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The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscilla-
tors, whose losses are dominated by processes occurring inside the material of which the oscillators
are made. In the common case of losses described by a complex spring constant with a constant
imaginary part, the thermal noise displacement power spectrum is steeper by one power of co than is

predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems
with more than one mode of vibration, and evaluate a model of a specific design of pendulum sus-

pension for the test masses in a gravitational-wave interferometer.

I. INTRODUCTION

Thermal noise is one of the fundamental limits to the
precision of mechanical measurements. Its importance in
high-sensitivity galvanometers is well studied. It is also
one of the dominant noise sources in resonant-mass
detectors of gravitational waves and a major reason that
such detectors operate at cryogenic temperatures. In
both of these instruments, what is observed is that the
thermal noise excites the mechanical resonance with a
root-mean-square level that corresponds to an energy of
k~ T.

In many experiments, it is the thermal noise far from
the resonant frequency that is most important. In laser
interferometer gravitational-wave detectors, for example,
resonant mechanical systems are employed, but mainly in
the role of vibration isolators, with the resonant frequen-
cies lying below the signal band. Thermal noise motion
of the test masses in the nearly free regime above the res-
onances is expected to be an important noise source, and
thermal noise in the signal band from high-frequency
internal resonances in the test masses may also be impor-
tant. Other gravitational experiments employ delicate
torsion balances. These are typically used in a mode
where the signal frequency is well below the fundamental
resonance. Thermal noise sets a significant noise floor in
these measurements as well.

Models of thermal noise almost invariably assume that
the dissipative force is proportional to velocity. (Notable
exceptions are the work of Speake and of Chan and
Paik. ) However, in the low-loss oscillators typically used
in sensitive gravitational experiments, the dependence of
the dissipation on frequency seldom obeys this expected

behavior. Calculations of thermal noise based on
velocity-damping models can be seriously in error. In
this paper I will discuss more realistic models of mechan-
ical oscillators with small dissipation.

II. BROWNIAN MOTION

F,„(to)=4ktt Tf . (2)

(Throughout this paper, I will use angular frequencies,
with dimensions of rad/s, but will give power spectral
densities referred to the customary 1-Hz bandwidth. ) As
is well known, the fluctuating force F,h comes about be-
cause of the randomness of the individual impacts from
the molecules that make up the medium responsible for
the deterministic force Ff„„;,„.

A damped harmonic oscillator [like the one shown in
Fig. 1(a)] can be described by adding a term representing
a Hooke's law restoring force F,p g

—kx, giving

mx+ fx +kx =F,„.
This equation of motion is easy to solve in the frequency
domain, by replacing x (t) with x(co)e'"'. Then the power
spectral density of the position of the mass can be shown
to be

Brownian motion of a particle of mass m, subject to a
frictional force of the form Ff t 0 fu, is'd'escribed b—y
the Langevin equation

mx+ fx =F,t, ,

where F,h is a random force with a white spectral density:
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k(1 + ip(m))
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(k m—ro ) +f ro
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A graph of this power spectrum (for a representative set
of the parameters k, m, and f) is shown in Fig. 2. If f is
small, then the response of the particle is sharply peaked
near roc= &k lm. It is customary to denote the sharp-
ness of the resonance by Q:too/—b, ro, where b, ro is the full
width measured at the half-power points. For the
velocity-damped harmonic oscillator, Q =m rooIf.

Predictions for the thermal noise in many delicate
mechanical experiments have been made based on such
models. In the next section I will set up a framework for
more realistic models.

III. FLUCTUATION-DISSIPATION THEOREM

(c)

ik2 ~ ~ ~
8 CI O
O O O 3

(d)

The fluctuations analogous to Brownian motion in any
system with dissipation may be found using the
fluctuation-dissipation theorem of Callen et al. The
spectral density of the thermal driving force is given by

F,h (ro) =4ks TR (co),

FIG. 1. (a) Schematic diagram of a mechanical oscillator
consisting of a mass m, a spring of real spring constant k, and a
dashpot with velocity coefficient f. (b) An oscillator consisting
of a mass m and a spring with complex spring constant
k[1+i/(co)]. (c) Schematic diagram of a standard anelastic
solid. An ideal spring is connected in parallel with a spring-
dashpot combination called a Maxwell unit. (d) Schematic
model of an oscillator with an arbitrary frequency-dependent
spring constant, constructed from a single ideal spring and
many Maxwell units.

