytic in the complex A plane
for a sufficiently small value of ImA. Hence the analyti-
city requirement is satisfied for all the solutions. Further
the transformation

4(A)= I do e ' " %(o)
0

(4.17)

Now we examine the solutions to the Wheeler-DeWitt
equations in the o and the A representations and their re-
lation in order to see the role of the holomorphic condi-
tion on the wave functions. Since the structures of the
equations change depending on whether or not X=O, we

discuss these two cases separately.
First for X=O the Wheeler-DeWitt equation (4.9) has a

two-parameter family of solutions:

Thus an extra solution appears in the A representation.
The origin of this difference in the degrees of freedom

of the solutions is clarified by looking at the correspon-
dence of the solutions. The key point here is the range of
o.. Since the formalism itself does not constrain the range
of o. explicitly in the quantum theory, we must specify it
by additional physical arguments or the consistency of
the theory. Mathematically the general transform of the
wave function ql(o ) defined by

4(A ):=I der e ' " q'(o ) (4.22)

may be a solution to the Wheeler-DeWitt equation in the
A representation. However, if we require that this trans-
form satisfies Eq. (4.14) the range of cr is restricted. Ac-
tually this requirement is satisfied only if

O2 +(+iAO2+~o 2o2)+ e
—iaA+FdO

d(7 2
=0

(4.23)
for an arbitrary value of A. Thus the range of o. is re-
stricted to either [0, + oo ] or [ —oo, 0] or [ —oo, oo ].

Now let us look at the correspondence between %(cr)
and 4(A ) given by Eq. (4.22) for each of these three
ranges. In principle we must discuss the cases A, )0 and
X &0 separately because the behavior of 4( A)'s given
above largely depends on the sign of k. However, since
the equations for the case A, (0 is obtained from those for
the case A. )0 by the transformation o ~—o. and
A —~ —A + due to the structure of the constraint equa-
tions, we only give the equations for the case k) 0. Some
implications of this correspondence will be discussed
later.

From the asymptotic behavior of the Airy functions

[/2 —1/4 —2x /3 )0
2

(4.24)
Ai(x )—

'"~x~ '"sin —'~x~'"+ — x &0
3 7

exists in Im A ( —
—,
' + —,

' for all the solutions given by Eq.
(4.15) and the solutions in the two representations are in

the one-to-one correspondence through this transforma-
tion, as is expected.

In contrast the situation changes for XWO. The

Bi{x)-
]/2 —]/2 2x /3 )0

(4.25)

vr'"~x
~

'"cos —'~x ~'"+—,x &0,
3 4
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both Ai(x) and Bi(x) have the transform (4.22) for the
range of o in [0, oo], but for the range [ —oo, 0] or

[ —oo, oo ] only Ai(x ) has the transform.
First for the range [0, oo ], from the integral representa-

tions for the Airy functions

the transformation of Ai(x) is well defined in the whole
complex plane, and the image is given by the difference of
4( A )'s given in Eqs. (4.30) and (4.29).

Conversely, if we take the inverse transform of (4.22)
defined by

1 t'
Ai(x), Bi(x)= dt exp i —+xt

27T C 3
(4.26) e "'Plo )= dA e'" 4(A ),1

27T C
(4.31)

where the integration path C for Ai(x ) and Bi(x ) is given

by C~ and Cz shown in Fig. 1, respectively, the transfor-
mations of Ai(x) and Bi(x) exist for ImA & —,

' and are

given by

2l dt
c t+A+i/2 k 3 4

(4.27)

From this equation it follows that

—A(A i)+—iA, 4(A)
dA

4( A ) =—e ' f d A [4'(0)+(iA+ —,
' )%(0)]e'

I oo

(4.29)

which is a two-parameter subset of the solutions given in

Eq. (4.20).
On the other hand, for the range [—oo, oo ] the trans-

formation of Ai(x ) is well defined only in ImA & —,', but
the corresponding image 4(A ) turns out to be holo-
morphic in the whole complex plane and given by

( A ) 4g
—1/3 + 1/12K. —is (4.30)

This corresponds to the remaining one-parameter family
of solutions in Eq. (4.20). Finally for the range [—oo, O]

/
/

t plane
/

/
/

= —4[+'(0)+(iA+ —,
' )%(0)] . (4.28)

Thus the transform of the solution (4.18) is given by a
holomorphic function

where the integration path C is a line of ImA =P=const
with a sufficiently small negative P, 4(A ) given by Eq.
(4.29) yields 4(o ) which vanishes for o &0, while 40( A )

yields Ai(x ) in the full range of cr F [ —oo, oo ].
We can learn several things from this study of the sim-

ple system. First the wave functions which are defined in
different ranges of o. in the 0. representation are
represented by different analytic functions in the 3 repre-
sentation even if they coincide with each other in the
common domain of 0.. In particular for nonvanishing k
the Hamiltonian constraint in the A representation al-
lows for a solution which extends across the classical
singularity q =det(q, i,. ) =0 (note that this corresponds to
o =0 in the above system). This conclusion holds also for
general systems because the Hamiltonian constraint be-
comes a third-order differential equation in the A —repre-
sentation for systems with nonvanishing potential of ma-
terial fields. Second, though the analyticity requirement
on the wave functions in the A representation does not
restrict the class of solutions strongly, the 3 representa-
tion picks up some restricted class of solutions if we re-
quire that the wave functions in the o representation do
not have an artificial cutoff at q =0. In the present case
this requirement selects out a single solution 4o given by
Eq. (4.30) for A, WO, which coincides with the Hartle-
Hawking wave function.

