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We study the gravitational back reaction of local cosmic-string loops as they shrink due to gravi-

tational radiation. We chart the evolution of the shape and radiation rate of the loops. Cusps sur-

vive gravitational back reaction, but are weakened. Asymmetric string trajectories radiate momen-

tum and hence undergo a rocket effect, but the effect is not very significant. Typically, a string
loop's center-of-mass velocity is changed by b, v -0.1c. Trajectories that have few modes and that
are non-self-intersecting remain so almost until the end of the string s lifetime. We also study highly

kinky loops. Small kinks decay very quickly, the decay time for a kink of size l being given by
t (l)d„,„-(Ik;„kGp, ) '1, where I k;„k-50. We argue that this limits the smallest relevant structures
on long strings in networks to a fraction (I k,„kGp) of the size of the horizon, and that this will also
set the scale for loops produced off a network. This, coupled with results from string network simu-

lations and millisecond-pulsar constraints, limits the string tension to Gp &2X10 . This is far
from ruling out the cosmic-string scenario of galaxy formation.

I. INTRODUCTION

In the last several years there has been much interest in
cosmic strings and their astrophysical consequences, par-
ticularly in the cosmic-string scenario of galaxy forma-
tion. The long string evolution is described quite well by
the "one-scale" scaling solution, ' with g growing as the
horizon size 2t. However, in some of the simulations,
neither the size of the small loops chopped off the net-
work nor the small-scale structure on the long strings ap-
pear to be scaling with the horizon size. There is lively
debate on the amount, generation, and scale of structure
on the long strings. Several numerical simulations show
that the long strings comprising the network develop
significant structure on scales much smaller than the
scale length of the network, and that the size of the stable
loops produced by the networks is determined by this
small-scale structure. These simulations show no lower
limit to small-scale structure; indeed, the structure on the
strings is seen down to the resolution of the numerical
simulations.

Kinks, which are discontinuities in the tangent vector
of the string, are inevitably formed when strings inter-
sect. Thus, as the network is evolved and strings inter-
sect and form loops, kinks accumulate on the long
strings, and their structure becomes more and more
crinkly. Correspondingly, the size of loops produced by
the network shrinks relative to the horizon.

It is important to know what this size is, because the
amount and spectrum of the gravitational radiation emit-
ted by the loops is a direct function of their size relative
to the horizon. This also means that the constraints from
millisecond-pulsar measurements, in particular, the lim-
its placed on the strong tension GJM, depend on a detailed
understanding of small-scale structure on cosmic strings.

In the next section, we present our formalism for treat-
ing string back reactions. We then describe the numeri-
cal algorithm used to compute cosmic-string evolution.
In the penultimate section, we discuss the effect of gravi-
tational backreaction on the evolution of cosmic strings.
The last section contains the conclusions.

II. THE GRAVITATIONAL BACK-REACTION
PROBLEM

We consider the problem of a local cosmic string in-
teracting with its own gravitational field. This problem is
the grauitational back-reaction problem, simply because
the cosmic string is moving in its own gravitational field.
The field at a given point on the string (field point) is the
sum of contributions from points all along the string
(source points ). Of particular interest is the contribution
from the field point itself. This is the self-interaction,
arising from a point on the string that instantaneously in-
teracts with itself.

As with all back-reaction problems, the possibility of
divergences always looms large. These divergences arise
when the self-interaction becomes infinite as the source
point approaches the field point. The most famous exam-
ple is the classical electron. Dirac solved the problem of
an electron moving in its own electromagnetic field by re-
normalizing its mass, thereby absorbing the divergent
self-interaction term. The leftover finite term is the
Dirac-Lorentz back-reaction force, slawing the electron
down as it accelerates and radiates. The global string
also suffers from infinite back reaction because of the na-
ture of its self-interaction. Dabholkar and Quashknock
removed this divergence by renormalizing the string mass
per unit length. After the renormalization, there is again
a finite leftover piece in the equation of motion, which is
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simply the back-reaction force.
The gravitational self-interaction of a cosmic string,

however, is divergence-free: all the relevant physical
quantities are finite and well defined. In Appendix A, the
back reaction is treated analytically. Here, we ofter a
physical argument for the divergence-free nature of
cosmic-string gravitational self-interactions. Consider
the motion of a point on the string. There, we can trans-
form to coordinates that are locally moving and ac-
celerating with that point. Locally, this reduces the
metric to the Minkowski one and sets to zero its first
derivatives (the Christoffel connection). By the
equivalence principle of general relativity, in such a coor-
dinate system we cannot speak of any gravitational force
at all, at least at the point in question. The self-
interaction of a point that is instantaneously at rest and
nonaccelerating must be zero. Other points nearby will
be moving relative to this point, but the tidal interactions
between those source points and the field point will be
finite. With the gravitational back-reaction problem for
cosmic strings, there are no divergences. There is the
caveat of cusps, however, since they instantaneously
move at the speed of light —there is no rest frame for
them and the above argument does not apply. In this
case, there one obtains a coordinate divergence, namely,
the back-reaction force per coordinate interval diverges.
But the integrated force, energy loss, and radiation
around the cusp is finite, and so is any other physically
measurable quantity.

We now describe the mathematical formalism needed
to address these questions, and the above assertions shall
be demonstrated quantitatively. Also, recently, a unified
treatment of the issue of divergences in several sorts of
classical radiating strings has been given in Ref. 10. The

same conclusion has been reached as to the divergence-
free nature of the gravitational back-reaction problem.

III. THE FORMALISM

—(g pa~ a~~)(g a xra x )]'~2

—= —p f do. dr( —h)'~' . (3.1)

Here —h is the determinant of the induced metric on the
world sheet, given by h; =g„,a, x"a.x'. From dimen-
sional considerations, p has dimensions mass/length, and
can be identified with the mass per unit length of the
cosmic string. The energy-momentum tensor that fol-
lows from (3.1) is given by'

T"'=p d 0 d ~( —h ' 5 x"—x" 0-, v

x [(g pa x a x~)a~ "a~"

+(g fla~ a~~)a x "a x"
—(g.,a~ a.x~)(a~~a.x +a.x~a~")] .

