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Techniques are developed to calculate the energy production in quantum fields which obtain a
mass through the spontaneous symmetry breaking of a second field which is undergoing a phase
transition. All fields are assumed to be out of thermal equilibrium and weakly coupled. The energy
produced in a field, which is initially in its ground state, is computed for two generic types of time-
dependent masses: a roughly monotonic turn on of the mass and an oscillatory mass. The formal-
ism is applied to the questions of particle production and reheating in inflationary universe models.
Requirements are found which the couplings in new-inflation-type models must satisfy for efficient
reheating to occur.

I. INTRODUCTION

Let P and f be two coupled scalar fields. We consider
the case when P undergoes a spontaneous symmetry-
breaking phase transition during which the expectation
value of P changes continuously from, say, (P) =0 to
(P) =o. If the interaction is of the form Xt =

—,'gg~g2,
then during the phase transition g acquires a mass by its
coupling to (t. While the phase transition is happening,
the new mass p, (t)=g((t ) acts like a time-dependent
source for the field g, which causes energy production in

It is this production of energy or particles which we
wish to compute. In general, ((t) ) depends on space and
time; here we treat the dynamics within one spatially
homogeneous region.

Processes considered here will typically occur out of
thermal equilibrium. The field g starts out in its ground
state rather than in a thermal ensemble and is excited by
the time dependence of P during the phase transition.
One example is particle production due the time depen-
dence of the inflaton field in inflationary universe mod-
els. ' A second example is meson production in quark
jets, a transition from a false-vacuum to a true-vacuum
state. Our methods should be useful beyond the context
of these examples. They can be applied whenever dis-
cussing particle production during a second-order phase
transition or during the dynamica1 evolution of back-
ground fields which couple to some quantum system. For
example, in Kaluza-Klein cosmology the techniques
developed can be used to study particle production dur-
ing dynamical compactification. There are many poten-
tial applications in condensed-matter physics.

Reheating in inflationary universe models has been
considered before using a phenomenologica1 equation of
motion for P, the field which drives infiation:

ttt+3HQ+ I P aV (()= —V'(P)—,

where H is the Hubble constant of a Friedmann-

Robertson-Walker metric with a scale factor a (t), and
V'(P) is the derivative of the potential of P with respect
to P. I is a decay constant which is introduced to mimic
the interactions of (t with other fields which cause P to
lose energy ' (and hence reheat the other fields). The
equation is phenomenological since it does not come from
a theory of P and its interactions with other fields.

Our approach is quite different. We study the equation
of motion for f, and assume that (t is in a coherent state
described by a space-independent expectation value
(P)(t). We compute particle production in g using a
self-consistent semiclassical theory which gives the evolu-
tion of physica1 operators in the Hilbert space of quan-
tum states of lit (e.g. , the energy density of g) and also
determines the back reaction on P. (() is treated as a clas-
sical background field with magnitude given by the ex-
pectation value (P)(t). We take g to be initially in its
ground state.

Thus, in the semiclassical approximation we replace P
by (P )(t) in the interaction. Two broad types of behav-
ior are considered. The first is when ( P ) ( t) changes
roughly monotonically from its initial value of zero to a
nonzero value of order o. , and the transition may be ei-
ther fast or slow. The second type of behavior is when
( P ) ( t) oscillates and resonance occurs. For some
symmetry-breaking potentials and initial conditions,
(P ) first changes monotonically while "rolling" along
the flat part of the potential, and then oscillates as the
field settles into its new minimum. Most energy is pro-
duced in the second period when resonances occur, but
aside from the inherent interest in particle production
during a slow-rolling period, it is useful to study the
turn-on period to set the initial conditions for tt during
the phase when (()) )(t) oscillates (the "sloshing" phase).

We will develop the formalism'both in the Schrodinger
and Heisenberg representations. We will discuss approxi-
mation schemes which can be applied if P(t) changes ap-
proximately monotonically or if P(t) oscillates rapidly.
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Some of the methods we use in the Heisenberg represen-
tation have been previously discussed in Refs. 6 and 7.

A concrete realization of the class of problems we ad-
dress in this paper is reheating in inflationary universe
models. ' We consider a theory with two fields P and i/t.

P is a scalar field with a nontrivial potential V(P) and
with initial conditions which are homogeneous and lead
to inflation. At the end of the inflationary period, P(t) re-
laxes to a configuration with vanishing energy density.
Since any matter energy density which was present before
inflation is exponentially diluted during the inflationary
phase, the entire present material content of the Universe
must be produced at the end of inflation, during the time
when P(t) relaxes to its equilibrium value. P(t) is either
directly or indirectly (i.e., via gravity) coupled to the
matter fields, which we here represent by a single scalar
field g. Now, quite generally, the state of a quantum field

f will change due to its interaction with the classical
source ())(t). Starting with i/( in the ground state, we wish

to compute the energy density in the final state.
It is well known that in order to avoid generating

energy-density perturbations with too large an amplitude,
(I) must be a very weakly self-coupled scalar field. Since
any coupling between P and i/ will give rise at higher-
loop order to contributions to the self coupling of P, it is

natural to assume that the coupling between P and P is
weak. Hence, the evolution of (/((t) and g particle pro-
duction occur out of thermal equilibrium. If the fields
were in thermal equilibrium, then they would be de-
scribed by thermal density matrices, and eft'ective poten-
tial techniques could be used. Here, we must take i/t to be
initially in its ground state and P as a classical back-
ground field which evolves according to its zero-
temperature potential.

In Sec. II, we outline how to compute the quantities of
interest in the Schrodinger picture, and in the Heisenberg
picture in Sec. III. In Sec. IV, we compute the energy
production during the "turn on" of the new mass. In
Sec. V, the energy produced during an oscillating phase is
found. Finally, Sec. VI applies the results to the example
of new inflation.

sume that symmetry breaking occurs as an external field
or variable, e.g. , the temperature changes. For example,
in inflationary universe models, (/ is the scalar field which
drives inflation. ((t )(t) and a(t), the scale factor of the
Universe, must solve the semiclassical Einstein equations.

The action for g is

S=f d x& —g (
—(g"'V„((/jV g —,'m—()(/t

:—S()—f d 'x V —g,'g ( (t" ) (2.1)

We shall restrict our attention to spatially flat
Friedmann-Robertson-Walker cosmologies for which the
metric g„,, is given by

ds = —dt +a 5 dx'dxj . (2.2)

~—5X i 5X

5(/ 5$
(2.3)

where y; is the metric for the spatial sections. (That is,
one must first choose a slicing of the spacetime, on which
one requires the equal-time commutation relations. Let
n" be the unit timelike vector field orthogonal to the spa-
tial slices, so g„„= n„n,—+y„„with n "y„,=0 Then .(/
is the Lie derivative of i/ along the vector field n".)

Thus, the Hamiltonian H can be written as

0= x II (2.4)

The canonical commutation relations are

We first review the functional Schrodinger approach'
to study particle production. Readers familiar with this
formalism can skip this section. We write down the
Schrodinger equation for the wave functional 4[/(x, t)].
This determines the evolution of the expectation value of
operators, which we compute for linear and quadratic
combinations of the field and momentum operators, and
hence for the energy.