This last point is interesting in connection with the
boundary condition on the wave function of the Universe.
In the conventional ADM approach in which the spatial
metric q I, is taken as the fundamental variable the
Wheeler-DeWitt equation becomes singular at q =0.
Hence the range of q k is restricted to q & 0 and the q =0
portion is taken as a boundary of the superspace. The in-
tuitive picture of the quantum universe so-called
"creation of the Universe from nothing" is based on this
standpoint. In contrast, in Ashtekar's formalism in
which e J is taken as the fundamental variable the equa-
tions are regular at q =0 due to the polynomiality.
Hence it is natural to extend the domain of the wave
function to the region where q &0 (Ref. 17). Since the in-
verse of the spatial metric

q
J/c e J e /c

/q (4.32)

FIG. 1. Contour of integration.

changes its signature in this region, it corresponds to the
Euclidean spacetime in general. Thus allowing for the
wave function to extend across the classical singularity
q=0 may yield an intuitive picture of the quantum
universe different from that based on the metric theory.

In order to see this, let us examine the behavior of the
wave function @o(A ) more closely. Since the solution
4O( A ) has the WKB-type structure, it can be interpreted
by the corresponding classical solutions. Actually the
phase factor S satisfies the classical Hamilton Jacobi
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equation

h 0.,
as =0. (4.33)

Thus the WKB orbits determined by the equations

(4.34)

(4.35)

where

v'6' dt

0
(4.36)

satisfy the classical equation of motion. The solution to
this equation is given by

l
A = —

—,'sinhg+ —,
2

'

Xo =—„'cosh g,
&6QA, t =(+const,

(4.37)

(4.38)

(4.39)

where we have taken N=1 for simplicity. If we assume
that t is real and cr )0, we obtain a classical solution only
for A, )0, which represents the de Sitter spacetimes (dS )

2QA, ds = —d g +—,
' cosh g d A3, (4.40)

V6AA, t =+if+const, Ao =
—,'sin g, (4.41)

which covers the region 0 ko. —,
' and represents the

Euclidean four-sphere (S )

as expected. Here the unusual factor —,
' appears because

we have chosen the metric of the three-sphere so that it
has the sectional curvature E =

—,'. This solution covers
the region of cr where A,o )—,'.

For k&0 the remaining region is covered by Euclidean
solutions. First for u )0 g hence t should be imaginary.
By replacement (~+i(g+m/4), Eqs. (4.38) and (4.39)
yield a Euclidean solution

tions in the regions q &0 and q )0 in general. Of course
in the present simple system the solution in q &0 is
uniquely extended into the region q & 0 also in the
Wheeler-DeWitt theory since the superspace is one di-
mensional. However, it is not the case when the dimen-
sion of the superspace is greater than one.

Anyway the wave function 40(A ) gives under the
WKB approximation a sequence of three classical space-
times: H ~S ~dS. Hence, instead of creation from
nothing, we get a picture that the Universe is created
from a Euclidean space. Here the Euclidean four sphere
plays the role of a temporary bridge connecting the
mother Euclidean space and the Lorentzian universe as
illustrated in Fig. 2. As we will see in the next section
this picture can be extended to anisotropy spacetimes.

Now let us look at the case k &0. As noted before, the
solutions in this case are obtained from the case A, & 0 by
the replacement 0.~—a and A+—~—A+. Hence the
classical WKB orbits are given by the replacement
o ~—cr from the above solutions. This implies that the
wave function now gives the sequence of spacetimes;
dS ~S ~H . A curious point of this result is that dS
which is a classical Lorentzian solution for A, )0 appears.
Although it appears to be contradictory, it is not the case
for the following reason. From Eq. (4.38) g is real for
A, &0 and 0 &0. However, from Eq. (4.39), it implies that
t is imaginary since 0. &0. Thus the Lorentzian signature
is obtained by the simultaneous changes of the signature
of the temporal metric and the spatial metric. If we as-
sume that the original coordinate time should be real,
such solution is not allowed classically. However, in the
framework where the constraint equations alone give the
full theory, the coordinate time has no physical meaning.
The physical time should be derived from the wave func-
tion. From this standpoint what should be real is not t
but r which is real for real g. Hence the appearance of
the Lorentzian de Sitter solution may be regarded as
physically meaningfu1. In this standpoint the signature
of the cosmological constant has no meaning if we allow
for the wave function to extend to the region q &0.
Furthermore, since the wave function in the 0. represen-
tation fa11s off exponentially in the region A, o. &0, the