(3.2)

Using the Euler-Lagrange equations to minimize the
action yields the equations of motion

Consider a closed string moving in space-time x "(o,r).
For an infinitely thin string, the only relevant quantity
describing the world sheet of the string is its area, and
hence the action for the string is given by the Nambu ac-
tion"

S=—p f do dr[(g &a~ a x~)

a, f( —h) ' [(g f3a~ a x~)g„,a x"—(g &a x a x~)g„„a~ ]J

+a.[( h) '"((g.~—a~ -a.x~)g„,a~" (g.,a~ a~—~)g„,a x')]
=( —h) '~2a„g &[(g a~~a x )a~ a x~ —

—,'(g a xra x )a~ a~~—
—,'(g a~ra~ )a x a x~] . (3.3)

This equation can be simplified by the traditional
choice of gauge,

g.~a„x e„x~=0,

g.pa, x a,x~=0.
(3.7)

(3.8)

g pa~ a.x~=0, (3 4) With these conditions, (3.6) becomes

to

g &(a~ am~+a x a x~)=0

(a', —a'. )x~= —r:,(a~ a~~—a.x a.x~) .

(3.5)

(3.6)

a„a„x~=—r~g„x a,xI'. (3.9)

This equation of motion preserves the gauge choice
8„|,'g„B,x "B,, x ) =0 and B,(g„,,B„x"B„x)=0. Equation
(3.9) can be more elegantly written as the covariant gen-
eralization of the Aat-space equation of motion for the
cosmic string:

Here I "&—
—,'g»(a g &+a@ —a g &) is the Christoffel

affine connection. We make a transformation to new
coordinates u and U by defining u —=~ +cr, U —=~—0..
These are "light-cone" coordinates, since they are null by
virtue of conditions (3.4) and (3.5), which become

D„(a„,x")=0 . (3.10)

The null four-vectors B„x"and B,x", are parallel trans-
ported along geodesics in the background metric. Since
parallel transport preserves the norm of any four-vector,
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X5"(x —z (u, v)) . (3.12)

Throughout this paper, x denotes field points, and z
denotes source points. The retarded Green's function
technique' yields

h„„(x )=8Gp f du du F„„(z(u,u))

where

X8(x —z )5((x —z) ), (3.13)

F„,=a„z„a, z„+a, z„a„z,—q„„a„z a,z. .

Turok uses this approach in his calculation of the gravi-
tational field near an unperturbed oscillating string. '

Note that (3.11) requires the harmonic gauge condition
8 h„=—,'B„h which is satisfied by (3.13) as long as T"'
is confined to a finite volume in space. '

Equation (3.13) is an integral which sums contributions
from source points along the intersection of the string
world sheet and the past light cone of x, the field point.
This simply expresses the fact that gravitational interac-
tions in the linear regime propagate at the speed of light
and that we believe in causality. Since we are in the
linear regime, h„and I "& are proportional to GLM-10
and are small. To first order in Gp we can then write
(3.9) as

where, from (3.13), we have

(3.14)

9 h„„=8Gp f du dv F„„(z(u,v))

XB [8(x —z )6((x —z) )] . (3.15)

Equations (3.14) and (3.15) are the master equations that
must be solved in treating the gravitational back-reaction
problem. The first gives the motion of the string in its
own field, and the second gives the field in terms of the
motion of the string. The rest of the paper is devoted to
iteratively solving these equations for different initial
string trajectories.

the gauge conditions are preserved over time.
In the back-reaction problem, the string is itself the

source of the gravitational field determining its motion.
Its stress energy determines I "&. Since the gravitational
back-reaction effects can be expanded in terms of the
main dimensionless parameter in the problem, namely,
Gp-10, we use linear gravity to compute the metric
and to evolve the string iteratively.

Expanding the metric in the usual fashion as

g„,=g„,+h„,. The linearized equations of general rela-
tivity are'

Oh„„=—16m G( T„,—,'rl„T—)—= —16m.S„„. (3.11)

In the light-cone gauge, the energy-momentum tensor
from (3.2) is given by'

T""(x ) =p f du du (B„z"B„z"+B„z"B„z")

IV. DYNAMICS OF SELF-INTERACTING STRINGS

We begin with an unperturbed string solution xg(u, u)

that obeys the wave equation B„d,x o =0 and satisfies the
conditions (3.7) and (3.8) in flat space:

„.B„XPoa„xo=0, ~„.a,xPoa, xo=0. (4.1)

B„x B„x"-
—,
' Gp

(B„x B„x )

X(a„x a', x.a„x~ a„x a—, xa', x)f'du u .
Q

(4.3)

A corresponding term is contributed by points along the
v branch. Equation (4.3) shows that the contribution to
the back-reaction force from nearby points is finite, and
indeed goes to zero as the source point approaches the
field point.

This argument fails at the cusp, where a point on the
string moves at the speed of light and we can no longer
boost into the frame that is locally Minkowskian:
B„x B,x vanishes and B„B,x" diverges. However, since
the radiation from the cusp is finite, ' the energy loss and
the work done from the back reaction is finite, and the
singularity in B„B,x is an integrable one. This may be
checked by expanding (4.3) at points around the cusp,
and numerically by studying the change in position of
points on the world sheet immediately around the cusp.
We find no surprises as we probe around the cusp.

Gravitational back reaction both shrinks the string and
accelerates it, because the string radiates both energy and

x)o is only the zeroth-order approximation to the true
solution, exact in the limits Gp~0. We use x~o as the
source to compute the string gravitational field to order
Gp. We then use this gravitational field to calculate the
leading-order term in string evolution.