—8.0

where R (co) is the mechanical resistance, the real part of
the impedance Z=F/U at the mass. Equivalently, the
power spectrum of the motion of the mass is given by

4k~ To (ro)
x (co)=

CO

(6)

with cr(ro) denoting the mechanical conductance, the real
part of the admittance Y(ro) =Z '(ro).

For the simple oscillator described above, the im-
pedance is

Z=f+irom+ k

LCO

The admittance is

Y= ro f+i(rok —mro )

(k mro ) +ro f— (8)
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FIG. 2. Thermal noise power spectra for two mechanical os-
cillators, each with m =1 g, resonant frequency coo=1 s ', and
Q =100. The solid line shows the spectrum for an oscillator
with damping proportional to velocity. The dash-dotted line
shows the spectrum for an oscillator with internal damping
characterized by constant P(co). The units of the power spectral
density are cm /Hz and of the frequency axis are s

Substituting the real part of Eq. (8) into Eq. (6), we obtain
the same result for the displacement power spectrum as
we did using the Langevin equation directly.

IV. EXTERNAL VELOCITY DAMPING

There are several common sources of damping that
give forces proportional to velocity. The classic example
is the viscous drag on a Brownian particle suspended in a
liquid. A few high-precision experiments operate at high
enough pressure so that the drag from the residual gas is
in the viscous regime.

Most gravitational experiments are performed at low
pressures (around 10 Torr or lower). When the mean
free path is large compared to a characteristic dimension
of the test object, a description in terms of viscosity is no
longer applicable. Instead, one must calculate the sum of
the momentum transfer between the test object and each
of the gas molecules that collide with it. It can be shown
that the oscillator Q can be estimated as
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PCOp

Q „=Ch
n~m. ..k, Z.

i~k$+i(cok —mn) )

( k —m ~&)&+k &$2
(15)

Here p is the density of the oscillator mass, n is the num-
ber density of gas molecules, each of which has mass

m, [, h is a characteristic dimension of the oscillator,
and C is a dimensionless constant of order unity that de-
pends on the shape of the oscillator.

For a 1-Hz pendulum of mass 10 kg, operating at pres-
sures below 10 Torr, values of Q „ in excess of 10
should be readily attainable. This means that gas damp-
ing can be made negligible compared to the internal
damping mechanisms described in Sec. V. Torsion bal-
ances, on the other hand, typically have much smaller
values of h and cop, and so gas damping is often an impor-
tant source of dissipation for them. '

Eddy currents in moving conductors also give a damp-
ing force that is proportional to velocity. ' Good mag-
netic shielding, and use of nonconductors wherever possi-
ble, can reduce this to small levels.

V. INTERNAL DAMPING

Internal damping in materials has been found' to obey
an extension of Hooke's law, which can be approximated
by

F= —k [1+iP(co }]x . (10)

If the force F is sinusoidal, the response x of the spring
will lag the force by the angle P(co). The time average of
the product Fx is proportional to P (as long as P (&1). A
fraction 2n.P of the energy stored in the oscillatory
motion is being dissipated during each cycle. Thus a
complex spring constant is inevitably associated with
damping. In turn, the Auctuation-dissipation theorem
guarantees that damping generates mechanical noise.

It is instructive to study a simple mathematical model
of an oscillator, substituting a general spring "constant"
of the form of Eq. (10) for the velocity-damping term [see
Fig. 1(b)]. The equation of motion becomes

mX = —k(1+i/)(x —xs)+F .

