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Quantum creation of a generic universe
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The quantum fluctuations of an anisotropic Bianchi type-IX metric and its tunneling into a
quasiclassical inflationary phase are analyzed by solving the Wheeler-DeWitt equation within a
minisuperspace description. Within this model and the adopted statistical interpretation of the
"wave function of the Universe" the appearance of an extremely isotropic universe from quantum
fluctuations occurs with necessity.

I. INTRODUCTION

Classical general relativity and observed cosmological
data imply that a singularity of the gravitational field has
occurred at a finite time in the past. ' As a form reflecting
asymptotically close to a singularity the most essential
features of a generic solution the Bianchi type-IX metric
was proposed, which was analyzed by Misner in an
early attempt to explain the isotropy of the Universe, an
attempt which later turned out unsuccessful. The Bian-
chi type-IX metric is highly anisotropic and approaches
the singularity in an infinite sequence of oscillations
which is a property of a generic singularity. These os-
cillations have been shown to be chaotic and their statist-
ical properties have been investigated in detail.

However, sufficiently close to the singularity quantum
effects should dominate. One (admittedly far from per-
fect) way to discuss these in the absence of a quantum
field theory of gravitation consists in resorting to a
description of the gravitational field by a finite (and small)
number of degrees of freedom in "minisuperspace. "'
There are two basic hopes underlying this approach. (i)

Because of the extreme smallness of the Universe near the
initial singularity it may be possible to treat all fields as
spatially homogeneous. (ii) The dynamics of a few global
parameters (such as the global scale factor of the
Universe, or its two global anisotropy parameters) may at
least approximately be separable from the dynamics of all
the remaining degrees of freedom, whose net effect may
then be lumped into a matter term or a cosmological
term of an effective potential in the Lagrangian.

The quantized Bianchi type-IX metric has first been
analyzed in this framework by Misner, ' ' and more re-
cently in a numerical study of wave-packet dynamics in
Ref. 19. These authors studied the associated
Schrodinger equation, called the Wheeler-DeWitt equa-
tion. " ' Recently a number of authors have taken up
this problem again within a path-integral approach.
Their aim was to analyze the consequences of a proposal
by Hartle and Hawking that asymptotically close to the
singularity the Universe approaches the path-integral
equivalent of a quantum-mechanical ground state. How-
ever, the path-integral approach to quantum gravity,
even in its minisuperspace version, is far from well estab-
lished. In addition to the usual Euclidean rotation neces-

II. QUANTIZATION OF A BIANCHI TYPE-IX METRIC

Let us consider the Universe close to the initial singu-
larity implied by classical general relativity. It has been
argued (for a review see Refs. 3 and 4) that a generic form
of the metric is then of Bianchi type IX

ds = —dt +g, (t)co'co~ (2.I)

which, as most previous workers, we take as homogene-
ous, for simplicity. Here t is standard cosmic time. Re-

sary for the definition of all quantum-mechanical path-
integrals, an additional analytical continuation is re-
quired in order to tackle the fact that the gravitational
action is unbounded from above and from below. In ad-
dition the statistical interpretation of the resulting wave
function is not at all obvious. Finally, the proposal of
Hartle and Hawking for the initial state consists in a
rather formal prescription for the path integral whose
physical meaning is far from obvious. For this reason it
seems desirable to further explore the alternative descrip-
tion based on the Wheeler-DeWitt equation. This is the
purpose of the present paper. Building on the work of
Misner' we set up, in Sec. II, the Wheeler-DeWitt equa-
tion for the Bianchi type-IX metric including a cosmolog-
ical term. In Sec. III we determine its ground state
asymptotically close to the singularity (for a small-scale
parameter), in an analytically solvable approximation,
and show that there the quantum fluctuations of anisotro-
py are large, i.e., of the order of the scale factor. In Sec.
IV we then show that the quantum fluctuations of anisot-
ropy are strongly suppressed dynamically in the wave
function for scale parameters larger than the Planck
length and derive analytical expressions for the mean
square of the anisotropy fluctuations, their probability
distribution, and wave function tunneling from the quan-
tum domain to an inflationary quasiclassical domain. In
the concluding section we compare the most commonly
used statistical interpretation of the "wave function of
the Universe" with the statistical interpretation adopted
here, which is based on the Wheeler-DeWitt equation.
We conclude that within the adopted model and its sta-
tistical interpretation the quasiclassical phase of the
Universe appears with certainty and with negligible an-
isotropy.
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co'=cosgd 8+sing sinO dP,
co =singdO c—osgsinOdg,

cu =dP+cosOdg,

0&8&m, 0&/&2m, 0&/&4m,

(2.2)

stricting ourselves to closed nonrotating universes, ~' are
a basis of one-forms on the three-sphere:

