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Reformulation of finite-temperature dilepton production
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The multiplicity of e+e or p p pairs produced at finite temperature is expressed in terms of
the photon proper self-energy at finite temperature. The production rate is strongly dependent on
the four-momentum q" of the lepton pair and has a resonance at q-'= ReH.

I. INTRODUCTION

The collision of heavy nuclei at ultrarelativistic ener-
gies produces such a high energy density that for a short
time the system is in local thermal equilibrium. The tem-
perature should be high enough that the quark-gluon
plasma predicted by lattice QCD will be produced. '
One of the best signals will be the emission of opposite-
sign dileptons because the leptons escape the collision re-
gion without reinteracting. They can therefore convey
information about the hot interior of the quark-gluon
plasma.

High-energy lepton pairs are produced by a single vir-
tual y that is created by hadronic collisions. The total
lepton energy q and momentum q are the energy-
momentum q" of the virtual y. There have been a num-
ber of calculations ' of the dilepton multiplicity X for
large q [typically 0.2&(q )' (5.0 GeV]. In that re-
gime the probability amplitude for the virtual y to propa-
gate through the plasma is just the free propagator 1/q .
However the long range of the electromagnetic interac-
tion can modify the propagation. Such effects are com-
mon in nonrelativistic plasmas or in dielectrics, where the
propagation of radiation is strongly dependent on fre-
quency. For a particular wave vector ~q~, resonant prop-
agation usually occurs at some q W

~ q .
The present paper calculates the dilepton multiplicity

X from first principles in order to display the possibility
of resonant propagation in a finite-temperature plasma.
At large T the plasma is composed of quarks and gluons;
at smaller T, of hadrons.

II. DILEPTON MULTIPLICITY

mentary counting shows that integrating over the two-
particle inclusive probability yields the two-particle mul-
tiplicity. " The multiplicity calculated from (2.1) will de-
pend on the specific initial state ~I ) as, for example, in
Drell- Yan calculations which always depend on the
quark structure functions of the projectiles.

By contrast, in ultrarelativistic heavy-ion collisions the
reactions will be so rapid that within a short time
(0.5 —1.5 fm/c) the particles will thermalize. ' Thermal-
ization erases all information about a specific initial state
~I) and replaces it with an ensemble average over all
states ~I ) each weighted by a Boltzmann factor. Conse-
quently the thermally averaged dilepton lepton multipli-
city is

~=gg l&Ft, i, lSII &I"
I F

pl V p2

(2n) (2')
(2.2)

where Z =Tr[exp( PH) ] is —the canonical partition
function. This formula gives the multiplicity in the local
rest frame of the plasma. If the plasma has four-velocity
u„ in the lab, then E, is replaced by Pt u and Z by
Tr[exp( PP u)]. —

For high-energy dileptons produced by a single virtual

y with energy q =E, +E, and momentum q=p&+p2,
the emission amplitude is

&Fi, I, ~S~I&=
' ""' J'd xe'~'"(F~A"(x)~I),

V+2E, 2E~

(2.3)

where A" is the exact Heisenberg field, eo is the unrenor-
malized charge, and lepton spinors are normalized to
uu =2m, uv = —2m. Substituting this into (2.2) gives

Vd'p] Vd p2y /&FI, I, /S I &)'
(2~)3 (2~)3

(2.1)

Inclusive probabilities are not normalized to unity. Ele-

Finite-temperature nuclear matter is produced experi-
mentally by colliding two heavy nuclei. Long before the
collision the two incoming nuclei are in an asymptotic in-
itial state ~I ). If the free lepton states are normalized in
a box of volume V, then the inclusive differential proba-
bility for emission of leptons into dimensionless cells
V d p/(2tr) of phase space, from the reaction
I l, l2+anything, is

X &II ~'(y)IF) ' —f3EI

(2'�) E ) (2tr ) Eq

where the lepton and photon tensors are given by
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(2.5)