The thermal noise power spectral density is given, ac-
cording to the fluctuation-dissipation theorem, by

4ks Tkg(co)
x (N)—

co[(k —mao ) +k P ]

VI. FORMS OF INTERNAL DAMPING

By far the most common functional form for P(co) in
materials of many kinds is P approximately constant over
a large band of frequencies. ' [The lag function P(co) can
be any odd function of frequency. ' Constant (()(cu) is
consistent with this condition as long as P does not
remain constant all the way to zero frequency. ] In spite
of the ubiquity of constant P(co), there does not seem to
be a simple model that gives a general explanation of the
phenomenon. In some cases, a frequency-independent P
has been attributed to friction from dislocations. '

Sometimes, the damping exhibits a broad maximum at
a characteristic frequency ~ '. This is the classic
phenomenon named "anelasticity" by Zener. ' Such be-
havior is caused by the functional dependence of some
internal degree of freedom of the system upon the stress.
For oscillatory stresses applied near ~ ', the response of
the material can lag substantially because of the finite
time it takes for the internal degree of freedom (and con-
sequently the strain of the material) to come to equilibri-
um.

A simple model, called the standard anelastic solid, can
be used to represent the relaxation process described in
the previous paragraph. One way to represent this model
is by an arrangement of two springs and a dashpot, as
shown in Fig. 1(c). The spring constant k, is called the
"relaxed spring constant, " and the sum k, +k2 is called
the "unrelaxed spring constant. " (If the losses are small,
then k2 is much smaller than k, .) Zener showed that this
model predicts that the loss angle P depends on frequency
with the characteristic form

P=b,
&+co r

The vibration transfer function is

coo(1+i/)

COO CO + i/COO
(12)

as long as there are no other mechanisms with nearby re-
laxation times and t)) (& 1. 5 =kz /k, is called the "relax-
ation strength, "while r =f /k2 is the "relaxation time. "

k kdZ —lcm + +
CO

(14)

and so the thermal noise force spectral density is propor-
tional to the quantity kP(co)/co in place of the velocity
coefficient f The admittance is.

By comparison with Eq. (4), it is easy to see that an oscil-
lator of this sort has a quality factor given by

1

(cop)

The mechanical impedance at the mass is

VII. EQUIPARTITION THEOREM

The power spectrum of thermal noise will not in gen-
eral have the functional form given in Eq. (4) for the case
of velocity damping. For example, an oscillator with
losses characterized by constant P(co} has thermal noise
whose power spectral density declines more rapidly with
frequency (by one power of co) than an oscillator subject
to velocity damping (see the graph in Fig. 2). This means
that if one had erroneously assumed velocity damping in
a system with constant internal damping, one would have
overestimated the thermal noise density for frequencies
above the resonant frequency, but would have underes-



PETER R. SAULSON 42

timated the noise in the region below the resonance. Re-
laxation damping, such as that described by the standard
anelastic solid, also gives more noise at frequencies below
co„—= 1/~ than at higher frequencies.

The integral of Eq. (4) over all frequencies gives a
mean-square displacement X,h =kz T /k. This is, of
course, consistent with the equipartition theorem, which
states that each quadratic term in the energy has a mean
value of —,'k~ T. Contrast the case of Eq. (16) for the case
of P(co) a constant. Here the integral diverges at co=0.

It is instructive to explore the relation between the
equipartition theorem and thermal noise power spectra in
general. First, it is important to point out that a spring
constant of the form given in Eq. (10) is usually an excel-
lent approximation, but it cannot be exact. For the stan-
dard anelastic solid of Fig. 1(c), a direct calculation gives
a spring constant of

2 2

F=kix 1+ +LA
1+~2~2 1+~2~2

(18)

Note the additional frequency-dependent real term. For
the common case of small b, this term is usually negligi-
ble compared to the constant term. The heuristic inter-
pretation is that at high frequencies the effective spring
constant is the unrelaxed spring constant k~+k2, be-
cause the dashpot appears rigid. At low frequencies, the
dashpot is free to move, and so the effective spring con-
stant is just the relaxed spring constant k, .