The canonical momentum II is defined by

[H(x), g(y)] = —.5 "(x—y) .(3)
l

(2.5)

II. FUNCTIONAL SCHRODINGER APPROACH

As described in Sec. I, the starting point is a Lagrang-
ian X(P, i/() for a system of two coupled scalar fields ()( and

We assume that initially the state of the system is

empty of i/j particles, but there is an energy density in the
(t field; i.e., the P field is not in its ground state.

We are interested in the case when the interaction be-
tween P and i/j "turns on" due to spontaneous symmetry
breaking. This occurs as follows. Take P to be in a
"nearly classical" state, e.g., a coherent state, and use a
semiclassical approximation, so that the interaction
X, =gP P is approximated by g((t )i/t~. As (P )
evolves, it acts as a time-dependent source for i/. Before
some time t( when the phase transition starts, (P ) =0,
and so there is no interaction between the fields. We take

g to be initially in its ground state. After t, , (P ) be-

comes nonzero, the interaction between P and g no
longer vanishes, and i/j particles can be produced. We as-

Hence, in the Schrodinger representation the canonical
momentum is

6
H(x) = —.

i 5$(x)
(2.6)

e[g, t ] =He[/—, t—]-d
i dt

2 2

dxa — —
—,a V

5
2(2 5i/j

(2.7)

and the functional Schrodinger equation becomes, for the
metric (2.2),
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Since the Lagrangian is quadratic, the Hamiltonian is
diagonalized by going to Fourier space. The different
Fourier modes decouple and hence the wave functional
%[/, t] can be written as a product of ordinary
harmonic-oscillator wave functions for each mode. Our
conventions for Fourier transformation are

g(x) =j 3
eke'

(2m. )

with t/ k=ttk and

d 12II(x)= f II„e
(2m )'

with

IIk =(2')— 5
i 5/k

(2.8)

(2.9)

(2.10)

t/'k ) =a '(11k')

The variational equation of motion which follows from
the action (2.1) can be decoupled into a set of first-order
equations for the linear expectation values:

subsequent sections we will discuss approximation
schemes for solving (2.15) for two prototypical back-
ground field evolutions. In the first case (Sec. IV) the
mass M(t) turns on roughly monotonically. In the
second case M(t) oscillates about a fixed value (Sec. V).
In our application to inAationary universe models, we
must combine both scenarios (Sec. VI).

Now, (2. 13) and (2.15) give the expectation value of
linear and quadratic terms in the fields. However, in
many cases one can solve for the full wave functional.
For example, given the monotonic type of behavior just
mentioned, suppose that there is no interaction for t ( t p

and the g field is in its ground state. The solution to the
Schrodinger equation then is just a product over k of
ground-state harmonic-oscillator wave functions, each
with width a mk /A and frequency wk, where

wk ——/t /a +mo. Then, as the interaction turns on, it is
reasonable to look for solutions which are just products
of Gaussians with time-dependent widths and frequen-
cies

e=N exp
' —

—,'g[ Ak(t)fkgk+&Qk(t)/A) . (2.16)
k

/c

, +M' (y„),
a

where M =mo+g(P )(t). Now let
=(gk, 1(k, IIk, 11k }. Then (2.11) can be rewritten as

(2.11)

Pk, a

2

—3k= a'
a k +mo+g(P )

a
(2.17)

(We are now working in a finite box in comoving coordi-
nates. ) The Schrodinger equation then implies that

d
dt (Pk, a ) +k, ab (Pk, b ) (2.12)

Since the Q,b are ordinary c-number functions of time, it
follows that the expectation values of the quadratics
evolve according to

d
(Pk, aPk, b ) ~k, ac(Pk, cPk, b ) ++kbc(Pk, aP, k, c )

and

0,
1 A

k 2 3 k
a

k

Redk
' 1/4

—ImQ /2A
/&

The normalization constant is

(2.18}

(2.19)

(2.13}

++k, bc (Pk, a ) (Pk, c ) (2.14)

Thus, the quadratic (pk, pk b ) satisfies the same equation
of motion as the product of two linear terms. Hence,
knowing the general solutions for (pk, )(t) will also give
us the solution for the quadratics, provided certain alge-
braic constraints on the arbit'rary integration constants
are satisfied. So we first solve for the linear expectation
values. Combining the two equations of (2.11) we obtain

d a d A:(Qk)+3 ——(Pk)+ +M~(t) (fk) =0 .
a dt

(2.15)

Of course this is just the classical equation of motion. In

[This is seen most easily in the Heisenberg representation
by taking the time derivative inside the brackets, using
the product rule and applying (2.12) to the individual
terms. ] Further,

d
d ((Pka ) (Pkb ) } IIkac(Pkc ) (Pkb )

(2.20)

yk satisfies

lc3k+3 3k+ +m0+g(4 ) j'k
a a

(2.21)

Hence for a Gaussian wave functional, the quantity yk,
which is simply related to the width, satisfies the classical
equation of motion, as does the expectation value of the
field (2.15)~

Equation (2.21) must be solved with appropriate
boundary conditions. Without expansion, one can check
that to have the harmonic-oscillator ground state

iw/, . t
Ak =( I/A')wk before the interaction, one needs yk =e
for t (tp.

Having solved for the wave functional one has a com-
plete quantum-mechanical description of the system. In
particular, in the state (2.16), (gk ) = (IIk ) =0, and (see

and one can check that this is indeed independent of
time.

With the change of variable



2494 JENNIE H. TRASCHEN AND ROBERT H. BRANDENBERGER 42

also Ref. 10)

1

' 2Re~,

(2.22)

"in" modes are defined to be solutions which are positive
frequency before the interaction:

fk(t)~(2wk) '~ e ' as t~ —oo (3.4)

(here for t & to). (In an expanding universe of course this
can only be an approximation to the solution over some
time interval near to. ) This set of modes then defines the
in vacuum IO) and the Fock space of states built on it.
We expand the quantum field t}'r in the in modes:

[Here we are considering the system in a box. To go to
the continuum limit, 5k ~

~5 '(k +q)(2tr)',
gk ~ V f d k /(2m ), and IIk (2n ) hk. ]

So, for some types of behavior of the time-dependent
mass, we can find the entire wave functional, and then
compute, for example, the energy (Hk ) in each k mode
through (2.22). In other cases, as when resonance occurs,
it may not be a good approximation to take the wave
function to be a Gaussian, but we can still find the energy
in each mode through (2.13)—(2.15). In either case we

need the solutions to the classical equation of motion
(with boundary conditions appropriate to each case).

The total energy is given by the resulting sum over all
k modes of ( Hk ), and is ultraviolet divergent. The
prescription we choose for renormalization is to subtract
the instantaneous ground-state energy of each mode. The
sum is then (typically) finite, and we compute the renor-
malized expectation values (P (x))"", (II (x))"", and

(H )"".First we recall the calculation of the same quan-

tity in the Heisenberg picture.