V(P P ) =—Tr(1 —2e '~+ e't') . (2.6)

Redefining the time coordinate, dt =N(t')dt', e.g. , by

dt = 12m-2a 'dtf, (2.7)

2 4

L is changed, in a corresponding way, e.g. , in the case
(2.7),

and

g,, (t) =a'(t)(e'~'")ij,

P=diag(P++v'3P, P+ —/3P, —2P+)

(2.3)

L~Lf =— +p2 +p2
a ao

[ V(P+,P )
—1],

(2.8)

L (t) =(4n )'R (t)&g(t)
(2.4)

can then be reexpressed in the generalized coordinates a,
p+, p

2

12m z
L =a — +P++P —a[ V(P+, P )

—1)
a

(2.5)

with

with Trp=0. In the following let g =Detg, j and R
denote the scalar curvature of the metric (2.1). The
Einstein-Hilbert action'

I = L tdt,1

where the dot now denotes the derivative with respect to
tf and ao = 1 /2m&3. Thus, the metric tensor G in "min-
isuperspace" apparent in the kinetic term g G.g of L
[where g=(g„,g~, . . . , gc) is the velocity vector in min-

isuperspace] is subject to conformal transformations
G'=N 'G by such redefinitions of time, and, moreover,
the choice (2.7) leads to a flat realization of minisuper-
space. '

Let us now quantize this dynamical system. We follow
Misner' and demand that the free choice of the time
coordinate be preserved in the quantum theory; i.e., all
conformally equivalent realizations of minisuperspace
must be quantum-mechanically equivalent. This is most
easily achieved, in the present case, by quantizing in the
Aat realization, writing the action of the Schrodinger
equation as

I — fLf(tf )dtf
1

Lf= d +d
aq

'
aq

a lna aP
aq

ap ao
[«p-. ,p )

—1]IWI' —~
ao

6

(2.9)

with the corresponding wave equation

a2$ a2$ a2$
an' ap' ap'

+e "[V(P+,P )
—1]g+he /=0, (2.10)

dw = ——(DetG)
i

2 ~S ~Si, ap ap'
2

~ an ~ an 'p. "p-

aq, ay,*

2 ~: an ~ an 'p+"p

0 'd' 'X

(2.12)

g, =(12' a ) (2. 1 1)

For later use we note that

where we introduced n= —ln(a /ao) and added a matter
term which we assume to change adiabatically and to act
like a cosmological term with cosmological constant
k & 0. Conformal invariance in the present three-
dimensional minisuperspace dictates that the wave func-
tion P, corresponding to the use of standard cosmic time
t as in Eq. (2.1) is related to P for general time dt' =dt /N
via g=N'~ g„ i.e., in the case (2.7),

but not

dw'=(DetG)' lgl d' 'n

= lyl'dn d p+d p

=( ' ')'"I1( I' p dp (2.13)

is invariant under the latter transformation (and confor-
mal transformations, in general). Here we used the
metric-independent volume element

0= Egg. . . gdg dg ' ' dg
1
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and timelike hypersurface element the following. The transformation

d XA
1

(eAB . cdg g
(n —I )!

r =tanh
2

(3.4)

1
P+ = ln —sinhgcosP,

P
1

P = ln —sinhg sing,
p

10= ln —cosh(
p

is useful, after which

(2. 14)

in minisuperspace, where ezra. . . & is the numerical an-

tisymmetric symbol e ~z. . . & =0,+1. Therefore dm',
while positive, cannot be used as a probability measure
without violating the underlying symmetry.