This is a special case of a theorem usually attributed to
Bode, ' stating that there is a unique relationship be-
tween the phase of a network characteristic (such as a
transfer function, impedance, admittance, or spring con-
stant) and the functional form of its magnitude, as long as
it has no poles or zeros in the right half of the complex
plane. For example, such a function with magnitude pro-
portional to co" has constant phase of nm. /2. Applied to a
spring with constant phase t)), the theorem requires that
the magnitude is proportional to co ~ . For a low-loss

spring, this is an extremely weak dependence on frequen-

cy, which is why it is usually neglected.
In order to understand mean-square thermal noise dis-

placements, it is important to keep in mind the weak
variation of a spring constant with frequency. Again, let
us consider first the standard anelastic solid. Direct in-
tegration of the thermal noise power spectrum gives the
result x,h=k&T/k, . This is also the result expected
from the equipartition theorem, since the displacement of
the mass is equal to the extension of the energy storage
element k, , the relaxed spring constant.

A similar explanation can be given for other forms of
the frequency-dependent spring constant. It is always
possible to represent an arbitrary lossy spring with a
model such as the one shown in Fig. 1(d). Here the single
spring-dashpot element of the standard anelastic solid is
replaced by a spectrum of such elements, whose spring
constants and relaxation times are adjusted to give the
observed frequency dependence. (Various methods to
construct such a model are discussed by Nowick and Ber-
ry. '

) The spectrum contains a longest relaxation time
At frequencies below 1/~, „, the spring behaves

like the ideal spring k„. [The requirement that there exist
a longest relaxation time is a restatement of the realiza-
bility condition that P(~) be an odd function of co.] The
equipartition theorem then states that x,&

=k~ T /k, .
A real experimental measurement of the mean-square

displacement cannot integrate all the way to co=0, but
only down to a frequency co=1/~;„„where ~;„, is the
duration of the measurement. Thus, if ~ „)~;„„one
should not expect the equipartition theorem to hold ex-
actly. Instead, we expect the approximate relation
xth, =k&T/k(1/w;„, ), where x,h, is the mean-square
displacement as measured in the finite integration time,
and k(1/r;„, ) is the magnitude of the spring constant at a
frequency co=1/~;„,. This can be interpreted in light of a
model of the form shown in Fig. 1(d). For measurements
extending only to ~;„„a11of the spring-dashpot elements
that have r )~;„, behave as if their spring constants were
added to k„. Thus the effective relaxed spring constant is
approximately k ( 1/ ;„r, ).

The contribution of the formally divergent part of the
integral (for P constant) will be quite small in most exper-
iments. This is because in a lightly damped oscillator,
most of the power is in the resonant peak itself. In the
case of velocity damping, only roughly I /Q of the mean-
square displacement comes from frequencies below the
resonance. For damping with constant P, the highest oc-
tave below the resonance thus contains approximately the
fraction P of the total thermal noise power. Each octave
lower in frequency contains the same power, since the
power spectral density is proportional to 1/co. In partic-
ular, to obtain a power comparable to that in the reso-
nant peak, this behavior must extend down in frequency
for P

' octaves below the resonance. At such a low fre-
quency, the magnitude of the spring constant has de-
clined by about a factor of 2 below its unrelaxed value k„.
Thus the integral of the power spectrum down to
such a frequency is consistent with the prediction
x,„=k~ T /( k „/2 ).

A numerical example will help to put this issue in per-
spective. Consider a 1-Hz oscillator that has damping
characterized by frequency independent /=10 '. In or-
der to measure a mean-square displacement twice the
velocity-damping prediction, it would be necessary to use
an integration time of roughly 10 s. Clearly, the low-
frequency divergence of Eq. (16) is of more formal than
practical concern.

VIII. THERMOELASTIC DAMPING

As an example of anelasticity, consider the mechanism
known as therrnoelastic damping. This can be an impor-
tant source of losses for thin samples in flexure. The
internal degree of freedom involved is the temperature,
which couples to the strain because materials have
nonzero coefficients of thermal expansion. As a wire is
flexed, one side heats and the other cools. Heat flows to
attempt to restore equilibrium, causing the restoring
force from the wire to relax from its initial value to a
smaller equilibrium value.