Averaging over a period, we find the leading-order
change in the trajectory:

a(a„xp= f'due„a, x~

1= —
—,
' f du(B h~& 8"h &—)B„xB„x~. (4.2)

Since h & is a functional of a periodic trajectory, the
second term in (3.14) vanishes as a total derivative. The
new solution B„xo"+b, (B„x~o) again satisfies the gauge
conditions to order Gp: q„„b(B„x")B„x"vanishes by an-

tisymrnetry. AB„x)0 also modifies the initial solution in a
gauge-perserving manner. We can then repeat the pro-
cedure, using the new solution as a source for the gravita-
tional field, and compute its effect over a period, obtain-
ing again another solution. Each time the new solution
differs from the old by a term proportional to Gp, which
is nominally small, and so we trace the evolution of the
trajectory from period to period in a gradual way.

This iterative approach is only valid when the back re-
action is finite. In Appendix A, we argue that there is no
short-distance divergence in B„B„x".The points along
the u branch of the light cone contribute a finite "tidal"
acceleration:
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momentum. The change in the string four-momentum,

P"=J—d'x T"

can be computed from the force density

"r)„T""=2@I du dv a„a„x"5 (x —z (u, v)),

(4.4)

(4.5)

V. NUMERICAL IMPLEMENTATION —THE CODE

In order to evolve the string trajectory numerically, we
must evaluate the back-reaction force B„B„,x" and com-
pute the change in the trajectory after each period.

where T" is the string stress energy density. Combining
(4.5) with (4.4) and invoking Gauss's divergence theorem,
we obtain the important relation

bP"=2p f du dv B„B,x~ . (4.6)

Here the change in four-momentum of the string is
defined over one period, so that the integration region in
(4.6) is over the range in u and v corresponding to o go-
ing from 0 to 1, and w going from 0 to —,', i.e., u and U

ranging from 0 to 1.
In Appendix B, we show that (4.6) is equivalent to the

standard expression' for power radiated by a moving
body. However, this formulation has the advantage that
both the motion of the string and its energetics can be
traced over time. In particular, the velocity of the center
of mass of the string is simply given by v'=P'/P With.
(4.6), it is possible to track the motion of the center of
mass of the string, and study the rocket egect If the.
rocket effect is large, it can have important consequences
for the cosmic-string scenario of galaxy formation, par-
ticularly with hot dark matter. '

One final note on the dynamics of self-interacting
strings concerns the role of time. While it is possible to
identify the timelike world-sheet coordinate ~ with the
actual laboratory time t in the case of the noninteracting
string, this definition does not hold for the interacting
string. This follows from Eq. (3.14). Time, as the other
three space coordinates, is also affected by the back reac-
tion. In particular, every new solution obtained from the
previous old solution has radiated some energy, and
hence has shrunk. Thus its period in real time t has di-
minished, and yet as outlined above, each of these solu-
tions is always periodic in coordinate time ~ with period
—,'. Hence the net effect of the back reaction on time is to
shrink the proportion between t and ~. Also, after each
interaction, the relation between t and ~ is skewed, in the
sense that the loop ~=const is not the same as t =const.
However, it is always possible to redefine time so that
t =const X~. This eases the presentation of the loop tra-
jectories, which are pararnetrized by o and v, so that
looking at a trajectory at v =const is the same as looking
at the loop at a given time. Below, we shall present the
shapes of string loops, showing how they look at given
slices of real time. After each iteration, we have correct-
ed for the skewing between t and ~.

We now turn to discussing the numerical implernenta-
tion of these concepts and present our results.

Hence the code consists of two parts. The first is devoted
to the evaluation of B„d„x",and the second is devoted to
the integration of (4.2). There are two versions of the
code: in one representation, the string's world sheet is a
continuous, differentiable function. In the other repre-
sentation, the string is discretized into segments that are
piecewise constant.

A. Evaluating B„B„x"

Each point along the string experiences an acceleration
due to the "tidal" force exerted by all points along its
past light cone. For every field point, we need to trace
the null curve and evaluate the contribution of each
source point.

In the continuous case, the null curve is divided into
three parts. We begin by integrating along the null curve
with du as our integration variable, using the Newton-
Raphson method, to find v (u) such that
f= [x —z(—u, v (u) )] =0. We then change the integration
variable to du, use the nullity condition to find ~(cr ), and
integrate further along the curve. Finally, we use dU as
the integration coordinate, compute u (v), and integrate
back to the field point. The only subtlety here is that the
change of variables between branches entails a change of
integration region, and hence the boundary terms in (A3)
must be included. There are two boundary terms, arising
at the connection between the 0. branch and the u and U

branches.
We needed to divide the integration into three pieces to

avoid numerical singularities. The integral in (A4),
rewritten in o.-~ coordinates, diverges logarithmically at
short distances. While there is a boundary term from
(A3) which formally cancels this divergence, evaluating
this cancellation numerically is disastrous, entailing a
difference between two large numbers. In u-U coordi-
nates, the boundary terms disappear to begin with, and
the integrand in (A4) is well behaved. The advantage of
working with the light-cone coordinates is clear; hence
the necessity to divide the integration region into three
parts:

In the discrete case, the situation simplifies tremen-
dously. The world sheet is a polyhedron, made up of
plane surfaces. It is no longer necessary to trace the en-
tire null curve in order to compute B„c),x", using very
small steps to accurately evaluate an oscillating integral.
Instead, we can rewrite (A4) as a discrete sum of contri-
butions from each of the flat pieces of the world sheet.
Thus, we can quickly compute B„B,x" for the kinky
world sheet by summing over left- and right-moving
kinks that lie on the null curve of the field point. The
only subtlety here is keeping track of whether the kinks
on the null curve are left or right moving —each
demands its appropriate boundary term [see Eq. (A3)].