Let us now analyze Eq. (2.10). Two limits can be un-

derstood quite completely: the case ( —II)~ —~ near
the initial singularity, and the case (

—fl ) ) 1 [i.e.,
a ) (e /2m &3)], which are considered in Secs. III and IV,
respectively. In both cases the coordinate transformation

3 lze +lx+iy = . , z =re'~ .
ei7I/6+ 1

(3.5)

leads to a quantum billiard problem on the Bolyai-
Lobachevsky plane, i.e., on the plane with constant nega-
tive Gaussian curvature (

—1) (for a review of the classi-
cal and quantum theory of motion on the pseudosphere
see Refs. 34 and 36). The region displayed in Fig. 1 is an
infinite equilateral triangle of geodesics with zero angles
(correspondingly its area is equal to m). The three
straight lines in Fig. 1 exhibit the obvious symmetry of
the problem and are drawn for future purposes. (Note
that these lines are also geodesics. ) Furthermore a horo-
cycle is shown with dotted lines. Classically the trajec-
tories are broken geodesics reflected at the boundary and
the motion is known to be chaotic. '

Finally it is useful to go over to the Poincare half-plane
with the help of the fractional linear transformation

a, a
[p(lnp) ]

p(lnp } ~p ~p

+
2 2 [Ar a

—U(p, g, g)]/=0,1

p (lnp)

where

sinhg Bg Bg

(2.15)

(2.16)

(3.6)

The general solution of (3.6) can be written as

Note that the rotation by n/6 in th. e Bolyai-Lobachevsky
plane and the scale change in the Poincare half-plane are
introduced for practical purposes. The shaded region in
Fig. 2 is the image of that in Fig. 1.

Equation (3.3) transforms to

'"+' =~z
Bx By

is the Laplace-Beltrami operator and

U(p, g, g)=(lnp) [p "'"&(V—I)+Ap "'"&] . (2.17)
Z (x,y)= g A„sin[no(x —

—,')]'y~ K, (nay),
n=1

(3.7)

We note the correspondence for fixed g:

—~ & —0&0 0&p&1,
0& —Q & (x) 1&p& ~ .

(2.18) k ——+N4 (3.8)

where E, stands for the Hankel function of imaginary
argument and co is defined by

III. PRIMORDIAL QUANTUM BILLIARD
AND ITS GROUND STATE

Let us now consider Eq. (2.15) asymptotically for
p~+0. Then the potential U vanishes inside and is plus
infinity outside the triangular domain bounded by'

Note that by symmetry reasons one may choose the solu-
tions of (3.6) such that A„=O either for N even or for N
odd. In the case of the ground state, which is our main

2'
tanhg= —

—,'sec P+m, m =0,+1 .
3

(3.1)

ar
+

1+ F2

This makes it possible to factorize the solution of Eq.
(2.15}as

P=+(p)e(g, g}

and one has to consider first the eigenvalue problem

—~„,e, (g, y}=x,e, (g, y}

(3.2)

(3.3)

with the boundary conditions e(g, g)=0 at the walls
specified above.

Two reparametrizations of Eq. (2.16) will be useful in FIG. 1. The billiard on the Bolyai-Lobachevsky plane.
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interest here, the boundary condition at the bottom line
should be of von Neumann type and A„=O for even X.
The problem is greatly simplified if we replace the bound-
ary geodesics at the bottom by the straight line drawn in
Fig. 2 as dotted line. In the representation on the
Bolyai-Lobachevsky plane it means that the two straight
line segments are replaced by the arc of the horocycle in
Fig. 1. Since around the center the ground-state wave
function is nearly constant the inaccuracy caused by this
change of the boundary curve is small. [Note that with
this boundary condition the system becomes integrable; it
is no longer chaotic classically. For the quantum ground
state this changed behavior of the classical system is not
of great importance. However, all highly excited states
and even those low-lying states of the form (3.7) which
satisfy neither Dirichlet nor von Neumann conditions on
the bottom line cannot be approximated within this in-
tegrable description. ] For states satisfying Dirichlet or
von Neumann boundary conditions on the shifted bottom
line the solution separates as

shaded region in Fig. l. Along this line 8(g, g) is given
by

8(P)-
' 1/4

1+P
P 0

1/2
I+P

2

—,
' ~P~1, (3.10)

8(P)=const, 0 /3

as a function of

(p2+ p2 )1/2

P—: = tanhg, (3.1 1)

which is a measure of the anisotropy. The distribution
I8(P)I is plotted in Fig. 3. As expected it has its max-
imum value around zero anisotropy, but one can see that
large quantum fluctuations of anisotropy (of the order of
the scale factor) occur due to the zero-point fluctuations
in the underlying quantum billiard.