2QA. ds =dg + —,'sin gdA, . (4.42)

Next for o &0 the replacement g~g+(~/2)i yields a
solution

v'6AA, t =(+const, A.o = —
—,'sinh g . (4.43)

Now the time coordinate t is apparently real but the solu-
tion represents the Euclidean four-dimensional hyperbol-
ic space (H )

tzian

2QA, ds = —{dg + —,'sinh gdQ3) . (4.44)
dean

Of course the last solution is not new. It can be ob-
tained also in the metric theory if we allow for q to be-
come negative. What is important here is that this solu-
tion is obtained with other solutions from the single holo-
morphic wave function in Ashtekar's theory. In the
Wheeler-DeWitt approach based on the metric formula-
tion there exists no natural connection between the solu- FIG. 2. Creation of the Universe from Euclidean spacetime.
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cosmological constant becomes effectively positive in the
classical universe irrespective of the input sign of k. Al-
though this result is quite attractive, its generality is not
clear. For example, for the anisotropic universe the A+
and the A representations are not equivalent as we will
see in the next section. For such a case the argument of
this section does not apply since the above transforma-
tion connecting the case A, & 0 and the case k & 0 changes
the representation.

These analyses show that the wave function 4o{A ) is a
quite attractive candidate of the wave function of the
Universe. Thus it is interesting to see whether there is a
criterion to select out this type of wave functions in the
general case. In the 0. representation the wave function
4o is characterized by two features. First it has no cutoff
at q =0. Second it does not grow in the classically forbid-
den region ko. (0. The second property is important
since if the wave function grows there it will become
quite improbable for the classical universe to emerge, in-
tuitively speaking. One attractive point of the A — repre-
sentation is that this second requirement is automatically
included. In fact if the wave function grows in the for-
bidden region, it will not have a holomorphic image be-
cause the integration defining the transformation
diverges. However, there occurs another difficulty in the
A +— representation. As the above example shows, the
solutions to Hamiltonian constraint in the A — represen-
tation may contain the wave functions which have a
cutoff at q=0 in the chiral e representation. Thus we
must give a criterion to rule out such solutions. For-
tunately we can find such criterion. In the above exam-
ple, the inverse transform from 4( A ) to
%' —(o )=e+ 4(cr ) is given by Eq. (4.31). If 4—(o ) has a
cutoff at o. =0, its second derivative with respect to o. will
diverge there. Hence if the integral

1 I d A A e'" 4( A) (4.45)
2K C

a=0
converges, it will correspond to the solutions with no
cutoff'. This condition is equivalent to the one that 4( A )

falls off more rapidly than 0( A ) for A ~+ oo. In fact
it is easily shown that this condition selects out the solu-
tion 4o uniquely. Thus we can formulate the above con-
dition on the wave function in the A — representation
that it is holomorphic and falls off faster than O(1/A —

)

at infinity along some path without endpoint.

U. BIANCHI TYPE-IX UNIVERSE WITH A

As noted in Sec. IV the Ashtekar variables e ~ and A-
J

are parametrized by time-dependent matrices 0. and AIJ
for general spatially homogeneous spacetimes. Hence the
system has 9 degrees of freedom. However, as was shown
in Ref. 19, 6 of them which corresponds to the freedom
of the local Lorentz transformation decouples from the
dynamics and can be eliminated preserving the polynorni-
ality of the constraint equation for vacuum Bianchi type-
IX spacetimes. We take this reduced theory as a starting
point. In this reduced theory the spacetirne metric is

given by the diagonal form

d~ 2 ~2dt 2+ 1~I@~I (5.1)

where g is the same as in the previous section. Corre-
spondingly o, PIJ, and AII given in Eqs. (2.35)—(2.37)
become diagonal:

0 IJ oIg 01 2ge I2a —P
(5.2)

PIJ PI~IJ ~

~ IJ AI ~IJ

By introducing variables

30!

n =— E,
20,

A

60

(5.3)

(5.4)

(5.5)

(5.6)

the chiral Lagrangian L —is written as

L —= —o A- —nh
+—

I I

where h is given by

(5.7)

h = cr, cr—,( A +-, A;= + i A,—) cr 3cr—3( A 3 A 3 + i A —, )

cr3(T[( A 3 A —, + ~A 3 )+3Arc, rc,o33 (5.8)

The Ashtekar momentum AI+— is related to the corre-
sponding ADM momentum PI by

. aF
I I—~~~I

where the generating functional F is now given by

0'20 ) 0 30 ) 0 )O'2F=— + +
2 01 02 0'3

(5.9)

(5.10)

a' a-(A) A3 i~A )+3(A3A3+iA))aA )aA2 aA2aA

a2+ (A3A, +iA3)
aA, aA,

a3
3l k, 4( A ) =0, (5.11)

aA, aA, aA,

where we adopted the operator ordering suggested by the
general argument in Sec. II.