III. HEISENBERG MODE MIXING APPROACH

We now develop the Heisenberg mode mixing ap-
proach. Readers familiar with this approach can skip the
section.

We start with the action, metric, and canonical com-
mutation relations given in (2.1)—(2.5). The equation of
motion for the classical field P is then

g(x, t ) =g (akuk" +akuk*'"),
I'

(3.5)

where ak IO) =09k. So the ak and ak create and annihi-
late in particles with positive frequency wk =(k /a
+mo)' . Similarly, out modes are defined to be solu-
tions to (3.1) which are positive frequency after interac-
tion:

fk"'(t}~
+2wk

lul, , t
e ' ast +~ (3.6)

(here for t) t, ), where wk. =(k /a +m o+m&)'~ . The
out vacuum IO) and out particle states are defined by ex-
panding the field in the out modes:

g(x, t ) =g(ak uk "t+a „u„""'),
k

(3.7)

uk =cxkuk +pku k~, so
(3.8)

where ak IO) =Ob'k.
Since the late time observer defines particles with

respect to the frequencies wk, the late time number
operator for the kth mode is Nl, =a &ak. Having
specified the boundary conditions on u&" in the far past,
these solutions will be a mixture of positive and negative
modes in the future, that is, back scattering occurs. It is
the back-scattered piece of the incident wave which cor-
responds to the produced particles. Let

Of+[mo+p (t)]/=0,
where

ttt (t)=g(p )(t) .

(3.1)

(3.2)

ak +kak +p —kak

Then

P — (u out u in) &(foujtin f inj out) (3.9)

We assume that tM (t) changes from zero for t (to to a
new constant value p& for t & t, . For ease in discussion
we first only consider the time dependence of the mass
term and later only the effects of the expansion of the
Universe. Hence, there is no ambiguity of the particle
states for t & to and t & t, .

Define the inner product between two functions by

(f,g) = i I dX"(fV'„g*—g*VQ—), (3.3j

where the integral is over a spatial surface X. If f and g
are solutions to the Klein-Gordon equation (3.1), then the
inner product is conserved, i.e., independent of X. We as-

sume that there exists a complete set of modes Iu; ) to
(3.1) which are orthonormal, ( u;, u j ) = —

( u, u,
*

) =6;, ,

and (u;, u~*)=0. For the spatially flat Robertson-Walker
metric we choose u, =f, (t)e'"". Without expansion the

&H &'""=g tok Ipk I'
k

(3.10)

includes a renormalization prescription of subtracting the
instantaneous ground-state energy, as previously men-
tioned in Sec. II.

We conclude this section with a comment on the inade-
quacy of an adiabatic expansion to (approxiinately) solve
for particle production. In this approach" one looks for

The coefficients ak and p„are called Bogoliubov
coeScients. Take the state of the system to be the in vac-
uum IO), so for t &t~ there are no particles present. As
the interaction is turned on, particles are produced, in the
sense that the in vacuum contains late time particles,
(OIXkIO) =IpkI . We now turn to the computation of
particle production and of the energy produced which is

wk Ipk I
. Note that defining the total energy produced by
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(3.11)

where

2 + 2( t)]1/2 (3.12)

and

5 (p 2)2

g~k 4 Mk
(3.13)

Thrs grves

0 out in
8
2COk

(3.14)

and therefore pk =0 when 1M =0, i.e., in the adiabatic lim-
it. Indeed, this is discussed in an early paper by
Schrodinger, ' before the second-quantized formalism
was discovered. Schrodinger observed that there is a
mixing of positive and negative frequency field modes,
and hence particle production, in an expanding Universe.
However, Schrodinger noted that particle number is an
adiabatic invariant, and hence that there is no particle
production for adiabatic expansion of the Universe.

IV. ENERGY PRODUCED DURING THE ROLLING
PHASE OF SPONTANEOUS SYMMETRY BREAKING

WKB solutions of the mode equation by a systematic ex-
pansion in I /l. (hence the name adiabatic), the time rate
of change of p . Then, one finds, to order 1/L,

fk"(t) —[2W1p1(t)] exp i j dt ( W1p1+ W121)

The solution of the mode equation (4.1) will depend on
whether the frequency is high or low compared to the ex-
pansion rate H. The solution for high frequencies is dis-
cussed in Sec. IV A. We solve for the Bogoliubov
coefficients using the Born approximation. By the
methods of Sec. III [in particular Eq. (3.10)] we can im-
mediately calculate the contribution p'"'" to the total en-
ergy density of 1(( particles contributed by these short-
wavelength modes. There are two cases, depending on
whether the new mass pf is large or small compared to
H.

In Sec. IV B we solve the mode equation for low fre-
quencies. Now, the expansion of the Universe is impor-
tant. However, for sufficiently long wavelengths, we can
approximate the transition between de Sitter expansion
and the power-law expansion as instantaneous and re-
place the time dependence of p (t) by a step function.
Then, it is possible to solve the equation exactly in terms
of Bessel functions on either side of the step. Thus, we
can again calculate the Bogoliubov coefficients (unfor-
tunately the equations are rather lengthy) and deduce the
energy density p""s in long-wavelength excitations of g.

When applying our analysis to reheating in inflationary
universe models in Sec. VI, it turns out that most of the
energy is produced not in the slow-rolling period, but in
the oscillatory phase. Therefore, it is important to deter-
mine the expectation values of field quadratics which are
used as initial conditions in Sec. V. These expectation
values are calculated in the Schrodinger representation.
This is done in Sec. IV C.

After this summary of the long and rather technical
Sec. IV, we can turn to the actual calculations.

In this section we compute particle and energy produc-
tion during the "rolling phase" of the spontaneous
symmetry-breaking transition. We will first do the calcu-
lation in the Heisenberg picture. We then indicate how
the calculation is done in the Schrodinger picture, and
determine the field quadratics. The results will be used as
initial data to evolve the expectation value of the quadra-
tics through the resonance period (see Sec. V).

Let P=f„(t)e'"" The Klein-G. ordon equation (3.1)
becomes

f1, +3—f1, +[w1', +V'(t)]fk =o
a

(4.1)

The above equation contains two interaction terms:
the time-dependent mass and the Hubble damping term
due to the coupling to the expanding spacetime (most of
what is done is quite general, and can easily be special-
ized to a system without expansion). In inflationary mod-
els, one is interested in the case where spacetime changes

HI (t Iri j
from de Sitter, with a{t)=a]e ' ', to a power-law ex-
pansion beginning at some time t, . During the last e-

folding of the inflationary period the mass changes from
zero to its new value of pf. This is followed by an oscilla-
tory phase while the scalar field settles into its new vacu-
um state. In this section we focus on the slow-roll phase.
Particles are produced during this phase, both due to the
time dependence of the effective mass squared p, (t) and
the expanding background.

A. Short wavelengths

When the mode frequency is high compared to the rate
of expansion, the expansion can be ignored in (4.1), and
we can focus on the effect of the time-dependent mass.
Hence for mk »H, , we approximate mk by its value at
t „and consider

fk+ [Wk+P'(t)]f1 =o (4.2)

—= —V(t)fk, (4.3)

so that V{ti=0 for t (to and t & t, . We wish to solve
(4.3) for the in modes, i.e., with the boundary conditions
that f& is positive frequency before the interaction.