The theory of this mechanism was given by Zener. '
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He showed that this mechanism is well described by a
model of the form described above, with the parameters

Ea T
c

and

1 Dfo= =2. 16
27T7

Here E is the (unrelaxed) Young's modulus of the materi-
al, a is the linear coefficient of thermal expansion, and c
is the specific heat per unit volume. In Eq. (20), d is the
diameter of the wire, and the thermal diffusion coefficient
D is given by D =~/c, where ~ is the thermal conductivi-
ty. Note that this damping mechanism depends only on
the sort of properties of a material that are tabulated in
handbooks, and not on details of its structure or composi-
tion.

Zener gave the solution not only for wires, but also for
ribbons of rectangular cross section. The sole difference
is that the characteristic frequency is given by

and so the only mechanical loss is the fraction 27rg(co)
per cycle of the mechanical energy stored in the flexing
wire. That is, the relationship between the pendulum loss

and the loss in the wire P is given by

EE,l

~'=~"'E
. +Egrav el

el

Egrav
(22)

where E,l and E „, represent, respectively, the energy
stored in the flexing wire and in the gravitational field. '

Thus a pendulum can have much lower loss than the ma-
terial of which it is made.

This calculation can be made more explicit by
remembering that E,~ /Es„,„=k, ~ /ks„, „. The gravitation-
al spring constant is of course k „„=mg/l for a pendu-
lum of length I. The elastic spring constant for a pendu-
lum in which the mass is supported by n wires is
kd =n&TEI /2l, where T is the tension in each wire, E
is the Young's modulus, and I is the moment of inertia of
the wire cross section. Substituting into Eq. (22), we find
that

m D
2 t2

(21)
p~(co)=p (~)

2mgl
(23)

where t is the thickness of the ribbon. Thus, if the
characteristic frequency is larger than the frequencies of
interest, the thermoelastic damping effect can be reduced
by flattening the suspension member. This occurs at the
expense, of course, of introducing an anisotropy into the
compliance of the suspension.

I have given prominent treatment to the thermoelastic
relaxation mechanism because it sets a fundamental limit
beyond which the losses cannot be reduced, given a
choice of wire material and geometry. Note that ther-
moelastic relaxation is of no consequence for the longitu-
dinal modes of wires (vertical modes of a pendulum),
since the relevant length scale is not the thickness of the
wire but the acoustic wavelength in the wire. (Note also
that if the oscillator in question was a torsion pendulum,
then thermoelastic damping cannot apply, since torsional
motion involves only shear, nowhere expansion or con-
traction. )

Other relaxation mechanisms depend on much more
obscure properties of a specimen. Nowick and Berry'
stress the use of experiments on anelastic behavior as a
probe of the structure of solids.

IX. PENDULUM

The universal choice of a pendulum as the final suspen-
sion stage in gravitational-wave interferometers is based
on the desire to minimize thermal noise. In a pendulum,
the primary "spring" for horizontal motion is the gravi-
tational field, with only a small amount of restoring force
coming from flexure of the wire that supports the mass
against gravity. The gravitational spring is free of loss,

I

x (co) ~m
P

A similar analysis shows that x (co) also scales as n

(24)

X. MULTIMODE OSCILLATORS

The remainder of this paper is devoted to applications
of the fluctuation-dissipation theorem to systems more
complicated than a damped harmonic oscillator. A two-
mode oscillator is perhaps the simplest of such systems.
(Time-domain treatments of the problem have been given
by Wang and Uhlenbeck and by Paik. )

Consider the system shown schematically in Fig. 3.
The equations of motion are

m)x( k)x) f)x) kp(x) xp) fp(x) xp)

m~x~= —k~(x~ —x, )
—f~(x~ —x, )+F .