Unlike the equation in the Roberston-Walker universe
discussed in the previous section we cannot find the gen-
eral solution to this equation. However, we can find a
nontrivial special solution which reduces to the solution
No for the Robertson-Walker universe when restricted to
the isotropic sector. It is given by

From now on we omit + in AI for simplicity as far as no
confusion occurs.

By the replacement o.I i a Ia A I, h gives the
Wheeler-DeWitt equation in the A representation:
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4( A) =e (5.12)

S=—A) A~A3+ —(A (+ A3+ A3
1

2
(5.13)

e+ qr(cr)= — f A, f dAz f 1A3e' "4(A ) .

(5.14)

Here there arises a new problem associated with the con-
tour of integration. In the isotropic case the requirement
that this transformation becomes the inverse of the trans-

The wave function in the o. representation corresponding
to this solution is in general given by the transformation

formation which maps qr(cr) to 4(A ) determined the
contour to be a path which tends to +co —iP with
sufficiently large /3. However, in the present case, the in-
tegration in the above transformation does not converge
along such contour in general. In fact for the A+ repre-
sentation with positive A, or for the A representation with
negative A, , the integration converges only when ~/3~ is
sufficiently small for all CI. Further for the A repre-
sentation with positive A, or for the A+ representation
with negative k the integration does not converge along
such contours for any value of /3.

At present we have no idea how to treat this problem.
So we only consider the case A, )0 in the A + representa-
tion (which is equivalent to the case A, (0 in the A rep-
resentation). In this case the above transformation yields
the wave function in the cr representation

2kQ, dz (cr,—+cr&)+2icr, a&z .
z

e 4(cr)= exp + I o 3z——~ +1+z' 1+z 3 2k
(5.15)

'P(cr)-e' ' ', S'=S(o, A )
—o A, (5.16)

Although this expression is not symmetric in o „o2, and
cT 3 it is actually a symmetric function of them since
4( A ) is symmetric in A „Az, and A 3.

Although we cannot express 4(o ) in terms of well-
known functions explicitly we can infer its asymptotic be-
havior with help of the WKB approximation. In the re-
gion where

~
cr&

~
is large, 4(cr ) is approximately given by

dr=n dt =
0 )0 2O'3

' 1/2

dt . (5.21)

First we consider the solutions which correspond to
Lorentzian spacetimes. For such solutions o.I and ~
should be real. As is expected from the general argument
in the Appendix, the consistency of this condition with
time evolution requires that AI is written as

with A given by the solution of AI PI+iFI (5.22)

as 1
o'q — ——[ A J A x. + & A q ],aAI

where (I,J,K) is (1,2,3) or its cyclic permutation. In the
lowest-order approximation it is given by

%(cr )-C exp( 2i +ko—, cryo 3).

where PI is real and FI is the gradient of F
aF
a-, (5.23)

Here note that F
&

—F3 are not independent and satisfy the
identity

+C*exp(2i+kcr, cr~cr3), (5.18)
F ) +F2 +F3 +2F)F2F3 1:—0 (5.24)

az
h o=, A =0,aA' (5.19)

where C is some constant [note that 4(o ) is real from the
integral expression (5.15)].

Next we examine the semiclassical picture for the
quantum universe the solution gives by examining the
WKB orbits corresponding to the wave function as in the
previous section. Since the phase S of 4 given in Eq.
(5.13) is an exact solution to the classical Hamiltonian-
Jacobi equation

If we decompose Eq. (5.17) into the real and imaginary
parts according to Eq. (5.22) we obtain

PJPK —F~FK +FI —kO I,
PJFK+PKFJ =PI ~

(5.25)

(5.26)

(5.27)

From the identity (5.24), the second equation turns out to
be equivalent to that PI is parametrized by a single func-
tion y as

d

d~
=

[ A ~, h ]
= Acr J cr K, —

where ~ is defined by

(5.20)

the WKB orbits are given by the solutions to Eq. (5.17)
and

Similarly the evolution equation (5.20) yields

d
~~J~Kd~

dFI =0.
d7

(5.28)

(5.29)
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The second equation implies that Fs is constant in time.
Hence, from the identity (5.24), ar is parametrized by a

single function x as

1

AC, C C3

kC) C2C3

3

2/3

(5.34)

where Cs is a constant defined by

(5.30) A, C, C2C3

3

' 1/3

(5.35)

Fs+FJF& . (5.31) where ~, is an integration constant. Since ~ is related to t
as

Inserting these expressions for Pl and OI into Eq. (5.25),
we find that y should satisfy

y =CJC~(FJFz Fr—)+AC, CzC3x

r, —r =- exp( —&2QX t ),
from the relation

(5.36)

F2=F2 =F2
3 (5.33)