We can compute the back scattering using perturbation
theory, which is valid if wk »pf. Let L be the time scale
over which p changes. For example, in the inflationary
universe models considered in Sec. VI, L =rH, ' with
r ~ 1. In what follows L may be small or large; L goes to
zero in the sudden approximation, and L goes to infinity
in the adiabatic limit. We will use the Born approxima-
tion, which requires L pf (&1. Hence the results of this
section are valid for frequencies w„) max(H„pf ) and
parameters pf L «1.

Rewrite (4.2) as

fk+[W&+pf0(t tp)]f1,. = [p (t) @f0(t —t )]pf k—
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sin wh(t —t')
G(t, t')= 0(t, t —)0(t t'—}

ksinw. (t —t')
0(t t, )(3—(t t') .— (4.5)

Hence, substituting (4.5) into (4.4), we obtain the exact
result

Equation (4.3) is equivalent to the integral equation

6 =fkh f«'G(t t') V(t')fh(t'»

where fhh is a solution to the homogeneous equation
(with V=O). The Green's function with the correct
boundary conditions for in modes is

for the number of out particles with momentum k present
at time t. The energy produced in mode A: is

&H }«~=w, ~p I2 (4.10)

This renormalization prescription corresponds to sub-
tracting the energy of the instantaneous ground state at t
(see discussion in Sec. IV C). The total energy is the sum
over all I, and is ultraviolet finite if p is continuous. In
the limit where p (t) is a step function (the sudden ap-
proximation), the total number of particles produced is

finite, and the total energy diverges logarithmically.
As an example, which will also be a check on our ap-

proximate solutions, take p (t)= —,'p/(1+t anht/L). Us-

ing (4.9), we obtain

(~L p/~ )'
Iph

'=
w '. sinh m.Lwh

(4.11)

—tu& tl

fh(t) =
+2wh

l(Og 1

e+—
1/ 2wh

r

Wk + LUk +}'h(t)
LUk Wk

1 wk wk + irh(t) , t & t„ , (4.6)
LUk Wk

It turns out that for this choice of p (t) the mode equa-
tion is exactly soluble in terms of hypergeometric func-
tions (Ref. 11, Chap. 3). In the limit of the Born approxi-
mation (pi L « 1, wh »p/) the exact solution gives a re-
sult identical to (4.11). Our general formula (4.9) can also
be checked in another limiting case, when p (t) is a step
function (the sudden approximation). Then (4.9) gives

where

2ELUk
f dt'V(t')e ' f,, (t')+2wh,

0

(4.7)

crh(t)= — f dt'Ve '"' fh(t')+2wh .
2E LUk

From (4.6) we can read off the Bogoliubov coefficients

Wk Wk
+~h(t)

Wk LUk

(4.8)

2

4wk wk
(4.9)

The Born approximation consists of approximating
fh(t') in the integrand in (4.7) by the solution to the
homogeneous equation. In a standard perturbative
quantum-field-theory approach, this corresponds to in-
cluding terms in an amplitude which contain only one
propagator. (For an example of this approach in QCD,
see Ref. 2.) One can then iterate this expansion. The
second-order solution is found by substituting this new
solution for fh in the integrand. It is straightforward to
check that one needs to include the second-order terms to
get a solution which conserves probability, i.e., such that

I ah I

—
Iph I

= 1. However, the "refiection" coefficient Ph
does not receive a correction at second order, only the
transmission coefficient does. Therefore, to find Ph, it
suffices to work to first order.

In computing Ph, the Fourier transform of the step
function in the potential V cancels the constant term in

Ph, and one finds

&ola ',. cz,. IO) = IP„I'

lp I'=
4wh wh(wh+ wh )

However, for p, (t)=p/8(t), the modes equation can
again be solved exactly, and one finds the preceding ex-
pression for the number of particles produced. In the
sudden approximation, the total number of particles pro-
duced is finite, but the total energy is logarithmically
divergent. The utility of (4.9) is that it gives the energy
production for a general time-dependent mass p(t) in the
perturbative regime.

Now we can find the total energy produced in short
wavelengths for different choices of the time dependence
of the mass. We have already mentioned the extreme
cases when p'(t) is a step function and when p (t) is a
smooth function proportional to tanht /L. An intermedi-
ate case occurs when p (t) is a linear function connecting

p (0}=0and p (L)=p&. In this case,

4

Iph I

= 2-(1 cos2whL )w—
h

1 Py —6

32
(4.12)

In the last two examples, the total energy produced is
dominated by the contribution from small wave numbers.
Recall that the analysis leading to (4.9) assumes that
wk &)p& and wk &&H, . Therefore the minimum frequen-
cy for which (4.11) and (4.12) are applicable is p/ if
H1(pf CL 'andal ifpf(01(L

Therefore, it follows from (4.11) and by integrating
(4.10) that the total energy produced in f particles in the
short wavelengths is

Ilnrtp/L I, Hi &p/ «L
(4.13)

32,r2 Il rniHL, P/ &H, «L
In the step function example for p (t), p'""' diverges.
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This ultraviolet divergence is a consequence of the
discontinuity of p (t) . In physical models, no such
discontinuities will arise and (4.13) will give a good
order-of-magnitude estimate of the actual p'"'"', as one
can verify by finding p'"'N for (4.12).

It is useful to compare the density of particles pro-
duced to the energy density in Hawking radiation' of
(ir/2)Hi, which is present in the de Sitter period t & r, .
Except in the limit where the arguments of the loga-
rithms actually go to zero, in either of the cases in (4.13)
we see that

f in
( )v+ 1

COk

2

1/2 (4.17)

67)[( —1)'+'a„h', . '(wi, baal)

where

tions. The in modes have the boundary conditions
fi,. —e ' ' as il~ —~. Hence,

1/2

f P=( i—)'+' — gh I"(kq),
2

ShOrt p
4

Hawk H4
1

b g = q
—i), /( I —a ),

2 k2+g 2(y2) k2+ 2 2
(4. 18)

Therefore, when the new mass is large compared to the
Hubble constant, pf &&H„particle production due to
the time-dependent mass is large compared to particle
production due to the de Sitter horizon (and vice versa if
pf «H, ).

B. Long wavelengths

When the wavelength of the mode is long compared to
the Hubble distance, the expansion of the Universe can-
not be neglected in the modes equation (4.1). In this case
it is useful to rewrite (4.1) in conformal time. Let
dt =adit and define the rescaled mode function fi,. =afk.
We will take the initial mass of g to be zero. Then

fl

f 'k'(i))+ k — +a p fi, (i))=0,
Q

(4.14)

where a prime denotes a derivative with respect to con-
formal time. Again, let L be the time scale for changes in

p (t) =g (P ). In the limit where the wavelength a /k is
much larger than L, we can approximate the scattering
potential in (4.14) as a step function. That is, let
iu, ( t ) =pj 8( t r, ), and app—roximate the scale factor to
be an exponential for t & t1 and a power law for t ) t1 ~ If
a(t) ~ t, then, in conformal time [with i)(t i ) = i) i],

and

20.' 1V—
1 —o;

(4. 19)

for
k «L and pf )&H, ,a,

(4.20)

where the Hankel function is evaluated at
(a/1 —a )(pf /H, ). For dust (v= 1) this becomes

4

If)
2 2 H2 a,

k f 1 H1 «pf . (4.21)

If the new mass is small compared to the Hubble con-
stant, then

wk is the "conformal frequency. " Matching the function
and its first derivative at i), one finds pk.