(25)

It is useful to define the quantities co,
—=k, /m „

co~—:kz/mz, P,:f, lm, , P~= f~/m— z, and p—=—m~/m, .
Transforming the equations of motion into the frequency
domain, we obtain the 2 X 2 matrix equation

It is interesting to consider how the thermal noise in a
pendulum scales with the mass. The explicit dependence,
taking the high-frequency limit of Eq. (16), is
x~(co) ~ m '. But P(cu) [here P (co)] also depends on the
suspended mass. In addition to the explicit dependence
displayed in Eq (23), .remember that T is proportional to
m, and if the wires are kept at a fixed fraction of their
breaking stress, then I ~ m . Thus P ~ m ', and so the

thermal noise in a pendulum scales as

or

CO]+ I COP] CO +P(Cdp+ ICiJPp) P(Np+ I COPp) X

—(coq+i cop~) Cc)~+ l Ci)p~ M

0
F/m2 (26)
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DX=F . (27)

Then it is easy to show that the impedance at the mass m2 is

m, det(D)

ice[co, +imp, co—+p, (co~+icup2)]

where det(D) is the determinant of the matrix D. Its real part is

2l~ ~2+~ (~1~2+8~1~2 2~2~1)+~ (~2~1+P~l~2)]R=
co +co (Pf —2', +2@(P,P2

—co&)+p Pz)+co (co&+2@co,coz+ p co2)

(28)

(29)

This last expression, multiplied by 4k&T, gives the
power spectral density of the thermal noise driving force
applied to m2. In the limit of large frequency, the real
part of the impedance approaches mzP2= fz, and so only
the damping applied directly to m2 matters. If that
damping should be vanishingly small, the dominant term
1s p f ~

ci)2lco

For the case of @=1, co, =co2=1, /3, =10, and
Pz= 10,a graph of the thermal noise power spectrum is
shown in Fig. 4. Note that both of the normal modes
have a low Q, since both modes involve substantial
motion of the more highly damped m, . Yet the thermal
noise motion of m2 in the limit of high frequency is deter-
mined only by the damping coefficient Pz. This is in ac-

cord with the intuitive picture that the thermally driven
fluctuations of m, can be thought of as an input to the
lower oscillator that is filtered in the same way that the
lower oscillator acts as a low-pass filter for vibration of
any sort.

XI. MODES OF CONTINUOUS SYSTEMS

It is sometimes necessary to take account of the fact
that real oscillators are distributed systems, not point
masses and massless springs. A pendulum exhibits trans-
verse vibrational modes in its wire(s), as well as longitudi-
nal modes of its mass. This means that Eq. (16) applied
to the fundamental mode of the pendulum will cease to
apply at a high enough frequency, since eventually the
thermal noise from another mode of higher resonant fre-
quency will dominate.

The character of the solution is especially clear in the
admittance formulation of the fluctuation-dissipation
theorem. The expansion theorem ' states that the
response of a system to an applied force is equal to the su-
perposition of the responses of each of the normal modes
of the system. Consider, for simplicity, a one-
dimensional system with linear mass density p(x). It has
modes 1(„(x),which are normalized according to the rela-
tion
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FIG. 3. Schematic diagram of a double oscillator. A force I'

may be applied to the second mass m &.

FIG. 4. Thermal noise power spectrum for a double oscilla-
tor. Each mass has m = 1 g. The other parameters of the oscil-
lator are as given in the text.
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px mx nx x mn.
0

(30)

y(x, t)= g P„(x)q„(t),
n =1

(31)

where q„(t) is the generalized coordinate of mode n I.ts
equation of motion has the form

q„(t)+co„q„(t)=Q„(t) .

Q„ is the nth generalized force, given by

Q„(t)=f f(x, t)g„(x)dx,
0

(32)

(33)

with f(x, t ) being the force density applied to the system.
In particular, a force I' applied at the end of the system

x =L is represented by generalized forces

Q„=FQ„(L) . (34)

Then we have, from Eq. (31) (after switching to the fre-
quency domain and explicitly including a damping term),

Ff„(L)
co„—cu +tp„(co)co„

(35)

Substituting into Eq. (31), we find

Fg„(L )
y(L)= g

n=1 ~n ~ +t4n(~)~n

Thus the admittance, Y= U /F, is given by

The normal-mode expansion of a particular displacement
y(x, t) is given by

If we neglect the small stiffness of the wire, treating it as
a perfectly Aexible string under tension Mg, then the
squared resonant frequencies are

pr 2
(41)

If, for example, P(~) is constant, then the power spectral
density is proportional to co