It remains to solve the p-dependent part of Eq. (2.15)
for U =0 which reads

Z„(x,y)= A„sin[nn'(x —
—,')]y E,„(n~y) . (3.9)

For the ground state n =1 and (BZ&/By)I» &=0. For
the corresponding eigenvalue one finds numerically
Np =4.2 1 which yields A p

= 1 8 ~ 0.
The line x =0 on the Poincare half-plane corresponds

to the line itio=4n/3, which is a line of symmetry of the

(3.12)

8(f 8)0 g~ y. —icuolnllnpl icooln~lnp~

1ln—
P

(3.13)

1 8 ~ B4 ~p+4
[p(lnp) ] —

~
4=0

p(lnp) ~p ~3p p (lnp)

and has solutions —IlnpI
' exp(+icoolnIlnpI). The total

wave function for the ground state of the billiard is there-
fore of the form

The invariant (2. 12) transformed to the present case be-
comes

du =(I & I' —IBI')18,(g, g) I »nhgdgdg (3.14)

and can be used as a probability measure if we require
I AI ) IBI . We shall see later that the ratio 3/B is
determined at least in principle by the observed fact that
only an outgoing wave is present in the quasiclassical
domain. These considerations and the requirement that

1
2

I

2

=X
3
2

8 S iOP

FIG. 2. Section of the billiard on the Poincare half-plane.
FIG. 3. Probability distribution of quantum Auctuations of

anisotropy in the ground state in arbitrary units.
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the billiard is in its ground state therefore serve to com-
pletely fix the wave function for p~0.

a'y
2

+ [KALB
—U(u, g, (I})]/=0 (4.2)

Let us now turn back to Eq. (2.15) and consider the
case p)&1. Then the potential term in Eq. (2.15) be-
comes very important. It will be helpful, for some pur-
poses, to introduce the variable

1ln—
P

(4.1)

IV. SUPPRESSION OF ANISOTROPY AND TUNNELING with

[e
—(4/u)coshs( I/ 1 ) +Ze

—(6/u )cosh(] (4 3)
1

f(p, g, p)=e;(g, t()p)4(p) . (4.4)

The wave function of the anisotropy for fixed p satisfies

which shows that in the region considered here the an-

isotropy term acquires a small effective mass, of order u,
and the u variable, and hence also p, may be treated adia-
batically, making the ansatz

The domain p » 1 then corresponds to the region
—1 «u &0, while p «1 corresponds to 0& u «1.
Equation (2.15) then takes the form

—a„,e, + U(p, g, (t )e, =X, (p)e, ,

where now, for p »1,
(4.5)

U(p, g, g)= .

oo for sinh g) 8

(lnp)

(lnp )2 P4 coshs
1 + sinh2g + )(P6 cosh/ for sinh2g ((ln ) 8

8 (lnp)

(4.6)

1
no(p) = p'(lnp)',

2
(4.7)

Here we were allowed to approximate the potential V
near the origin p+=p =0 because the support of the
wave function, according to Eq. (4.6), becomes restricted
to the domain sinh g(8/(1np) which goes to zero; in

short the anisotropy becomes very small. Expanding the
potential for small g and solving the Schrodinger equa-
tion for the resulting two-dimensional harmonic oscilla-
tor with mass m =

—,
' and frequency

same dependence on p as a radiation term included in the
energy-momentum tensor. However, while the latter de-
scribes the cumulative gravitational effect of infinitely

many modes, the fluctuations of the anisotropy are due to
only two collective modes described by p+, p or g, ((), of
extremely high frequency whose enormous size prevents
these oscillations from ever becoming classical. Howev-
er, in the domain p)&1 where Eq. (4.10) is valid, the con-
tribution of the first term in (4.10) is of minor impor-
tance. Equation (2.15) is now reduced to

Qo(g, p) = exp
1

2~(()(p )