This condition together with the identity (5.24) deter-
mines the values of Fs to be F, =F2 =F3 ~

or
F

~

=F2 = F3 p
or its permutation. It is obvious that

the first choice yields the isotropic solution discussed in
the previous section, i.e., de Sitter spacetime. Since the
simultaneous change of sign in two of o.s's does not
change the spatial metric q &, the latter choices yield the
same spacetime. Thus if we restrict to the Lorentzian
solutions, the isotropic de Sitter solution is the only exact
solution to Eqs. (5.17) and (5.20). This implies that WKB
orbits filling the region with large positive o.s are not ex-
actly Lorentzian. However, for large x, the first terms on
the right-hand sides of Eqs. (5.32) become much smaller
than the second terms. If we neglect these first terms,
Fs's are no longer restricted by the consistency and we
obtain the approximate solutions

for (I,J,K)=(1,2, 3), (2,3,1), and (3,1,2). If we require
that C, C~C~WO, these equations are consistent only
when

d~~+i d~,

As =+iB, ,

(5.38)

(5.39)

Eqs. (5.17) and (5.20) yield the following equations for the
Euclidean orbits:

1
~ I = (BJBK —B— (5.40)

dBs

d~
—Ao Jog (5.41)

Now the reality of o. gives rise to no constraint. After a
long calculation we find that these equations are reduced
to the second-order nonlinear equation for Z:=B,B2B3
given by

&20 dt =+0,0 ~o &
dr =+C, Cz C~x dr, (5.37)

these solutions represent spacetimes expanding exponen-
tially with constant anisotropy ratio p, :pz.p&. These solu-

tions fill out the region with large positive o. ,o.2o.3.
Similarly to the case of the isotropic universe, the re-

gion with o. ,o.2o.3 0 is covered by Euclidean solutions.
By the replacement

d'Z 2x+1 dZ x(4Z+10x' —15x +1) dZ 18x +1 42x —3 dZ
1 —x dx (1—x) dx 1

—x 1 —x dx

+2x (5Z+4x —6x )=0, (5.42)

where x is related to ~ by B2B2B2 Z2
1 2 3 (5.46)

+x(1—x)dz

Jx
Z (1 —x) (2x+1)

(5.43)

B
&
+B2 +B3:2Z+3x —2x 3

B2B2+B B2+B2B2

(5.44)

For each solution to this equation Bs's are given by the
solution to the algebraic equations

Thus we obtain two-parameter family of Euclidean solu-
tions which covers the three-dimensional space of o..

Unfortunately it is difficult to solve Eq. (5.42) general-
ly. We could find only two exact solutions to this equa-
tion. One is Z=x which corresponds to the Euclidean
isotropic solutions discussed in the previous section. The
other is Z =(x —2)(x —2). This solution yields

=Z x(1—x) (2x+1)
dz +x(1—x)Jx

(5.45)

B, =B~=2 —x, B~ =(x —2) (5.47)

and its permutations. The corresponding expressions for
are given by
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Ao, =e,&2—x'(x —1),
A. o, = e,+2—x (x —1),
ko3=E, ez(x —x) &

(5.48)

(5.49)

(5.50)

(2—x )(x —1)
(5.51)

If necessary, O.I can be expressed in terms of g by the el-
liptic functions.

The behavior of the latter solution in cr space and in q
space is illustrated in Fig. 3. It starts from a degenerate
Euclidean space (two-dimensional disk), expands and de-
forms to another degenerate Euclidean space (one-
dimensional line), and finally isotropizes and shrinks to a
point. After passing the point, it expands to a deformed
three-sphere and finally collapses to a two-dimensional
disk. This latter part represents a deformed Euclidean
four-sphere with a degenerate hypersurface. If the be-
havior of a generic solution is similar to this special orbit,
the above wave function gives us a semiclassical picture
of the quantum universe similar to the one given in the

FIG. 3. WKB paths for the special solution.

and its permutations where c., and c2 are +, and the Eu-
clidean time y: =+i &2A,Q t is expressed in terms of x as

dy=(Xo, o,o, )' "dr
1/2

previous section. The Universe is created from a small
region of an ensemble of fluctuating four-dimensional Eu-
clidean spaces. In the present case an ensemble of aniso-
tropic Euclidean spaces corresponds to the mother Eu-
clidean spacetimes, and the deformed Euclidean four-
spheres represent local fluctuations of the mother space-
times. The reason why such local fluctuations occur only
at a single point (or at its neighborhood) in the present
case is the spatial homogeneity assumption on space-
times. Thus, following this picture, it is expected that
such a creation of universes from fluctuations occurs at
many regions of the mother Euclidean space in the gener-
ic situation. In order to check whether or not this pic-
ture is valid we must study the behavior of the above ex-
act solution in detail. We should also examine whether
or not the holomorphic condition and the asymptotic
condition on the wave functions select this solution
uniquely. These problems are now under investigation.