There are two cases within the long-wavelength re-
gime. First suppose that the new mass is bigger than the
Hubble constant. (We will see in the next section that in
this case, parametric resonance can occur during the os-
cillatory phase. ) Then

2 2 4

pf Q 1H1

H k

0. /( 1
—a)

1E '1 —o;

where the constant K is

K= 1

H1

1/(1 —a)—1

1
q&g] &0,

H1g
'

a(i))= .

u/(1 —u)

(4.15)

(4.16)

21'

4
a1H1

k

H
1 k «pf «H1,

a,2
Pf

X ' (4.22)

pf « «Lk

a1

2 2v+4
3o —1

For dust (v=1) this becomes
As we shall discuss in the next section, if the stress en-

ergy is generated by a scalar field undergoing coherent
harmonic oscillations (and hence acting like dust), then
one has a self-consistent solution to the Einstein equation
with the scale factor proportional to t . Ho~ever, since
the results of this section are (qualitatively) independent
of the power in a power-law expansion a ~ t", we will
keep o. general for now.

The solutions in both periods are spherical Bessel func-

2 4
H1 a, H1

16 pf2 k
'6

a, H]
32 k

«pf «H1,
Q1

«LPf «
a1

(4.23)

So we see that quite generally, the number of particles
produced by the transition from an exponential to a
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power-law expansion goes like k in the long-
wavelength limit. However, one should be cautious
about interpreting this in terms of classical energy-
density perturbations. Here we have computed the ex-
pectation value of the number of particles with momen-
tum k/a in a quantum state which is homogeneous and
isotropic. It is unclear what this has to do with spatial in-
homogeneities. '

To measure a mode with wavelength a /k we must ob-
serve it for a time interval ht )a/k. Hence to find the
total energy produced in long wavelengths, we cut off the
integral at k;„/tt =1/bt. Evaluating the resulting in-

tegrals at At=H, ', we find

p&&&"s (
2 )s~3H p3 H ((p2

m2 '
(4.24)

Hl
long Hl ))P .

16~2 P2 f
f

Therefore for the long wavelengths, the energy produced
is large compared to the energy density in Hawking radi-
ation H4, .

The total energy produced is given by summing (4.24)
and (4.13). For example, compare the energy density in
produced particles to the background energy density
p(t, ) = (3~/8)m ptH t, for the case H, ((tLt&.

Part Pf
4 Hl

background 2 2 2 linn@ L I+ . (4.25)f
7T I Pl f

only depends on time through the explicit dependence in
a(t). So, in computing (gt, gt*, ) we average over a period
of oscillation. (Of course, averaging over a period
2~/mk = Tk makes sense only if the system is allowed to
evolve for a time At at least as long as Tk. For the partic-
ular case of the slow-roll phase in inflation, At -H, '. If
pf )Hl this averaging makes sense for all of the high fre-
quencies, mk )pf. If pf &H, , the averaging is more du-
bious as the frequency of interest approaches H, .) Set-
ting Ak =( I/R)wt, + b Ak, one must expand to second or-
der in AA„, to include terms which do not vanish upon
time averaging.

The resulting expressions are not yet renormalized; the
integral over k diverges like k at high momenta. We re-
normalize the field quadratics by subtracting the instan-
taneous ground-state contributions. We have already
used this prescription to calculate the energy in the
Heisenberg picture, when we defined the energy in a par-
ticular mode at late times to be the out frequency times
the number of out particles produced, (Ht, )"'"=ta„iPk

i
.

(One might consider, instead, renormalizing by subtract-
ing the expectation value of the operator before the in-
teraction, and hence computing the change in the quanti-
ty. This, however, is divergent; the Hamiltonian has a
new term which is proportional to p, /w„ for each k. )

One finds, for the renormalized expressions,

(a) (g, tjj,*. )"'"=(P,. P„') — =, P'(2m„)i',
2mk 4m k

C. Calculating in the Schrodinger picture:
Expectation values of field quadratics

(b) ( q 11 + fl»q» ) ren 0

(c) (llk11;. )""=(II„II„*)—-'m. = ip'i'.1
k k k k 2 k

4
I

(4.28)

3k= ——ak (4.26)

In Secs. V and VI we need the values of the expectation
values of the field quadratics as initial conditions in order
to calculate the rate of particle production during the os-
cillatory period. These expectation values are most easily
computed in the Schrodinger picture to which we now
turn.

As in (2.16), let the state be described by a Gaussian
wave functional with complex width Ak(t) for each
mode, and the initial conditions that At, =(I/t)t')wk be-
fore the interaction starts. With the change of variables
[see (2.20)]

We remind the reader that "ren" means averaged over a
period and renormalized, and p denotes the Fourier
transform. As a check, (Hk)"" from (a) and (c) is the
same as the expression found from the Heisenberg pic-
ture calculation, (4.9) and (4.10).

Now, (4.28) is just what is needed as initial data to
compute the evolution of the expectation values of the
field quadratics during the oscillatory phase of the time-
dependent mass. Evaluating (4.28) at the end of the
slow-roll period gives the renormalized expectation
values, which are used to start the evolution in the reso-
nance period.

3

(H„)=', II„II,*+~ ', q„q„*
a

(4.27)

we obtain the modes equation (2.21) for yt, . This equa-
tion is the same as (4.1), and hence we can use the solu-
tions (4.6). Indeed, if y„ is the complex conjugate of f„ in

(4.6), then A„satisfies the required initial conditions.
Hence Ak is known, and the expectation values of the
different field quadratics are given explicitly in (2.22). Let
us focus on the short-wavelength modes. Then the expec-
tation values can be expanded to leading order in pf /mk.
Now, quantities such as (gktttk ) and (11„11„')have os-
cillatory time dependence (as for free field theory in Min-
kowski spacetime), though the combination

V. PARAMETRIC RESONANCE

In this section we consider situations in which the
background field d ( t ) oscillates with a frequency w large
compared to the Hubble expansion rate H. In this case
there are resonance phenomena which greatly increase
the rate of particle production over what we discussed in
the preceding section.