2

40o(p)

with

we find, e.g. , for the ground state,

(4.8)

d 4
dQ

X;(u) 4=0

[p(lnp) ]
a, ae

p(lnp)2 Bp Bp

or, equivalently,

A, ;(p) 4=0
p (lnp)

(4.1 1)

(4.12)

2
ko(p ) =

oP
(4.9) with k, (p)=A, , (u). It describes tunneling in the effective

potential [with i = ( n, m ) ]

„(p)= (lnp) — p' —
p + A p

n+m+1 2 4 (4.10)

We note that the first term in large parentheses has the

Similarly all excited states 6; can be written down. Thus
in the limit considered the zero-point fluctuations of the
anisotropy acquire extremely high frequency (justifying
once more the adiabatic approximation with respect to p)
and are of extremely small amplitude.

The eigenvalues k, (p) (i =m, n) of Eq. (4.5) depend on

p explicitly:

U()( )
i P m+n+1 ~ 4

A. ( )

e(r P 2(l )P ~— P P

(p )& 1), (4.13)

o+2

U,~(p) =—, —, (p « I ),
p (lnp)

where the second equation applies to the regime of the
billiard and follows from Eq. (3.12), assuming that the
billiard is in its ground state. A schematic plot of U(,'()r(p)
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&, (p)
xexp i j' d—p

p (Inp)

1/2

(4.14)

with coefficients C to be determined. Here we assume
that only an outgoing wave is present. The weight dw,
Eq. (2.12), rewritten in the present coordinates for small g

dto = —p(lnp) ij/" —g gdgdP,
i p ~t)
2 Bp Bp

(4.15)

and evaluated in WKB approximation for the ground
state becomes

1
dw —

~ exp
2irgo(p )

(4.16)

i.e., a positive measure.
However, a general state (4.14) does not lead to a posi-

tive dw, and therefore cannot be statistically interpreted
within the framework we have adopted here. On the oth-
er hand the wave function (4. 14) describes quantum oscil-
lations of anisotropy uncoupled to any other degrees of
freedom (except the scale factor) which are, indeed, in
this form, unobservable. Coupling the anisotropy to oth-
er degrees of freedom, e.g. , massless radiation fields, will

(i)
enc&~I,

for fixed i =(n, m) is given in Fig. 4.
In the quasiclassical domain p&p2 with p, =k the

—] /3

solution of Eq. (4.11) is well approximated by the WKB
result [most easily derived from Eq. (4.11)]

e, (j,p)
i)'j= gC

i
I

i

1/2[g ( ) ]1/4

make them observable, in principle, but will at the same
time lead to a loss of coherence between the levels of the
oscillator destroying interferences in the linear superposi-
tion (4.14). Assuming therefore the coefficients C, to be
randomly phased, the application of (4.15) together with
a phase-average (corresponding to taking the trace over
the radiative degrees of freedom) again leads to a positive
dw given by

du= g iC;i ie, (g, p)i- . (4. 17)

Note that dw remains normalized. Note also that by the
same mechanism an interference between the outgoing
wave (4.14) and a refiected incoming wave present in a
recollapsing universe will not be observable.

It is certainly unusual that the degrees of freedom of
the "meter" (e.g. , the radiation field coupled to the an-
isotropy oscillations) must be included and traced out be-
fore a statistical interpretation even becomes possible.
However, it should be recalled that the total wave func-
tion of the Universe in principle must include also any
"meter" and is therefore neither observable (there is no
observer left) nor is a statistical interpretation meaningful
(there is no ensemble). Only after averaging over the de-
grees of freedom of the "meter" is a statistical description
of the reduced system required and meaningful. Further
remarks related to this point will be made in the conclud-
ing section.