We now give a short description of the behavior of Eq.
(A4) in the case of kinky strings. In this case, the deriva-
tives B„z"and B,z" are piecewise constant, and hence so
is F„(u,v). Hence one can sum the contributions to
B&h &

from regions where F„ is constant. In this case,
Eq. (A4) reduces to a sum of terms proportional to
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du
a /I p~F f3a„Z (a„f)'

(5.1)

B. Integrating B„d„x"

This is the main routine of our code. B„B„x"is com-
puted over a periodic grid in u and v. For each value of u
or v, the back reaction a„a,x" is integrated over a unit

which can be integrated immediately since f is a simple
function of u and v when the world sheet is a plane sur-
face. After boundary terms are included (when a u kink
follows a v kink, for instance}, a„a„x"can be obtained as
a sum over kinks lying on the null curve. In such a
manner, the back reaction can be computed very quickly
for kinky trajectories.

In the discrete case, there is no need to worry about
canceling divergences near the field point: since we can
always boost to a frame where a segment of the string is
at rest, the self-force of a straight segment vanishes.

interval in v or u. Since B„B,x is periodic, the new tra-
jectory is guaranteed to be periodic and closed. This new
trajectory then is ready to be used in (3.15) to find yet
another trajectory, one period later. In this manner, we
evolve the shape of the string in steps of time that are one
period long.

In the discrete code, B„x"and B,x" are represented as
piecewise constant functions. A trajectory is defined by
specifying B„x"at N equally spaced points, u;, along the
u unit interval and B,x" at N points, v, along the v unit
interval. Summing along the string world lines, we deter-
mine the change in the trajectory at each point:

N

~[a„x~(u, )]=—y a„a„x~(u, , v, ),
j=l

N

~[a„x~(v, ) ]=—y a„a„x~(u,, v, ) .
i=1

This formulation assures string closure:

S g a.x~dcr =,' g(aa„x~ ~a„x")do

1
N N N N

g g a„a,x"(u, , v, )
— g g a„a„x"(u;,v, )=0.

i =1 j=l j=l i =1

If we had removed the second term of a„a,x" in (3.14)
for the u derivatives and the first term of B„B,x" for the v

derivatives, the code would have strictly preserved the
gauge conditions. However, the 6[a„x"(u, )] and
9 [a,x"(v )] would lose their symmetry and the string
would no longer exactly close. (Closure would occur only
in the limit of N~ ~.) We chose instead not to tamper
with a„a„x",and not to remove any terms which in the
N~~ limit should go to zero. This keeps the string
closed, but after every period a slight correction was
made to ensure that the gauge conditions (4.1) were iden-
tically satisfied. In the next section, we use the gauge
condition as a check on the code.

Finally, by integrating over the whole period [see Eq.
(4.6)], the energy and momentum lost by the string can be
computed:

N N

, y y a„a.x~(u„v, ) .
N2 " " '' J

Thus the energetics of the string, i.e., its radiative power,
also can be traced over time. Also, the change in center-
of-mass velocity of the string loop can be calculated.

On a CONVEX C110, with vector optimization, the
discrete code takes 15 sec to complete a time step for an
N = 16 grid. The CPU time scales as N . On a
SUN4/110, a time step in the discrete code takes about
one minute with the same grid.

C. Consistency checks

Symmetries of the back-reaction problem, existing nu-

merical work, and some of the analytical work outlined in
the paper provide rigorous tests of the computer code
and the numerical method.

First, the behavior of the integrand in Eq. (3.14) was
studied near the filed point. All divergences disappear
and the behavior of a„a,x" is correctly described by the
analytic limit given by (4.3).

Next, after every new trajectory was obtained, we com-
puted the errors in the gauge conditions. In the limit of
large N, both products g„,b,(a„x")a„x' and

g„b,(a,x")a,x' should approach zero, since each term is
the integral of a total derivative. Since our integration is
simply a sum over N points in the unit interval in Eq.
(4.2), we are replacing an integral which should be zero
by a sum of terms which should approximately add to
zero. As N was increased, the products above did go to
zero. With N =16, these were typically of order 0.05.
With N =32 points, they were small, typically of order
0.01 or less, and with N =64, they were less than 0.002.

A third check was to verify Lorentz invariance of the
code. All of the key relations, e.g. , (3.14), (3.15}, (4.6},
and (Al), are strictly written in a covariant way. Thus all
four-vectors, such as energy momentum radiated in one
period, should Lorentz boost properly, and scalars such
as gravitational power, should remain constant. Using
the same string trajectory, but Lorentz boosted into a
different frame, we checked that this was indeed true. All
physical quantities transformed correctly. Our code is
exactly Lorentz covariant.
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FIG. l. I vs g for the N =3 (lower) and N =5 families of
Burden trajectories. I is in units of Gp . Open squares are
Burden's results (no errors quoted). Solid squares are our re-
sults.

FIG. 2. x-z projection of the N =3, f=rrl2 Burden trajecto-
ry, unperturbed (symmetric) and perturbed. Gp is taken to be
10 '. Both axes are in units of L.

As a final check of our formalism, we compared the
power radiated by a Burden string loop trajectory to pre-
viously calculated values. ' The Burden trajectories are
given by

N
a(u) = [cos(2rrNu)z2'

+ sin(2m. Nu )(cosgx+ sinltIy )],
—1

b(U) = [cos(2~Mu )z —sin(2rrMU)x] .2'
(5.2)

These are nonintersecting cuspy loops in the case I=1
and N ) 1, and P not equal to 0 orn. .

Burden used the standard expression' for the gravita-
tional power and summed over modes and integrated
over solid angle. ' The convergence in mode number is
very slow (going as n ' where n is the mode number),
due to the presence of cusps on the string, and no errors
are quoted in the paper. The open squares in Fig. 1 are
from Burden's calculation ' of I =—P/Gp for the N=3
and % =5 trajectories as a function of lII (here M =1).
The filled squares are our results for the same trajectories,
where we have substituted (5.2) as a zeroth-order solution
into (3.14) and (3.15), and integrated (4.6) over one
period. We find excellent agreement between the two sets
of results.

A. The back reaction and cusps

I
I

I I I I I I
I

I

Using the continuous representation of the string, we
explored the effects of gravitational back reaction on the
cusps, focusing on the evolution of the Burden trajec-
tories. These trajectories, defined in (5.2), are a sum of
simple trigonometric functions. Using the method out-
lined in Sec. V, we calculated (3.15) using Romberg in-
tegration to extrapolate the value of a„a„x" at N
points on the u, U grid.