(2.6)
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The photon tensor can be simplified by using
EI =EF+q to write the Boltzmann factor in terms of
EF. Then the sum on I can be performed by complete-
ness to give

~pv —Pq y f d3 d4~ iq. (X —y)

F

III. THE PHOTON SPECTRAL FUNCTION

There is an advantage to expressing the dilepton cross
section in terms of the photon spectral function, viz. , the
spectral function can be directly related to the photon
proper self-energy. To do that, first express the real-time,
thermal propagator in coordinate space:

—PEF

X (F~ W ~(x) ~ "(y)~F } ' (2.7}
D""(x)= 2—qri0(t)p" (x) 2—qrio( t)p—"(—x) . (3.1)

Because of translation invariance, the matrix element de-
pends only on the difference x —y. The four-dimensional
integration over x +y gives the total space-time volume
Q. Thus

The Fourier transform gives the dispersion representa-
tion

PV
)

VP

Di v( 0
) f d P &&q) P

q
—o+ig q +cr —ig

JR"'=Qe ~q 2qrp""(q), (2.8) (3.2}

d4x -PEF
pi'"(q) = f e'q'" g (, F~ g "(x)g "(0)~F)2' F

Using (2.10), the imaginary part is

ImD""(q, q) = —qr(1+e ~q )p""(q,q) . (3.3)

(2.9)

0 d ddN
2 p pv( )

—pq0 Pl P2

d x " (2qr) E, (2qr) E~
(2.1 1)

This is the fundamental result. From here on the princi-
pal issue will be how to calculate the spectral function.

The same result can also be expressed in terms of ma-
trix elements of the current. McLerran and Toimela
define the tensor

The tensor p"' (including the single factor of 2m. ) is the
photon spectral function at finite temperature. At T =0
it reduces to the usual spectral function because the only
state ~F) that survives p~00 is the vacuum. For later
purposes it is important to note that

e ~q p""(q,q) =p'"( —q, —q) (2.10)

and that p"' is symmetric in p and v.
Since N is the total multiplicity in the entire four-

volume 0, the quotient is the multiplicity per unit space-
time volume: N/0 =dN /d "x. Combining (2.4) and
(2.8) gives

D""(q)=DiF"(q)(1+n ) DP"'(q—)n, (3.4)

where n = I/[exp(q /T) —I]. The imaginary part of this
gives

ImD""(q)=(1+2n)lmDP'(q) . (3.5)

Comparing (3.3) and (3.5) gives for the spectral function

0
—1 e«'

p""(q,q)=, ImDP"(q, q) .e«' —1

(3.6)

To apply (3.6) one needs to relate DF to the proper (i.e.,
one-photon-irreducible) self-energy IP' using the
Schwinger-Dyson equation

The next task is to relate the propagator D" to the
proper self-energy. At T =0 this is trivial, but for T & 0 a
bit more efFort is necessary because (3.2) has singularities
in all four quadrants of the complex q plane. That part
of the propagator with singularities only in the second
and fourth quadrants obeys the Feynman prescription.
These are related by'

(q'gii', —IIi~)DF"'= g""+aq"q"—/q (3.7)
—PEF

W""(q)=f d x e 'q "g (F~J"(x)J'(0)~F)

(2.12)

where a is a gauge parameter. Because of current conser-
vation q„II"'=0. At T=0 one subtraction renders the
self-energy finite and the T)0 contributions do not
change this. Thus

This is related to p" (
—q) by Maxwell's equations:

eoW"'(q)=2qr(q g" q "q')p p—( q)(q g
" q~q") —. —

II" (q)= 1 — (q g"'—q"q )+ II"',1 2 1

z, z, (3.8)

Therefore (2.11) can also be written

(2.13) where Z3 is the T =0 wave-function renormalization
constant and H~& is a finite function of q", T, and the re-
normalized charge e. Current conservation requires that
it be a linear combination of two conserved tensors

dN 4 Wv(q) d Pi dP2=e0L
d x "

q (2m. ) E, (2qr) E~
(2.14) W~ =II,Py" +II,Pg" . (3.9)