Our approximation, so far, is restricted to the domain

p )) 1 (the region of very small anisotropy) and p ((1 (the
region of the primordial billiard, where the anisotropy is
large). We now try to interpolate between these two re-
gions by the same adiabatic ansatz (4.4) assuming that 6,
satisfies Eq. (4.5) with the full potential U(p, g, g). Clear-
ly the resulting eigenvalues k, (p) will interpolate between
the two regimes we have considered in detail, and will
lead to some interpolating effective potential, in Eq. (4.11)

i'.
, (p ~

(p) ————————

p (lnp)
(4. 18)

P2

1

—P

n+m+I
W2 t unne ling quasi—

classical

billiard

FIG. 4. Effective potential in the regions of the quantum bil-
lard, quantum tunneling, and quasiclassical inflationary expan-
sion.

shown schematically as a dashed line in Fig. 4. While we
cannot solve Eq. (4.5) analytically, in the general case, it
is quite clear how the eigenvalue A, , (p) must behave: For
p~0 the problem reduces to the billard and
A, , (p)~co, ~ —,'.

Increasing p from zero the walls of the billard de-
scribed by the potential U gradually lose their steepness
and A, , (p) decreases. At p = 1 the walls of the billard have
disappeared completely and U vanishes identically. Thus
A, , (p) —(1np) for p —~1 and A, , (1)=0. Increasing p fur-
ther the potential increases in the domain V& 1 and de-
creases in the domain V & 1 near the origin where U de-
velops an increasingly sharp and deep minimum and we
are finally in the regime where Eq. (4.10) holds. As we
can infer from this discussion, in the eftective potential
(4.18) the (inp) factor cancels for p~ l. Thus UIIr(p)
changes smoothly between the regimes p «1 and p»1
and changes sign for p=p']'. However, there is a neigh-
borhood of p = 1 where the adiabatic assumption on
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which this simple picture is based lacks self-consistency
and must break down. Indeed, since U =0 for p= 1 the
quantum states of anisotropy in the potential U for p~ 1

are arbitrarily closely spaced and will be mixed by even
the slightest p dependence of U. Therefore, the anisotro-

py oscillations for p&&1 will not emerge in the ground
state but in some linear combination of excited states of
the form (4.14) determined by the details of the passage of

U through zero at p= 1. However, regardless of the de-
tailed form of this linear combination, the amplitude of
the anisotropy oscillations scales with go(p) and becomes
extremely small for p ))1.

In the domain p ~
po

' & 1 (where i =0 means
n =m =0} the Wheeler-DeWitt equation (4.11) can also
be solved in WKB approximation. Assuming that the
billard for p~0 is in its ground state we find

eo(0 P) 1 4(P)
~lnp~' [Ao(p)]' T,2cos (o p ~lnp~

1/2 (0)

dP ——+iT, 2sin
P

A,o(p)

p'[Inp ['

1/2

dp
4

(4.19)

where T,2 is the tunneling amplitude through the barrier.
If the adiabatic approximation would hold also near p = 1

we could again apply the WKB approximation to obtain

P2

T12 exp "p
P)

&o(p)

p'/Inp/'

1/2

(4.20)

V. CONCLUSION

The Wheeler-DeWitt equation is a second-order
differential equation with respect to the timelike coordi-
nate in superspace and for this reason the statistical inter-
pretation of the wave function which satisfies this equa-
tion has been a matter of debate since its discovery. The
basic point of view which we adopt in the present work is
that the total wave function of the Universe (as, indeed,
the wave function of any completely isolated quantum
system) has no intrinsic statistical interpretation as there
is neither an ensemble nor an outside observer. This fact
is reAected by the nonpositivity of the only general con-
served weight dw, Eq. (2.12), which can be associated
with the Wheeler-DeWitt equation. The statistical inter-

where we used the boundary condition (4.14) with
C; =5;o for p ~ p2. However, because of the breakdown of
the adiabatic approximation near p=1, Eq. (4.20} can
only be qualitatively correct, at best. In any case T,2 is
an extremely small number, which can, in principle, be
calculated. This suSces to see that the wave function for
p &p'1 ' is completely determined by the two conditions
that (i) the billiard is initially in its ground state and (ii)
there is only an outgoing wave (an expanding universe)
beyond the tunneling regime. For p ~0 we have
Ao(p) ~coo+ —,

' and the WKB result very nearly reduces to
the exact result (3.13) (since coo)) —,'), but now the
coefficients 3 and 8 are determined by T12. Both 3 and
8 are proportional, essentially, to T,2' and extremely
large, while their difference is proportional to T» and ex-
tremely small. Thus for p(p', ' the wave function is an
extremely strong standing wave in the p direction with a
tiny surplus of the amplitude in the outgoing direction
due to tunneling through the potential barrier. The
weight dw remains, of course normalized to unity for all