While B„B,x is finite away from the cusps, it diverges
directly on the cusp, so we select the grid of N points so
that it straddles cusp points. However, as the singularity
evolved is integrable, the high-N limit should adequately
represent the exact effect of back reaction on cusps.
Then, taking the Fourier transform of (3.14), it can be
shown that the coefficients of the Fourier modes of the
perturbed trajectory are directly related to the Fourier
transform coeKcients of r}„B„x".In this manner, we per-
formed a mode analysis of the back reaction on cusps,

VI. RESULTS—DECAY OF SMOOTH LOOPS

In this section, we explore the evolution of kinkless
strings. We will use both the discrete and continuous
string representations to study the evolution of cusps, the
long-term evolution of strings and the rocket effect. The
continuous representation is a more accurate portrayal of
the cusp; however, evolving this representation is ex-
tremely time consuming —we need to evaluate an in-
tegral with an oscillating integrand and, at each point in
the evaluation of the integrand, we need to evaluate B„x"
and B,x", which are sums of N Fourier terms.

0

unperturbed—

perturbed

0
z/L

I I I I I I I I I

FIG. 3. y-z projection with the same parameters as Fig. 2.
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FIG. 4. Blow up of Fig. 3, showing the survival, but delay
and deformation of, the cusp.

and found that the perturbed mode coefficients scale likea„-n, and converge reasonably rapidly. This means
that after 100 moves (X =100 above), the perturbed tra-
jectory is known to better than 1%.

Using this approach, we trace the evolution of a cusp
over a single cycle. Figures 2 and 3 show the effect of the

back reaction on the cusps of the (M =1,% =3,g=m/2)
Burden trajectory. This is the effect the back reaction
would have after one period (time L/2) if Gp were 10
In most string models, Gp-10, and so these figures
show the effect of back reaction after about 1000 periods
of a realistic cosmic-string loop. Figure 4 is a blowup of
Fig. 3. Clearly, the cusp survives the back reaction, but
is deformed and delayed. Our numerical results are in
agreement with the analytical arguments of Thompson,
claiming that cusps would survive the back reaction.
Indeed, they do.

After one cycle, the input string solution, t)„x~o, is a
function not of three Fourier terms, but rather N Fourier
terms. This slows the code by a factor N/3 and makes
further evolution of the string with the continuum ver-
sion of the code numerically prohibitive, even on a mini-
supercomputer.

B. Decay of simple loops

We have also explored the long-term evolution of
string trajectories. Using the discrete representation, we
evolve the string until it decays to a small fraction of its
initial mass or until it self-intersects.

Figures 5 and 6 show the evolution of the discretized
N = 3 and N = 5 Burden trajectories, which are
represented with 16 segments. Since these are relatively

.2 I
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I I I
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—.2 I I I I I I I I I I I

0
x/L

i I I I I I

0
x/L

I I I I I

I I I I
I

I I I
I

I I t I 1 I I
I

I I I I

I
I I I I

I
I I I I

0 0

I I I I I

0
x/L

I I I f I I I I I I I I I I I I I I I

x/L

F1G. 5. z -z Projection of the evolution of the X = 3, p= vr/2 Burden trajectory, where each steP is &O '/G& Pe

ments have been used.
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FIG. 6. x-z projection of the N =5, /=m /2 Burden trajectory, with the same time step as Fig. 5. Here 16 segments have been
Used.

smooth and simple trajectories, the evolution is insensi-
tive to the segment size. While discretization removes
the cusps in the original Burden trajectory, there are still
many points along the string that are moving at ultrarela-
tivistic velocities somewhere along the trajectory. We
evolved these string loops using steps of 10 /Gp, string
periods. At first, the trajectory in Fig. 5 distorts, as the
back reaction twists the string somewhat, but soon it re-

laxes into an almost self-similar solution, slowly decaying
at a constant rate.

Because of the gauge conditions, it is difficult to
decompose a string into low- and high-frequency com-
ponents. "Crinkliness" is a more useful measure of the
string's small-scale structure.

Figure 7 shows the loss of energy of the loop in Fig. 5
as it decays, and Fig. 8 the shift in I, the power

110

100

90

80

FIG. 7. Energy of the loop in Fig. 6 as a function of time.
Energy is in units of pL, the initial energy of the string, and
time in units of L X (10 IGp).

FIG. 8. Power of the loop in Fig. 5 as a function of time.
Power is in units of Gp .
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FIG. 9. x -z projection of an asymmetric trajectory, a=a. 5 and p =a./2, with the same units as Fig. 2.

coefficient described earlier. This coefficient does tend to
relax somewhat towards what appears to be a typical
value of around 70.

C. Rocket eB'ect

role as seeds for galaxy formation.
In order to explore the rocket effect, we studied the

evolution of an asymmetric two-parameter family of solu-
tions described by Vachaspati and Vilenkin

Asymmetric string trajectories radiate not only energy,
but also momentum. This radiation might accelerate
string loops to relativistic velocities, thus modifying their

a(u) = [sin(2mu )x —cos(2n. u )(cosPy+sinPz)],
2m'

(6.1)

1
I

! ! !
]

! ! !
/

! ! !
(

! ! !
/

! ! !
(

! ! 2 f ~ ! ! ~ r ~'
(

! ! !
~

! !

05

v/c
15 a=0 5 g=rr/2

v„/c

—.05
05

/2

! ! ! i ! ! ! J

FIG. 10. x,y, z velocities of the center of mass of the loop in

Fig. 9, in units of c; the upper curve is the speed.
FIG. 11. Center-of-mass velocities for several asymmetric

trajectories.
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b(v) = [(1—a)si n(2nv )
—(a/3)sin(6mv )]x= 1

2m'

+ [ [(1—a)cos(2vrv ) + (a/3)cos(67rv ) ]y
1

2m

+[a(1—a)]' sin(4mv)z} .