It is interesting to consider again how the noise scales
with the mass of the pendulum, as we did above for the
fundamental mode. Here, in addition to the explicit fac-
tor of M, the resonant frequencies have an implicit
dependence on the mass. For a particular mode in a set
of masses of the same aspect ratio, the quantity cuba /c is a
constant, where a is the radius of the mass and c is the
speed of sound. Since M ~a for any given material,
then co„~M . Thus we find x (co) 0- M

This argument assumes that the loss function P„(co)
does not itself depend on the size of the mass. That as-
sumption could be false if the dominant loss mechanism
were some process involving only the surface of the
mass. " In such a case, one might expect the loss to de-
crease as the mass increased, giving a stronger mass
dependence to the thermal noise motion.

The transverse modes of a pendulum wire ("violin
modes") can also be modeled in this way. If we treat the
pendulum as a wire of constant linear mass density p with
a point mass M attached to the end at x =L, then the
normalization equation, Eq. (30), becomes

p
2 x dx+M 2 (40)

icog„(L )

n=1 n ~ +tNn(~)~n
(37)

while the squared amplitudes are

ZpL 1

2M 2 2
(42)

(This is just the superposition of the admittances of each
of the normal modes. )

From the fluctuation-dissipation theorem [Eq. (16)], we
can now find the thermal noise displacement at x =L:

Thus the thermal noise power spectrum is

8k' Tp L 1 P„(co)
m4M'g ~ „, n4

(43)

g'„(L )P„(~)~'„
x (co)=4k~ T g„=i co[(co„—co ) +p„(co)co„]

(38)
Here, as for the fundamental mode of the pendulum, the
loss P„(co) is only a small fraction of the loss of the wire
material itself.

8k~ T " P„(co)
x (co)=

Mao„
(39)

This equation can be applied to the internal oscillations
of the test mass in a gravitational-wave interferometer.
The normal modes of a cylinder with an aspect ratio of
order unity have a complicated mode shape. The prob-
lem can be treated as one dimensional, weighting each
mode by a factor that represents the mean motion of the
central part of the front surface of the cylinder along the
optic axis. All of the modes with circumferential order
greater than zero get zero weight (if the optical axis is
aligned with the center of mass), while several of the
gravest modes have weights of about unity. The factor
g„(L)=2/M, where M is the mass of the test mass. By
design the resonant frequencies co„are usually large com-
pared to the frequency of interest, and so we can write

XII. RECOIL LOSSES

If a low-loss oscillator is suspended from a structure
with low-Q resonances, then the loss at the resonant fre-
quency may be substantially degraded. This effect may
be analyzed in an approximate way by treating the sys-
tern as a two-mode oscillator of the form shown in Fig. 3,
with the resonant mode of the structure nearest in fre-
quency to the mode of the sample playing the role of the
upper oscillator. This is the same model discussed above,
but here we are interested in what happens to the Q of
the lightly damped resonance, instead of in the high-
frequency behavior of the mechanical conductance.
Thus, for the case of recoil damping as well as for a mul-
timass oscillator, the thermal noise far from resonance
may be substantially smaller than would be indicated by a
naive interpretation of the damping of the resonance.
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FIG. 5. Portion of the root locus for a double-oscillator model for recoil damping of a high-Q oscillator by resonances in its sup-

port structure. The high-Q oscillator has roz= 1 s ' and p2=10 '. The structure is modeled as a mode with ro', =2 s ' and f3, =0.02.
The poles of the system are plotted for mass ratio p =0 (infinite mass structure) to p = 1 (oscillator and structure of equal mass). Ad-

jacent points are separated by b p =0.1. For clarity, the real and imaginary axes have been drawn to different scales.

The root locus method, a standard tool for the analysis
of servomechanisms, is useful for the study of the depen-
dence of the poles of any system on the values of parame-
ters of the system. The two-mode oscillator, analyzed
with Laplace transform methods, is characterized by a
transfer function

Q2, recoil Q2 +Q l I
(Col rr22)

(46)

Thus recoil damping is most important when a support
structure resonance is close in frequency to the sample
resonance.