VI. DISCUSSIONS

In this paper I studied the quantization of the complex
canonical theory of gravity proposed by Ashtekar and its
application to Bianchi type-IX cosmology in order to see
the consequences of the polynomiality of Ashtekar's for-
malism in quantum gravity. In particular I examined in
detail the structure of the solutions to the Hamiltonian
constraint in the holomorphic and the triad representa-
tion, and the relation between these representations for
the Robertson-Walker universe with the cosmological
constant. On the basis of the analysis I argued that in the
quantized Ashtekar formalism it is natural to extend the
superspace on which the wave functions are defined to
the region where the determinant q of the spatial metric
is negative. Further it was found that if we extend the su-
perspace in such a way, the holomorphic representation
selects out a solution which is an analytic extension of the
Hartle-Hawking wave function in the conventional
ADM-Wheeler-DeWitt approach. By studying the be-
havior of the semiclassical orbits corresponding to the
solution, it was shown that the extended wave function
represents a sequence of the spacetime: a Euclidean hy-
perbolic space a Euclidean four-sphere ~ a Lorentzi-
an de Sitter spacetime.

On the basis of these results I proposed a new Ansatz
on the criterion to select out the wave function of the
Universe that the wave function should be represented by
a holomorphic function with an appropriate asymptotic
behavior in the holomorphic representation. I further
conjectured that under this Ansatz the quantum behavior
of the Universe is described by a semiclassical picture
such that the Lorentzian classical universe is created
from an ensemble of Euclidean mother spacetimes
through their local fluctuations, which is different from
the conventional picture "creation of the Universe from
nothing. " I also pointed out that the sign of the cosmo-
logical constant may become meaningless by the exten-
sion of the superspace and an effectively positive value
are automatically realized in the classical universe by dy-
namics.

I further extended the analysis to the vacuum Bianchi
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type-IX universe with the cosmological constant, and ex-
amined the behavior of a special wave function which
coincides in the isotropic sector with the special wave
function for the Robertson-Walker universe discussed
above. The semiclassical analysis of this solution
confirmed the above picture on the quantum behavior of
the Universe. I also pointed out that in the holomorphic
representation the quantum theory may yield diFerent re-
sults depending on the choice of the complex momentum,
the left chiral one or the right chiral one.

Although the analysis in the present paper is far from
complete even if we limit the scope to the Bianchi
cosmology, the obtained results are attractive enough to
show that Ashtekar's formalism is more than useful in
the study of quantum cosmology. In particular it is in-
teresting to see whether the Ansatz and the proposed pic-
ture on the quantum universe can be extended to the gen-
eric case.

In this connection I here point out that the special
holomorphic solution found for the Bianchi type-IX
spacetime can be extended to an almost exact solution to
all the quantum constraint equations for the general vac-
uum spacetimes with the cosmological constant. It is
given by

4(A —
) =e (6.1)

+=—J d'x e.'"'[+3iA,+ d„A,'—+A, —(A „—XA,+—-)] .

54' 6
A

J

where 2' is defined by

(6.3)

(6.2)

To prove that this is a solution to the constraint equa-
tions, first note the relation

CM, C =+2ic,„,(e ' 7' 7—' e '}e,
and the operators e ' and 7' do not commute,

[e" (x},PJ&&(y)]= 8 5(y —x),

(6.8)

(6.9)

APPENDIX: RELATION BETWEEN
ASHTEKAR'S VARIABLES AND THE ADM VARIABLES

In the first-order formalism of Einstein's theory, the
Lagrangian density for vacuum spacetirnes with cosmo-
logical constant A is expressed in terms of the tetrad e",
and the connection form A„,b as

the momentum constraint is satisfied only in the semiclas-
sical approximation. This difficulty is a generic feature of
the ordering adopted in the present paper as was dis-
cussed in Sec. II. Actually the solution is invariant under
the spatial diFeornorphism and satisfies the momentum
constraint for the reversed ordering. As noted in Sec. II
it is not clear whether or not this apparent defect of the
solution is serious. It may be removed under some regu-
larization of the products of local operators at the same
point, or by some gauge fixing.

Apart from this difficulty, this solution has a quite in-
teresting feature: the phase S is proportional to the
Chem-Simons functional discussed in Ref. 21 in connec-
tion with the problem of topological CP violation in
quantum gravity. Further 4 is an exact solution to the
classical constraint equations in the Hamilton-Jacobi
sense. It just corresponds to the classical solutions to the
Einstein equations studied by Samuel. These facts as
well as the various fascinating features in the spatially
homogeneous sector pointed out in the present paper sug-

gest that it is important to study the structure and behav-
ior of the above holomorphic wave function in detail.
This problem is now under investigation.

7':=—,
'e' '7 =e'"'(+ir} A +—+—'A +—XA —

) .kl k I 2 k 1 (6.4)
X =

~
co ( e "'e '"F„„„2A), — (A1)

i 54
e '4=—

2 m+
J

=—w'c .=3
A

(6.5)

Hence, noting that e'XA,—= —A,—+. Xe holds locally
even in the operator sense, the gauge constraint is
satisfied owing to the Bianchi identity for the complex
connection A +—:J '

From this relation the operation of e ~ on the wave func-
tion is given by

A gab 2( ~gab — ~gab (A3)

where *A„,b is the dual tensor of A„,b defined by

where ~co~
= I/det(e', ) and F„„,b is the curvature tensor

F„„b =B„A„,b —B,., A„,b+ A„,'A, ,,b
—A, 'A„,b . (A2)

As was shown by Jacobson and Srnolin, this Lagrang-
ian is equivalent to the chiral ones obtained by replacing
A, b in Eq. (A2) by its complex chiral combinationpab

C 4= —2) 7'4= —e'"'2) V 4—:0 . (6.6)
cd g~ pab' 2 ab ~ pcd (A4)

For the operator ordering adopted in this paper the
Hamiltonian constraint is also satisfied trivially:

1 5 5 A
C @=—e X . V' ——e' 4 =0.