These trajectories, if they did not evolve, would eventual-
ly reach relativistic velocities as they decay.

We evolved these loops over a decay time and found
that the asymmetric terms are gradually suppressed by
gravitational back reaction. The amplitude of the cusp
are suppressed and the location of the cusp processes—
these two effects limit the rocket effect. Figure 9 shows
the evolution of the (a=0.5,$=~/2) trajectory. The
center of mass is always shown at the origin. Figure 10
shows the various components of the center-of-mass ve-

locity of this trajectory. After the loop has lost more
than half its energy, the velocity is of order 0. 1c, a result
consistent with heuristic estimate. Figure 11 follows
the evolution of several different trajectories —the
center-of-mass velocity grows towards -0.1c and then
saturates near this value.

VII. RESULTS—KINKY LOOPS

A. Evolution of kinky loops

Numerical simulations of string evolution suggest that
kinks play a dominate role in the evolution of strings. As

the simulations progress, the long strings become increas-
ingly crinkly and the loops produced by fragmentation
are an ever smaller fraction of the horizon. The simula-
tions suggest that loops produced today would be a min-
iscule fraction of the horizon. The cosmological simula-
tions, however, do not include back-reaction effects.
These effects will alter the behavior of the kinks and will
determine the final outcome of the scaling solution. (Of
course, since gravitational back-reaction effects have not
been included in numerical simulations, the existence of a
scaling solution has not been rigorously established. For
example, the number of long strings per unit horizon
volume may grow logarithmically. This logarithmic
growth correction occurs in domain-wall evolution. )

The importance of kinks motivates our study of their
evolution. In the previous section, we discussed the evo-
lution of rather smooth trajectories, which we took to be
the Burden trajectories of (5.2), approximating these by a
collection of small straight segments. There, discontinui-
ties in the tangent direction were small. The decay of
these loops is uneventful; rapidly, the power radiated
converges to a fixed value, and the loops decay almost in
a self-similar manner. Here, we are interested in the de-
cay of loops which have real, sharp kinks.

We begin with the Burden trajectories, taking b(v) as
given in (5.2) by M =1, which is simply a rotating circle.
We then superimpose on this a sawtooth wave form s,
adding it to both a(u) and b(v). This sawtooth function
has N teeth on it, in the interval 0 to 1. The "tooth an-

, 2 r ~ I I I I
i

I I I I
[

I I I I

.2

0

x/L
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x/L

I
)

I I I I

0

x/L x/L

FICx. 12. Composite, showing the decay of a kinky string loop with 8 kinks on it. Each graph is separated in time by 10 /Gp
periods. Axes are in units of L.
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gle" can be varied; we have varied it from 30 to 120 deg.
After adding such a function, the gauge conditions (4.1)
are perturbed and no longer satisfied. Hence, after per-
turbing the Burden trajectory with a kinky sawtooth, we
correct for the gauge conditions by altering the magni-
tude and direction of the initial velocities of the segments.

We compute the back reaction and evolve the loop.
The small kinks decay more rapidly than the string. Fig-
ure 12 shows the evolution of a kinky loop with 8 kinks
on it. (Here the x-z projection only is shown. There is
kinky structure in the y-z plane as well, and as the loop
decays, that structure also disappears, and the string is
approximately circular in the x -z plane. ) We used 32 seg-
ments in all to represent the string, thus using 4 segments
per kink to sample the discontinuities. In Fig. 12, each of
the graphs is separated in time by 10 /Gp, periods. Fig-
ure 13 shows the same for a kinky loop with 16 kinks on
it, and this time 64 segments were used to represent the
loop. There, each of the graphs is separated by
0.5 X 10 /Gp periods. Finally, Fig. 14 shows the decay
of structure of a loop with 32 kinks on it. Clearly, the
kink angles are opened and the straight segments between
the kinks are rounded as the string evolves. Also, the
loop with 16 kinks is straightening faster than the one
with 8 kinks, and the loop with 32 kinks is straightening
even faster. Here we have shown just the beginning of
the change in string shape. Once the string becomes
roughly circular, it slowly shrinks in radius.

8. Kink decay times

r (1),„.,„-(1„;„„Gp,) '1 . (7.1)

From the decay times for loops with 8, 16, and 32 kinks,
we find that I k;„„-50. Here we have made the rough es-
timate of the kink "size" as (1/N)2mR, where R is the ra-
dius of the loop. Since this radius is approximately

In order to study quantitatively how quickly this kink
softening occurs, we have computed the ratio of the total
energy of the loop to its mean radius. Once the string
trajectory has become smooth; this number should stabi-
lize to some approximately constant number. The string
then decays almost self-similarly, with a constant energy-
to-radius ratio. We define the decay time to be the time
required for this ratio to get halfway to its relaxation
value. Figure 15 shows this ratio as a function of time for
the loop in Fig. 12. From this figure, we can estimate the
relaxation time for this ratio as approximately
l. 1 X 10 /Gp L. After that time, the kinks have
softened to the point that they do not contribute to the
energy of the loop, which has become almost circular.
Looking at Fig. 16, describing the loop with 16 kinks,
this number reduces to approximately 0.5 X 10 /Gp L.

Since the only physical quantity that can set the time
scale for kink decay is its size l, we suspect that the decay
time should be an approximately linear function of the
size of the kink, being given by
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FIG. 13. Same as Fig. 12, for a kinky string loop with 16 kinks on it. Each graph is separated in time by 0.5 X 10 /Gp periods.
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FIG. 14. Same as Fig. 12, for a kinky string loop with 32 kinks on it. Each graph is separated in time by 0.25 X 10 /Gp periods.

L/4', we have estimated the kink size as (I/N)L/2.
There is perhaps an uncertainty of a factor of 2 in the
value of I „;„„.There is the suggestion of some depen-
dence of 1 k;„k on N, as well as a stronger dependence on
kink opening angle. This will be investigated in a subse-
quent paper.