Xp

F
Cij, +p +IsS+/l(rr22+pzs )

(a2I+f3,S+s')(ru2+f32S+s )+ps (ru, +f32S)

(44)

The denominator has the same form as that of a ser-
vomechanism of loop transfer function

XIII. MODEL PENDULUM

In this section I estimate the thermal noise displace-
ment power spectrum for a pendulum of a type that
might be used as the suspension for the test masses in a
gravitational-wave interferometer. A graph is shown in
Fig. 6.

S (CO2+P2$ )
G(s) =P,

2(o2I+f3ls+s )(co2+f32s+s )
(45)

—30.0

where the mass ratio p =
m 2 /m I plays the role of an ad-

justable gain. We are interested primarily in how the Q
of the lightly damped resonance co& is changed by the
recoil of the structure, as parametrized by p. Figure 5

shows the locus of roots of the system as a function of p,
for one choice of the resonant frequencies and damping
parameters.

It is possible to obtain a simple analytic expression for
the recoil-datnped Q of the oscillator, valid when the
structure mass is much greater than the oscillator mass
and when the structure has much more damping than the
oscillator. The method sketched here makes use of the
rules that govern the shape of the root locus in the vicini-
ty of the zero-recoil ("open loop"} poles. The interest-
ing features are the departure angle of the locus from the
oscillator poles, and the relationship between the pararne-
ter p and the distance traveled along the locus. The locus
leaving one of the high-Q poles points almost directly to-
ward the real axis, but has a fractional component of in-
creasing real part of magnitude f3,co2/(cu, ~z) The dis-.
tance traveled along the locus is given by pet)p/2(co& ct)2).

Combining these two results, one can show that
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FIG. 6. Thermal noise power spectrum for the model pendu-
lum described in the text. The solid line shows the thermal
noise of the fundamental pendulum mode. The dash-dotted line

shows the noise from the internal modes of the test mass. The
third curve shows the noise from the modes of the pendulum
wires. Note that for this graph the frequency axis is given in

Hz.
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A test mass in such an interferometer might have a
mass of 10 kg, supported by four tungsten wires having a
length l =30 cm. Each wire has a diameter of 1.2X 10
cm, so that it supports half of its breaking stress. Mea-
surements made by Kovalik and Saulson indicate that

Pu, = 1 X 10 (roughly independent of frequency) is an

upper bound on the losses in tungsten wires. fhe pen-
dulum should then be characterized by

(k,~/ks„, )=5X10 . The resonant frequency is

co„=&g /1 = 2m X0.9 Hz. The thermal noise power
spectral density, for frequencies large compared to the
resonant frequency, is then x (co) = (2.7 X 10
cm /Hz)(2m s '/co)'.

The test mass could be made of fused silica, with a ra-
dius of 10 cm and thickness of 16 cm. This aspect ratio is
chosen to make equal the resonant frequencies of the two
gravest internal modes (of the required symmetry). These
will lie at co& 2=2~X 15.4 kHz. Because the other modes
fall at substantially higher frequencies, we can approxi-
mate the sum in Eq. (38) by its two lowest terms. If the
loss factor appropriate to these resonances is a constant,
2. 5 X 10 (Ref. 26), then the thermal noise is
x (co)=(1.4X10 cm /Hz)(2m s '/co).

The wires of this pendulum have their lowest trans-
verse resonance at about 540 Hz. Below this frequency,
the thermal noise from the wires is dominated by the con-
tribution of this resonance. A calculation of the ratio of
elastic energy to gravitational energy gives P =P„, X 10

The net thermal noise from the wires is
x (co)=(6.7X10 cm /Hz)(2m s '/co).

As Fig. 6 shows, the fundamental mode of the pendu-
lum is the dominant source of thermal noise at low fre-
quencies. Above about 100 Hz, the strongest noise is the
off-resonant thermal excitation of the lowest resonances
of the test mass. The high-Q peaks from the wire reso-
nances will also be visible. In a real gravitational-wave
interferometer, seismic noise will probably dominate the
noise budget at suSciently low frequencies. Photon shot
noise will be more important than thermal noise at the
highest frequencies.
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