P

pretation arises, and, indeed, becomes necessary, only if a
separation of the total Universe into an observing part
(the measuring device or "meter") and an observed part
(the rest of the quantum universe) is made. The "meter"
may be thought to include all the degrees of freedom not
present in the explicit description of the rest of the quan-
tum universe. From this point of view the appropriate
description of the rest of the quantum universe is an ex-
ample of the description of a single quantum system,
which is observed continuously in time. It is then in-
teresting to remark that there have been important recent
advances on this general class of problems, both experi-
mentally, and theoretically. Experimentally, it has re-
cently become possible for the first time to isolate single
atoms (rather than an ensemble of atoms) and to observe
continuously in time the quantum jumps of their optical-
ly active electrons in an externally applied light field.
Theoretically, advances have been made in the dynamical
description of observed quantum systems by mixed
states (density matrices) satisfying master equations,
which, at least in principle, can be derived from the
Schrodinger equation of the total system not yet separat-
ed into observing and observed parts. This kind of
description has recently also been applied to continuously
observed quantum systems, which, like the model dis-
cussed in the present work, are chaotic in their classical
limit. '

For the Wheeler-DeWitt equation a derivation from
first principles of the dynamics of the continuously ob-
served rest of the quantum universe has not yet been
given. As a substitute we have argued after Eq. (4.14)
that the coefficients C, , in general depending on all the
variables of the meter, will as a result be randomly
phased. Averaging over unobserved meter variables, and
hence the phases of C;, automatically introduces a
mixed-state description which, in the example under
study, led to the positive probability measure (4.17). In
general, however, it seems clear that not all separations of
the total Universe into two parts will lead to a positive
dw and the general conditions for such a separation to
quality as a measurement (dw & 0) remain unknown.

Finally, we note that the statistical interpretation
adopted by us renders meaningless the notion of a proba-
bility smaller than 1 for tunneling through the barrier.
Such tunneling probabilities have sometimes been defined



2490 ROBERT GRAHAM AND PETER SZEPFALUSY 42

on the basis of the probability measure dw' which we
have discarded above because of its lack of conformal in-
variance. The numerical values obtained for such tunnel-
ing probabilities were found to be fantastically small
[e.g. , exp( —10' )j due to the immense height of the bar-
rier. By contrast, in our description tunneling occurs
with certainty because the solution of Eq. (2.15) must be
nonzero outside the barrier, and our statistical interpreta-
tion ensures that the probability is normalized to unity
for each value of p. The basic principle difference be-
tween the probability measure (2.12) [which is a probabil-
ity measure only after including the modification dis-
cussed in connection with Eq. (4. 17)] and (2.13) is the
presence of a timelike parameter (0, u or p) in (2.12) and
the absence of such a parameter in (2.13) (where 0, u or p
is an independent variable along with P+,P or g, P).

Therefore (2.13) seems appropriate when describing a
system extrinsically with reference to an external and in-
dependent time parameter, which is of course the usual
case of quantum theory, while (2.12) describes the
Universe intrinsically correlating its properties, e.g. , an-
isotropy, with another intrinsic property, the scale factor.

In this context an interesting question can be raised. If
the creation of the Universe from quantum fluctuations is
a necessity in our theoretical framework, why do we not
observe a continuous nucleation of new universes from

local quantum fluctuations of the metric? On the basis of
our discussion of the difference betv een dw and dw' this
question can be answered. For such fluctuations "we"
play the role of external observers equipped with our own
local (classical) time coordinate. Therefore we argue that
the usual statistical interpretation (2.13) based on the ab-
solute square of the wave function should be applied and
then it makes sense to define and calculate tunneling rates
through the cosmological barrier. (As mentioned above
these rates will come out as tiny which is one reason why
these processes are not observed. Another reason might
be the appearance of a horizon shielding these new
universes from our observation. ) The fact that we have
to interpret the wave function of our own quantum
universe intrinsically from its inside makes this case spe-
cial and we propose that this is the physical reason for
the necessity to modify the standard statistical interpreta-
tion (2.13) in this particular case.
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