Since the gravitational back reaction is providing the
smoothing mechanism, the decay time must be inversely
proportional to the natural coupling constant, which is

Gp. Finally, that the constant of proportionality is ap-
proximately given by the gravitational power is simply a
manner of energetics —the rate of loss of power in small-

13
13

j ! ! !

FIG. 15. Ratio of the energy to the mean radius of the loop
in Fig. 12, in units of p, as function of time (units 10 /Gp L)).

FIG. 16. Same as Fig. 15, for the loop in Fig. 12. Note the
change of scale of the time axis.
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scale structure on the loop is governed by I k,„k-I .
We now turn to the implications for the string scenario

of galaxy formation.

Gp (2X 10 (7.5)

dc'
Xprad (7.2)

where Qg is the density per logarithmic frequency inter-
val in gravitational waves, in units of the critical closure
density p„and p„d is the energy density of all the radia-
tion during the radiation-dominated era. Using

p„,d =4 X 10 h p„where h is the value of the Hubble
constant in units of 100 km/s Mpc, we then have

A, + I)' —In =9.4X lo-'G (7.3)

Using our estimate for the characteristic loop size, we
find

Q ) 1 7X $0 ~(6p)h (7.4)

The upper limit on the energy density in gravitational
waves obtained by millisecond pulsar timing measure-
ments (95% confidence level), 0 (4.0X 10 h, con-
strains Gp:

C. Implications for networks and Gp

In numerical simulations of string evolution, long
strings shrink by self-intersection (and intersecting neigh-
boring strings). Self-intersection produces closed loops
and kinks on the long strings. The loops decay to gravi-
tational radiation. As the simulations evolve, the number
of kinks per horizon along a long string grows with time.
Correspondingly, the size of the daughter loops relative
to the horizon size shrinks.

Gravitational radiation will limit the growth of small-
scale structure on the string. The characteristic size of
the loops produced at the epoch t will be on order the
smallest structures on the long strings. Bennett and
Bouchet argue that their simulations show that most
loops produced are very small, and of size given by the
small-scale "crinkly" structure on the long strings.

In the previous section, we found that the decay time
kinks of scale I decays on a time of order 1/(I k;„„Gp,).
This suggests that the characteristic loop size will scale
and always be a small fraction of the horizon size:

1)„,—=at = r„,„„G~t .

Since I k;„k-—50, a=10 and loops will not play an irn-

portant role in the formation of large-scale structure.
Loops, however, will be a significant source of gravita-

tional radiation. The total gravitational radiation emit-
ted by loops spawned from a string network is estimated
in Ref. 6 by Bennett and Bouchet. Based on their simula-
tions, they calculated that the energy density at a fre-
quency co and in a bin de is found to be

ps, (co)d co =—( Qsp, )
dc'

1/2

=235 6
r

This limit still leaves plenty of room for the cosmic-string
scenario of galaxy formation, which only requires a Gp
of around 10 . Here there are many uncertainties, most
of which are due to that in the upper limit in 0 . Indeed
the dependence of the limit in (7.3) on A. is very weak, and
we estimate that the uncertainties due to back reaction
alter the limit on Gp by less than 25%%uo. The major
theoretical uncertainty is the energy density in long
loops.

VIII. CONCLUSIONS

We have developed a formalism for calculating the
effect of gravitational back reaction on the evolution of
cosmic-string loops. We have implemented the formal-
ism in a numerical code that can trace the evolution of a
string trajectory as it shrinks due to gravitational radia-
tion.

We have studied the long-term evolution of cosmic-
string loops. The "crinkliness" of the string rapidly de-
cays and string trajectories rapidly relax towards simple
nonintersecting trajectories with typical I value of
50—70. These simple loops then decay in a nearly self-
similar fashion. Since "crinkliness" decreases with time,
gravitational back reaction does not usually lead to string
self-intersections.

Cusps are not suppressed by gravitational back reac-
tion. They are delayed, and deformed, but are still
present when the back reaction is included. The back re-
action does not seem to produce a string self-intersection
near the cusp.

The rocket effect, the acceleration of asymmetric
strings due to radiation of momentum from cusps, is
suppressed by gravitational radiation. The back reaction
delays the cusps and tends to symmetrize the string.
Typically, the center-of-mass velocity is changed by
b v -0.1c over the lifetime of the string loop.

Kinks are straightened out by the back reaction. Typi-
cally, the decay time for a kink of size / is given by
t(l) „,d„-( rkGp) 'I, where I k;„k is of order 50. The
decay time of the kink depends on its opening angle.

Gravitational back reaction will set the minimum scale
of structures on cosmological long strings at I k;„kGp
times the horizon size. We expect that the self-
intersection of long loops will produce loops of this
characteristic size. These small loops are unlikely to play
an important role in the formation of large-scale struc-
ture. Long strings, however, may provide seeds for the
formation of sheets and galaxies.

These small loops, however, are a significant source of
gravitational radiation from cosmic-string loops. Using
our estimates for the characteristic size of cosmic-string
loops, we can recompute the expected rate of gravitation-
al radiation: 0 h =1.7X10 Gp. This does not in-
clude radiation from the decay of kinks along long
strings.
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APPENDIX A

In this appendix we treat the analytical development of
(3.15) and show that our formulation of the back-reaction
problem is finite and well defined. We also outline how
the formalism simplifies in the case of kinky strings.

We begin with Eq. (3.15), which needs to be computed
and inserted into (3.14) in order to compute a„a,x", the
back reaction:

FIG. 17. Schematic drawing showing the behavior of the null
curve near the field point. The null curve divides into two
branches, the u and u branches, which asymptotically tend to
u =uo and u =uo, respectively, where uo, uo are the coordinates
of the field point.

Ref. 9. To evaluate an integral of the type

8 h„„=8Gp f du dv F„(z(u,v))

XB [9(x —z )5((x —z) )], (3.15)

A = f du f dv Q(u, v) 5(f),
Q C

(A2)

where F„„was defined immediately following (3.13).
While the above is formally a two-dimensional integral,

the retarded Green's function inside the derivative sign
constrains the integration region to points on the world
sheet that are earlier in time than the field point, and null
relative to it. We call the curve defined by f=0 the null
curve, where f= (x —z) is the—Minkowski interval be-
tween field point x and source point z. Thus computing
Brh„, means finding the null curve, and integrating a
specified source function over it. We now develop this
function from (3.15).