4 ''m-
k l

(6.7)

In contrast, since the operation of CM on 4 for the
current ordering is given by

If one puts this chiral theory into a canonical form under
some appropriate gauge condition, it gives an apparently
polynomial canonical theory which coincides with
Ashtekar's theory. This yields an elegant proof of the
equivalence of the triad ADM theory and Ashtekar's
theory, and clarifies why Einstein's theory can be rewrit-
ten as a polynomial theory. As is pointed out by some
people, however, there is a hidden difficulty associated
with the reality condition on the triad in this equivalence
proof, which becomes serious when one quantizes the
theory. In this appendix I make this point clear by re-
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peating the equivalence proof in the (3+ 1)-
decomposition framework under the spatial gauge.

In the spatial gauge in which the vector e "0 is orthogo-
nal to the t =const hypersurfaces, e vanishes. Hence by
defining the lapse function N and the shift vector N~ as

+ +~p[' ~pol

+ +
+pl ' EIJK~ pJK

which are expressed in terms of P„and Q„as

A„—=P„+iQ„,

(A21)

(A22)

(A23)
(e~o)= —,— (A5)

X„—=Q„+iP„. (A24)

e I:=(eJl) e I' =q'"e[l

Pp:=(P„I) P„I:= JI „ol

Qp' (Qpl )& Qp[' Te[JK ~@YAK

(A7)

(A8)

(A9)

as

the spacetime metric is expressed only in terms of N, N~,
and the triad e~ as

ds = N—dt +q k(dx'+N'dt)(dx "+N"dt), (A6)

where q k is the spatial metric tensor defined as the in-
verse of q':=e e . Under this 3+1 decomposition the
Lagrangian density (Al) is written in terms of N',
N: =N/q 'I [q:=det(q & )] and

2J+ =/+i/', (A25)

2'= —2e QJ +N e[JKFJ[JK Qo'CB +PI p
+2Bk[NP, (e JXe")], (A26}

where F [JK:=e F,&JK and p is defined in terms of the
action S= jd x 2 as

+2N'C„55

[

In particular as a result of the (anti-)self-duality of A„—+,b,
they are related as %„+—= + i A„

Inserting Eqs. (A23) and (A24) into Eq. (A17) we ob-
tain

2e P—
l Po C[I

——
Qo C„NCw) —NCH, —(A10) =2(PO N "Pk ) X—e ' 2Dk [N(e—I X e ")] . (A27)

where

C~.=2Die ~,

C~.=2e XPi,
CM:= —2e" (D,P„DkP, ), —

C:=—(e JXe") F +P XP ——s e'A
H ' jk j k 3 jkl

(Al 1)

(A12)

(A13)

(A14)

Although X' is not a total divergence by itself, it reduces
to a total divergence under the conditions

=0, (A28)

C~ =0, (A29)

which are obtained by the variation of the real part of
To see this, note that Eqs. (A28) and (A29) are

equivalent to the following two conditions:

Here and X denote the inner and exterior products
with respect to the internal index, respectively, D is theJ
spatial covariant derivative

PO=N~P —8 Ne J,

gj[ eIJK~ 'JK

(A30)

(A31)

D:=3 —
Q Xi' i i

and F k is the corresponding curvature tensor

F[„.=a[g„a„g, g, X—g„. —

(A15)

(A16)

If we replace A„,b by its complex chiral combination
A„—,b in all the equations above, we obtain the corre-
sponding expression for the complex chiral Lagrangian
density X

LC = 2e'A,———AO. CG
— N'C~, —NCH, —(A17)

4

2e J g =(&q EIJKe Idke[ e" )'

+ k( q s[JK Jl (A32)

The latter equation means that the spatial part of the
connection is given by the Riemannian connection
co[[I(e) corresponding to the triad e[ . Hence the second
term on the right-hand side of Eq. (A26) vanishes due to
the Bianchi identity. Finally the first term on the same
equation is written as a total divergence owing to the
identity for Qll given by Eq. (A31):

where

C:=ZS,e ',
CM '. = +2le PJ[

AC:=—(e'Xe ") O' ——E e '
H jk 3 jkl

(A18)

(A19)

(A20)

This proves the equivalence of the Lagrangian densities
(A10) and (A17).