This is essentially Eq. (15) of McLerran and Toimela. In the rest frame of the fiuid the tensors are
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r s
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2

p00 — lql' p0 — q'q'
q'' ' q' ' ' q' Iql

Both four-tensors are orthogonal to q„. The three-
tensors PTrs and PL' are transverse and longitudinal to the
three-vector q', respectively. These tensors are idempo-
tent (Prpr =Pr, pl PI =PI ), orthogonal (PrPL =PL Pr
=0), and sum to g""—q "q "/q . The solution to (3.7) is

Z3 e«'
p" (q) =

0 (prp("+ pL Pg")+ q "q" terms,e«'

ImII
Pg

(q —ReII, ) +(ImH )

(3.12a)

(3.12b)

IV. RESULTS AND CONCLUSIONS

for j= T or L. This automatically satisfies (2.10) because
ImH is an odd function of q .

Z2P)' Z2pg"
Dg'(q) = — — +q"q" terms .

Applying (3.6) to this gives for the spectral function

(3.11)
We may now substitute the spectral function (3.12) into

the dilepton multiplicity (2.11). The terms in (3.12) pro-
portional to q "q"do not contribute when contracted with
the lepton tensor (2.5). The factor Z2 renormalizes the
bare charge, Z3eo =e . Thus

dN 2
d P1 d

=2e2L„„(py"p,+Pg p, )
X (2n) E, (2') E2

0
(e~~ —1) . (4.1)

This is the general result and it depends on the directions of p, and p2. If the data are binned only by the total q, then
integration gives

P1 d P2 =2~~ (pl +p2 'q)L (pl p2)E, E
(4.2a)

2 2

q

1/2
4m1—

q
(4.2b)

Since the lepton mass m is typically much smaller than
q, usually B= l. Contracting (4.2a) with PP" and Pg'
gives, for the differential multiplicity,

dN

x d 4 T LB(2% +% )/(e~~ —1), (4.3a)

—
q 2ImII,

(4.3b)
(q —ReH ) +(ImII, )

For q )0, ImH is negative. ' The combination
2%r+RL enters because there are two transverse modes
and only one longitudinal mode. In a Lorentz frame
where the plasma is not at rest, q in (4.3) should be re-
placed by q-u, where u" is the four-velocity of the plas-
ma. The self-energies are functions of the Lorentz-
invariant variables T, q, and q u. The validity of (4.3)
depends on the wavelength being smaller than the system
size. The mean free path of the y can be much larger
than the system size, which is necessary if it is to carry
information about the hot interior. The larger the mean
free path (=lql/lImHl) becomes, the more nearly A,
approaches 5(q —ReII ). This is the case in geometrical
optics, where q

= lql/n is the only frequency that can
propagate in a media with index of refraction n.

There are some general properties of (4.3) that are
noteworthy. (i) The imaginary parts of the self-energies

describe both the absorption of the virtual y into the
plasma and the creation of the virtual y by the plasma. If
I T and I L are the rates for creation of the transverse
and longitudinal modes, they are related to the self-
energy by'

I =
l
ImH

l

/(e~~' —I),
r, = llmH, /(e)'~ —1),

(4.4)

x, =llmH, l/q2. (4.5)

Consequently for large q the dilepton multiplicity (4.3)
becomes

2I T+I LB
dxd q 12' q

(4.6)

which is the starting point for many calcula-
tions. ' ' ' (iii) The most interesting possibility is
that (4.3) can have a resonance at q =ReII . Precisely at
the resonance

where the absolute value bars take account of the fact
that ImII is negative. (ii) The real and imaginary parts of
H are proportional to the electromagnetic coupling a.
Therefore, for large q the denominators of (4.3b) are
negligible and
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