First, we note that we can ignore taking the derivative
of the 8 function. This is because that leads to a delta
function 5(x —z ), which on the null curve constrains
x =z, so that the source point collapses to the field point
itself. But there, it is straightforward, to show that no
contribution arises from terms F„,(x) in (3.15) when
these are substituted into (3.14), by virtue of the gauge
conditions (4.1). We may thus proceed to write

Byh~ 16Gp f du dv F (z(u v))(x z ) 5(f)d

We evaluate (A 1) following a discussion outlined in

du Q(u, v)

la„fl ' a,f (A3)
~

U =U (u)ret

We merely substitute (Al), which is of the form (A2), into
(A3) in order to evaluate (3.15). The first term in (Al) is a
boundary term, which is crucial when changing variables
and integration region, as when going from u -U variables
to o-~ variables (e.g. , the discussion in Sec. IV). Here we
are interested in the short-distance behavior of (3.15); if
we concentrate on the null curve near the field point, we
see that it divides into two branches, which we call the u
and v branches (see Fig. 17). The boundary terins for the
u and U branches cancel at the field point; thus, to study
the short-distance behavior of (3.15) we focus on the
second term of (A3). For definiteness, we shall study the
u branch. Of course, the same results (with u and v inter-
changed) will apply for the v branch.

Substituting (Al) into the second term of (A3), we find

we can integrate by parts. We can use the condition
f =0 to determine implicitly either v„,(u) or u„,(v).
Doing the former, we then have

U —d

A = f du ' 5(f)
a d„f

U =C

F &(z(u, v))(x,,
—zr)

a,h., — 16Gl f—"a,
Ll —+0

U U U =U, (u)
(A4)

There are three such terms in B„B,x", from (3.14) to in-

sert into (A4), and these must be projected out by
a„x a„x~.

In particular, one must find the function u „,( u ),

defined implicitly by f =0. Expanding the Minkowski
interval f = (z ~ —x r )(z ~ —x r ) about the field point, and
using the gauge conditions (4.1), we find

f -2(B„x'B„,xr )uv + .
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This just outlines the fact that u =0 or U =0 define the
two asymptotes to which the two branches tend to. Ex-
panding in higher orders we get

&rB
v„„(u) —— 0

24 Q„x ~JUL
(A6)

We have included here only the salient points needed to
derive (4.3). In essence, however, the short-distance
divergence [arising from (B„f) in (A4)] has been can-
celed by the gauge conditions (4.1) (and their derivatives).

Using (A6) and expanding z" in a Taylor series about
the field point x", we find that contributions to B„B,x"
from nearby points on the null curve are finite, going to
zero as u ~0 like

7 B„x B„x~B„B„x"-—Gp
(a„x a„x.)'

X (B„x B,x B,x"—B„x B„x B„x")f du u .
Ll

(4.3)

APPENDIX 8

In this appendix we show that Eq. (4.6) is equivalent to
the standard expression for the gravitational power of an
extended, moving body.

From Weinberg, ' we have the following expression for
the total energy radiated by an extended moving body:

bE=26 f co'dcodQ[T*~"(k, rv)Ti, „(k,co)
0

) .TA. (k ).2]

where in (81 ) we take T„„(k, to ) to be given by the
Fourier transform of the real space energy-momentum
tensor: namely,

T„„(k,co)= f d x T„,(x, t)e (82)
2m.

Here the calculation is to be done on shell, since gravita-
tional waves travel at the speed of light; hence to = ~k~.

We define 6„„=—8„z„B„z,+8„z„B,z„. Substituting
(3.12) into (Bl), and noting that f o" co dcodQ can be
written as f d k 5(k )k e(k ), Eq. (Bl) reduces to

G 2

bE=2 du dv du dv(6 "6 ——'6 6 ) d k 5(k )k e(k )e'"'"'"'"'
(2m. )

kv 2 A.
(83)

From Ref. 14, the difference between retarded and advanced Green's functions, the radiation Green's function
D (x —x ), has the Fourier decomposition

D(x —x ) = e(x —x )5((x —x ) ) = 3
d k e'"'" "'5(k )e(k )

2m (2m)

and so (83) can be rewritten as

bE=26p f du dv f du dv(6""6„,——,'6 6 )8 [e(x —x )5((x —x) )] .

(84)

(85)

Now writing e(x) = [20(x)—1], and noting that the contribution from the —1 part of e(x) vanishes because of antisym-
metry, we obtain

bE=46p' f du dv f du dV(G "G „——,
'6" 6 )8 [8(x —x )5((x —x)')] . (86)

Now, b,E is the energy radiated by the string. Equations (4.6) and (3.14) give the change in the energy of the string as

b,P =2@f du dv B„a„x'=—p, f du dv B„x d, x~vP~(B htt +r)t3h r) h &) . — (88)

The first two terms cancel because they are total derivatives (and we are integrating over a period, in u and v), and so

In terms of F t3, defined immediately after Eq. (3.13) (which differs from 6,& only because of its third term), it is
straightforward to show that (86) is equivalent to

bE=86p f du dv B„x B„x~f du dV F tie) [8(x x)5((x —x) )—] . (87)

b.P =p f du dv "r) h &d„x B,x ~ .

Finally, substituting (3.15) into (B9) we obtain

bP'= —86@' f du dv B„x B,x~ f du dv F pd [8(x x')5((x —x )'—)] .

Comparing (810) with (87) we arrive at the final result, namely,

AP = —AE,

(89)

(810)

(811)

which shows that the energy lost by the string is that radiated into space, and proves our assertion that our formulation
of the back-reaction problem based on (3.14) and (3.15) is equivalent to the standard one based on (81).
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