If we regard the chira1 Lagrangian density as giving a
canonical theory, however, there occurs a problem. First
note that the Lagrangian density (A10) gives time-
evolution equations for e I and P but does not for Q .
Since Q is not a Lagrange multiplier unlike Po, Qo, N,
and N, it must be eliminated with the aid of the equation

Here N and 9'-k are quantities obtained by replacing P
and Q, in D; and F,„with A —, and S—; defined by

5S
5Q,

(A33}
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As stated in the above proof, this condition is equivalent
under the constraints C~ =0 and C~ =0 to the conditions
(A30) and (A31). After this elimination of Q, , the La-
grangian density contains only the canonical variables e
and P, and the genuine Lagrange multipliers Qo, ¹,
and N to yield the triad ADM canonical Lagrangian.

In contrast, the situation for the complex chiral theory
is di6'erent. In the above equivalence proof the reality of
the triad e ~ is implicitly assumed. If we impose this reali-
ty condition, the chiral Lagrangian density (A17) does
not give a canonical Lagrangian due to the imbalance of
the degrees of freedom between e ~ and A +—. Unlike the
ADM case, the imaginary part of A j—,Q, , has the time-
evolution equation but does not have a conjugate vari-
able. One natural way to remedy this is to consider a La-
grangian density with e replaced by the complex vari-
able

6s 6s'
5Q, 5P,

P—+N'CR =0 (mode=0) . (A35)

where ej =(ejl ) is the inverse of e j=(e j ) and

p
".= ——' l('j e k'= —D e '" (e "ye ')

2

(A36)

(A37)

Thus +=0 is equivalent to the condition (A30} and the
condition

Thus under the constraints Cz =0 this consistency condi-
tion yields a new constraint +=0. This new constraint is
consistent with the time evolution. To see it, first note
that P is written as

+=2(PO+r), Ne' N'P—t+ ,'NC—s ) Xe j 2$—j"ek,

8'=e ~+iy~, (A34)
yjk 0 (A38)

regard it as a canonical Lagrangian with complex canoni-
cal variables A'j and A+-, and impose the reality condition
on 6'j as an additional constraint. Then the consistency
of this condition with the time-evolution equations gives

Since we are free to set the value of the Lagrange multi-
plier, we only have to check the consistency of the latter
condition. The time evolution of P" is given by

P
j"= ,'DIN(e " e—')(ej Cjt ) ——,'N(Cjt X e ") (e '" X e ')8 ln&q + ,'N(e '

DI C—R )(e 'e )

(modgj=O, C& =O, pj =0), (A39)

provided that Po is given by Eq. (A30). Hence p j"=0
yields no new constraint.

Thus we can construct a complex canonical theory
which is equivalent to the ADM canonical theory in the
classical level. However, when we try to quantize it, we
meet a difficulty. In the complex canonical theory
the Poisson brackets among 6'j and A,+— are de-
fined as I@j(x),A""(y)) = IX;+(x), A„+—(y)I =0, IB' (x),
Al J(y) I =5jk5J5(x, y), while the Poisson brackets be-
tween them and their complex-conjugate variables are
not defined. However, we need the latter Poisson brack-
ets since the constraints y =0 and P =0 are written as
combinations of 6j, A,+—

, and their complex conjugates.
A natural choice for the latter is the one for which the
latter Poisson brackets vanish. This choice, however,
yields tyj (x), QkJ(y)I =

—,'5jk5J5(x, y) for which Iy', P')
does not vanish. Thus it produces second-class con-
straints and we cannot quantize it by preserving the po-
lynomiality. Actually the theory obtained by this method
is equivalent to the polynomial canonical theory
developed in Refs. 20 and 21 where the same difficulty is
pointed out. Of course we cannot deny the possibility of
some choice of the Poisson brackets for which g~=0 and
pj =0 remain first class, but they would be quite compli-
cated even if they exist.

Another possibility to recover the canonical structure
is to assume that the imaginary part of A is implicitly
given by Eq. (A31}, which is the original form of
Ashtekar's theory. '' Since CG is written as

CG =Cjj+iCR, it follows from the above argument that
A,—with its imaginary part Q, replaced by Eq. (A31) also
satisfies the time-evolution equation obtained from the
complex canonical chiral Lagrangian, modulo CR which
vanishes under the constraint CG=O. Thus Ashtekar's
theory is equivalent to the triad ADM theory in the clas-
sical level. However, we meet difficulties again when we
try to quantize it. First the reality condition on e ~ re-
quires that the real part of Ao is given by Eq. (A30).
Since Po does not decouple in Ashtekar's theory unlike
the ADM case, it introduces nonpolynomiality into the
theory unless N = 1. Second from Eq. (A35) e j cannot be
an Hermitian operator unless N~—=0. Finally even if we
impose the Hermiticity of e ~ as a constraint on the physi-
cal state, the time-evolution equation for A+- deviates
from the canonical equation by terms proportional to Cz
as is seen from Eq. (A39). This deviation breaks the
canonical structure of the theory. Thus it seems quite
difficult to construct a quantum theory from Ashtekar's
theory or its variants preserving the polynomiality of the
theory.
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