The outline of this section is as follows: We first dis-
cuss the conditions under which the expansion of the
Universe can be neglected [(5.2) —(5.5)]. Then, we solve
the modes equation and establish the parametric reso-
nance effects which lead to the increased rate of particle
production [(5.6) —(5.15)]. Next, we summarize the condi-
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M (t)=Mocoswt+mo . (5.1)

In the absence of the expansion of the Universe, (3.1)
with the above mass term is the Mathieu equation which
is well known' to admit instabilities —parametric reso-
nance. It is intuitively clear that these resonance phe-
nomena should persist even in an expanding Universe,
provided that the time scale for resonance is much short-
er than the expansion time scale, and provided that the
amplitude of the forcing term is suSciently large. To
make these conditions precise, we change fields to

tions which must be satisfied in order to be able to apply
the previous calculation. When applying our methods to
concrete models, it is important to verify that these con-
ditions [(5.16)—(5.20)] are satisfied. We then use the solu-
tions of the modes equation to determine the energy den-
sity in 1( particles.

The starting point is Eq. (3.1) with an oscillatory mass
term

5kB
2w 2w

(5.8)

We see this as follows: For frequencies in this band, we
can write down the following ansatz for a perturbative
solution:

f (t)=a(t)cos t+b(t)—sin —t .
w w

k (5.9)

instabilities in the sense that the flow of the dynamical
system given by (5.6) amplifies the initial separation be-

tween two points in phase space without bound.
For small e we can analyze the instability perturbative-

ly. It can be shown' that for wk"' the instability arises
only at the nth order in perturbation theory. Hence we

shall focus attention on the first instability band.
The width of the first instability band depends linearly

on the amplitude of the perturbation. If wk =w/2+5&,
then wk is in the instability band if

fk =amok

and introduce conformal time g by

dg=a 'dt .

(5.2)

(5.3)

Inserting this into the Mathieu equation (5.6), we obtain
the following set of equations for the coeScient functions
a (t) and b (t) by equating the coefficients of the
cos(w12)t and sin(w l2)t terms, and dropping the higher
harmonics:

Denoting the derivative with respect to g by a prime, Eq.
(3.1) for $1, becomes

2

a+wb — — a = —w a-
k

Mo2''
II

f/, '+ k +M (t)a (t) — fk =0 . (5.4)
~ ~ w 2b —wa — — b= —w b-

k

Mo b,
(5.10)

lt

k ~k—2 Z

a
(5.5)

and an adiabatic increase in the amplitude of the driving
force. As will be discussed below, there is resonance only
in narrow frequency bands with width proportional to
Mo. A condition for the realization of parametric reso-
nance in an expanding Universe is that the adiabatically
changing frequency remains inside the resonance band
for a time period long compared to the period of increase

«fl .
Neglecting the expansion of the Universe, (5.4) be-

comes the well-known Mathieu equation

fl, '+(wk+Mocoswt )fk =0, (5.6)

Assuming that w )H, we can treat the expansion of the
Universe adiabatically. Thus, at any given time, its effect
is a shift in the oscillator frequency

a(t)-e" and b(t)-e" .

The solutions for s are +sk where

M2 ~
1/2

sk= 1—
2w M2

(5.11)

(5.12)

We see that precisely for frequencies in the resonance
band (5.8) there is an exponential instability. The ex-
ponent is proportional to e which shows that the above
analysis is self-consistent. The growing and decaying
solutions can be written down explicitly:

with wk as above. It is a self-consistent ansatz to assume
that a -e and b —e. Hence a and b are of higher order in
e and can be neglected. (5.10) reduces to a system of
linear first-order differential equations which can be
solved by the ansatz

with wk =k +Io. We shall consider the last term in the
above equation as a time-dependent oscillatory perturba-
tion. To make this clear, we replace Mo by EMo where e
is treated as the expansion parameter.

It is well known that outside of narrow resonance
bands centered at the frequencies

(, ) n

sl I

f+- e

—s ti

where

w . w
v cos—t —sin —tk 2 2

w . w
v cos—t+sin —tk 2 2

(5.13)

the solutions of the unperturbed equation (e=0) are
strongly stable' and, therefore, there is no particle pro-
duction. However, inside the resonance bands there are

26wk
vk =1+

Mo
(5.14)

and the normalization has been chosen such that
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Ifk«) I-e ' Ifg(0) I, (5.15)

f k fk f—k fk+ = —1. We shall come back to these solu-
tions when discussing the evolution of quadratics.

To summarize the above discussion, we conclude that
for frequencies in the lowest resonance band the ampli-
tude of fk increases exponentially:

E(t)=4~—
2

Mo
(5.22)

where f],(0) is evaluated in the center of the resonance
band. If a11 the modes start out with an amplitude
lfk(0)l given by equipartition of energy for a harmonic
oscillator, then

with s], given by (5.12).
The parametric resonance analysis is only applicable if

several conditions are satisfied. The first condition is that
perturbation theory be valid, Mo «Nk. At resonance,
Nk ———,'w, so this condition becomes

V 2V
I f„(0)I'= (5.23)

where Vis the volume of space, and

(Mo/u jtp(t)=a l2w M„e (5.24)(5.16)M « —,'K .

Note that if we recall the original interaction process, in
which the p field produces 1(] particles, one needs that the
energy in the P state is greater than the mass of the g, for
the process to occur. For a coherent state of P particles
at rest, this means mt, =w )m&-MD, so condition (5.16)
makes sense.

The second condition is that the expansion of the
Universe can be neglected, which requires

w )&H& . (5.17)

Indeed, this is a necessary condition for resonance to
occur. Third, we need the time scale ht on which the
growing mode dominates to be smaller than H, ', so that
expansion is unimportant. This requires

H) w «1 .
Mo

There is also the condition that the frequency do
redshift out of the resonance band in a time interval
shorter than the amplification period s '(w/2). For
nonvanishing mo this condition becomes

2

S —
Wk &

d Mo
(5.19)

2 d'g 2m

Also within the context of our consistent semiclassical
analysis, parametric resonance leads to an increase in the
energy of the f field. For each k mode, the energy is
the sum of the quadratic terms (H], ) =

—,'(Itrk I )
+ —,'w k(lg'], I

). But we now know how this evolves in

time, having found the solutions fk+, f], From (2.13)
and (2.14), it follows that the general solution for the
quadratics is

X]=(A*)=b;b,"f'f',
y, =(II*P'+ALII) =(b, b,'*+b,b,")fj;,
7(,=(II*II)=b, b,'*j j'~,

(5.25)

(5.26)7t „(t)=F„(t)B
where n and m run from 1 to 3, the B„are defined by
B& =b+b'+", B2=b+b'*+b b'+, and B3=b b*', and
the F„(t) are given in terms of f+(t) and f (t) by
(5.25). Note that b+ b*' bb+' =i%-

Thus, we know the evolution of the quadratics in terms
of the solutions of the Mathieu equation. At late times
t » t, we obtain

or, using w& =k +moa —a "/a,

M4
0

2w
(5.20)2moa a

y](t) =f+ (t)B, ,

y, (t) = 2f+ (t)f+ (t)B, ,-

y3(t) =f +(t)B, .

Finally, there is a condition if one uses the Born ap-
proximation. Now, resonance occurs at w&

———,
' w. If

NL «1, then this means that resonance is at a "long
wavelength, " in our previous categorization. If WL ))1,
resonance occurs at a "short wavelength. "

We will shortly show how to analyze energy produc-
tion by parametric resonance in the semiclassical frame-
work treating P as a quantum field. First, however, we
can quickly derive an expression for the energy consider-
ing ](( as a classical field.

If t =0 is the time when the driving force in (5.6)
starts, then the energy at time t )0 is

E(t)= Jd'k ,' [w]', If],(t) I'+ Ifk(t) I']—

(5.27)

The key point is that the coefficients B; are determined
by the values of g,- at the start of the parametric reso-
nance period, y, (t, ). To find B, one must invert (5.27).
The result is

F]]'(t])
+F]3 (t])

wk

=w'. ((Q. )(t, )
wvk

(5.28)

for a set of coefficients b; and b,' (where we have dropped
the index k). i runs over + and —.

We can rewrite (5.25) in the more compact form:
es not

d'k w' (5.21) where v& is given by (5.14). At the center of the reso-
nance band,

To first order in e, only the first resonance band contrib-
utes. Hence, for m0=0, (5.29)
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Using the equations derived in Sec. IV, we can write
down 8, for long and short wavelengths.

At late times the contribution to the energy is dominat-
ed by the growing mode

(Hk) =—2B)(wkf++f +)=B,wkf, , (5.30)

to leading order in the perturbation expansion parameter
Mo/w. Averaging over a period of oscillation 2'/w,
evaluating the result at the center of the resonance band,
and using (5.29), one finds

2
(M ju/)(t —t )(H )ren w

( ly l2)ren(t )
/Mn~~//r rl ~

(5 31)
2

for lw/,
—w/2l (Mo/2w. This is our desired formula.

(5.31) gives the energy at time t due to the parametric res-
onance amplification in terms of the initial values

(lg/, l

)"'" at t/. If one uses renormalized initial data,
then the total energy at any later time is also renormal-
ized. To get the total energy produced, one sums (5.31)
over all k values inside the resonance band, and in-
tegrates over the time during which the process contin-
ues. In an expanding universe, a particular comoving
wave vector will redshift out of the resonance band, and
new ones will redshift into the band. The process contin-
ues until the oscillations of the P field have been damped
by back reaction.

In the case when the oscillatory phase is preceded by a
monotonic turn on of the mass term, the initial data are
determined by what has been produced during the turn
on, ~.e.,

(5.32)

Hence,

(H )ren w
lp

2 n 1

k 2 3 k
Q

(5.33)

(5.34)

In the quantum calculation, this piece was the ground-
state energy which was subtracted off in the normaliza-
tion prescription. However, ground-state fluctuations
can be important. For example, Hawking radiation' '
and fluctuations in inflationary models can be viewed as
being driven by vacuum fluctuations.

To first order in the coupling, the expansion of the
Universe is important in that a frequency which starts in
the resonance band will get redshifted out. Also, the am-
plitude M (t) decreases as a power of the scale factor,
since the background energy density does. In the next
section we will give an example of the application of

where the appropriate value for lpk l
must be used de-

pending on whether resonance occurs at a "short" or
"long" wavelength. We will work this out explicitly in
the next section in the context of inflation.

There is another choice for (1(/2k(t, )) which could be
used in computing the energy in (5.31). Indeed, in the
classical calculation we used

parametric resonance to inflation, and include these
features.

To next order in the coupling, one could compute the
back reaction on the Higgs field and the cosmological
scale factor. In the semiclassical Einstein equation
G,/,

= Sm G ( T,/, ) one would include the contribution to
( T,b ) from the interaction gP/c/1t/, where P/o/ denotes
the solution with g =0. To lowest order, (f ) is O(g ),
and its expectation value has been found here. So this
next correction is indeed higher order in g. This will

modify the evolution of P and a(t)
One perhaps expects that the energy in the Higgs field

decreases as it is pumped into new particles, and indeed
this is what one means by saying the Higgs field settles
into its new minimum. However, the interactions we
have considered so far could just as well be transfer ener-

gy from 1( back to (() (as with masses connected by linear
springs). So to correctly compute the decay of the ampli-
tude of oscillations of P, one must consider self-
interactions of the g, and redshift of momentum, which
make the rates of the reverse reactions small.

In the following section we use the parametric reso-
nance approach to compute energy production after
inflation.

VI. REHEATING IN
INFLATIONARY UNIVERSE MODELS

v(p) =—,'&(p' —~') (6.1)

Note, however, that this model in general does not lead
to a period of inflation long enough ( ))H ') to solve the
flatness and horizon problems. To obtain a model which

As an example of partic1e production in out-of-
equilibrium phase transitions we shall consider reheating
in inflationary universe models, the problem outlined in
the Introduction. In most inflationary universe models
there are two phases. During the first phase, the scalar
field /t/(t) which generates the inflationary equation of
state evolves slowly and monotonically towards its
ground-state value. In the second phase it oscillates rap-
idly about the equilibrium value. We shall see how dur-
ing the first phase a small background of energy in all
modes of the g field is generated according to the mecha-
nism discussed in Sec. IV. In the second phase, the initial
amplitude of the lt field is amplified by parametric reso-
nance for modes in the resonance bands.

In this section, we first review some of the essential
equations of our inflationary model [(6.1)—(6.12)]. Then,
we identify the parameters which enter the parametric
resonance analysis [(6.13)—(6.16)] and discuss the condi-
tions under which the approximations developed in ear-
lier sections of this paper are applicable. We then calcu-
late the energy production during reheating (6.23). Final-
ly, we discuss the conditions for efficient reheating.

We will discuss a toy model for new inflation. (Note
that reheating in this model has recently also been con-
sidered in Ref. 17, albeit with methods quite different
from the ones used here. ) Chaotic inflation' will be con-
sidered in a later publication. The potential V(P) for the
real scalar field P is
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gives enough inflation, V($) must be much flatter near
/=0. One way to achieve this is by using a Coleman-
Weinberg-type potential. Since the basic physics of parti-
cle production is model independent, we shall use (6.1)
for simplicity.

Our previous general analysis was presented in terms
of the time scale L for the "turn on" of the new mass,
with value pf, and the sloshing frequency co. So first we
must identify these parameters in the inflationary model.

For P «o the quartic term in V(P) is negligible and
the equation of motion for ctr(t) reads

P+3HP=Acr ctr . (6.2)

According to standard (but unjustified) dogma of new
inflation we assume that P(x, t ) is homogeneous and
starts out displaced from the origin only by quantum
fluctuations, i.e. , P(0)=O(H). (6.2) has a growing mode
solution

P(t)=P(0)e ' with a= — + —,'(9H +4k,o )'3H

a1/=a+ 3, cosm„(t —t, },
a(t)=a)(=') '(H, t H, t, —+—') (6.11)

and
3

a]p= —'m +0
a(t)

H
1

2
m~

(6.12)

After the slow-roll period, the Higgs oscillates about its
new minimum. An oscillating homogeneous scalar field
acts like pressureless dust. Explicitly, we want to solve
the Friedmann equations with source ctr(t):

'2

=—', m.G —,'[P +m (P —cr) ],
(6.10)

/+3 —P+m (P —o )=0 .
a

Then for H, «m, the solution is
' 3/2

2m

3
g I /2 2 —

10. mp1

The Hubble constant H is
' 1/2

(6.3}

(6.4)

where the oscillatory phase starts at t, and H, is the
Hubble constant at time t, .

There are the background fields during the oscillatory
phase to be used in the equation of motion for g.

Note that in the model of new inflation, the frequency
of oscillation is

where mp1 6 ' is the Planck mass. For 4k+ )9H
or equivalently cr & (2/3m)' mp~, we get

m =v 2kin (6.13)

(6.5)

Note that this exponent differs from what would be ob-
tained making the naive "slow-rolling" approximation,
namely neglecting P in (6.2) and solving the resulting
first-order di6'erential equation. For

1/2

4A.cr & 9H, i.e. , o. &2 2 2
m p1

3m

We shall now consider in detail particle production in
the toy model for new inflation. First we must consider
the conditions under which the approximation schemes
discussed in Secs. IV and V are applicable. Now, para-
metric resonance only occurs if the expansion of the
Universe is unimportant at the resonance frequency m&.
By (6.4) and (6.13) we see that for cr «mp~ this is
satisfied, i.e., m& »H. To be able to use the Born ap-
proximation, we need to satisfy

we get Lpf && 1 (6.14)

0'
cx —

) I,
1

6m

1/2

g1/2 m p1

[see the discussion following (4.2)]. If we assume that the
field is massless in the absence of interactions (i.e.,

ma=0), then

in agreement with what would be obtained neglecting P.
The period ~ of inflation can be estimated by

pf =gP (tf ) =ger (6.15)

e '$(0}=cr . (6.7} Since L =in(10K, 'r o ') it follows that (6.14) is satisfied
if

For o « m p& and P(0) =H we get
1/2 —1/2 k))g . (6.16}

2~~H=
3

0
m p]

27T

3
g

—1/2

0
(6.g)

1L ——and LH— 0 «1.
m p]

(6.9)

which in general is much smaller than 1. Most of the in-
crease in P(t) takes place over a much shorter time period
L. To be specific, we take L to be the period over which
P(t) increases from 10 'cr to cr. Then

This condition is reasonable, but not necessary. Natural-
ness would only require g «A, '

If (6.16) is satisfied, we can calculate the energy in the
high-frequency modes at the beginning of the oscillatory
phase using the Born approximation. Equations (4.11)
and (4.13) give the particle and energy production for
short wavelengths. In these general expressions, we now
set L =A. 'r o. ' and insert pf and H from (6.15) and
(6.4). Then, for ca& ))go,
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~2 g2g 2 ~~k
I@I,I'=, sinh

16 A,~l, v'go

g(y (t)) = ,'p&—(1.+tanht/L) (6.26)
For definiteness, we consider only the case H, ((pf, i.e.,

1/2 or the linear interpolating expression discussed in Sec.
IV. Thus, we see that p~(t) depends essentially only on
the scales pf and L.

Equation (6.23) is valid only as long as any given mode
remains in the resonance band. The modes will gradually
redshift out of the band. The time interval ht for which
the mode remains in the band is

0 g
m p1

(6.18)

Then, in the long-wavelength regime, I/31, I
is given by

(4.21), and the total energy p produced during the turn-
on period is [from (4.25)]

1/2

Note also that we obtain approximately the same value
(6.17) for p~ (t) if we use

—,
' ln +

8 k mg mp1
(6.19) At =2

H m1

(6.27)

Note that the energy density produced during turn on,
when calculated in perturbation theory, is very sma11

compared to the background density. We will next see
that the energy density produced by parametric reso-
nance can be large even when calculated perturbatively.

From Sec. V we know the expectation value of the
Hamiltonian density in the first resonance band. In-
tegrating (5.31) over the resonance band, a shell of ap-
proximate volume 2m51, co a ( t ), we obtain

(6.20)

where the subscript stands for "resonance. " For our toy
model of infiation, cok =

—,'m and

2

2N 2 i/A.
(6.21)

Since we are restricting ourselves to the case k) g, reso-
nance occurs at short wavelengths. Hence, we can use
the Born approximation to evaluate I/3I, I

. Substituting
(6.3) into (4.9), and evaluating at resonance, we find

2 2

I/3. I

=——
~ 1+0 A, . (6.22)

m p1

Hence, for A. )g, At is smaller than the Hubble expansion
time:

H, ht = pg «1.
m

(6.28)

(This was in fact one of our criteria for parametric reso-
nance. )

As modes leave the resonance bands, new ones will
enter it. As long as the total time is small compared to
H, ', the total energy produced during a time interval
Nht is approximately Np, , where p, is obtained by
evaluating (6.23) at time t, +b, t:

p~(t, +Nht) g3 g
back g2

=N exp

'2
mp1

(6.29)

where p
" is the background (false-vacuum) energy den-

sity.
Reheating is efficient if this ratio becomes of order one

in a time less than the Hubble time. Otherwise, a
significant fraction of the original energy density is red-
shifted away —the Universe "reheats" to a temperature
less than its preinflationary temperature. The ratio (6.29)
equals unity for

Hence, from (6.20),
—

g /8, (mpj/o)N= -e (6.30)
3

g 4 gex ' '(t r, ) g(—t)p(t)„=m cr eR a,
(6.23) Therefore, the condition Nht (H ', for efficient reheat-

ing, becomes

We stress that (6.23) has been derived using the initial
conditions from the turn-on phase. If we use as initial
conditions the ground-state fluctuations

g2 mp1—& 2 In(g'/A, ) . (6.31)

For example, if g /k = 10 ', efficient reheating requires

2COk V
(6.24)

m p1
& 10 ink. (6.32)

then we obtain an energy density pG(t):
2

pG(t) = — pii(t) . (6.25)

which depends rather weakly on the value of A, . This
shows that efficient reheating can happen even for ex-
tremely small values of A, such as 10

Although pG is larger than pR, whether there is efficient
reheating or not does not depend on the choice since the
energy increases exponentially during parametric reso-
nance, and in comparison the ratio between p& and pR is
insignificant.

VII. CONCLUSIONS

We have developed a consistent semiclassical formal-
ism with which to calculate energy production in
symmetry-breaking transitions during which a field P ac-
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quires a mass. P is weakly coupled to matter fields g
which start out in their ground state. We compute the
energy production in the quantum field P as ( P ) obtains
a nonzero expectation value and oscillates about the
minimum of the potential. Two generic types of behavior
of (P (t)) are considered. The first is a monotonic in-
crease; the second is oscillating behavior. We develop
formulas for the particle spectrum and the total energy
production in terms of quite general parameters which
describe the behavior of ( P ( t) ) .

We apply the formalism to the example of new
inflation. As one would expect, for weak coupling not
much energy is produced during the turn-on phase.
However, in the oscillatory phase a lot of energy can be

produced by parametric resonance. We derive a condi-
tion for efficient reheating and show that such efficient
reheating can occur even with the small coupling con-
stants usually assumed for inflationary universe models.
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