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The multiplicity of e "e ™ or w*u~ pairs produced at finite temperature is expressed in terms of
the photon proper self-energy at finite temperature. The production rate is strongly dependent on
the four-momentum g* of the lepton pair and has a resonance at g>=Rell.

I. INTRODUCTION

The collision of heavy nuclei at ultrarelativistic ener-
gies produces such a high energy density that for a short
time the system is in local thermal equilibrium. The tem-
perature should be high enough that the quark-gluon
plasma predicted by lattice QCD will be produced.!?
One of the best signals will be the emission of opposite-
sign dileptons® because the leptons escape the collision re-
gion without reinteracting. They can therefore convey
information about the hot interior of the quark-gluon
plasma.

High-energy lepton pairs are produced by a single vir-
tual y that is created by hadronic collisions. The total
lepton energy ¢° and momentum q are the energy-
momentum g* of the virtual y. There have been a num-
ber of calculations* ™ '° of the dilepton multiplicity N for
large ¢? [typically 0.2 <(¢?)!"?<5.0 GeV]. In that re-
gime the probability amplitude for the virtual y to propa-
gate through the plasma is just the free propagator 1/¢2.
However the long range of the electromagnetic interac-
tion can modify the propagation. Such effects are com-
mon in nonrelativistic plasmas or in dielectrics, where the
propagation of radiation is strongly dependent on fre-
quency. For a particular wave vector |q|, resonant prop-
agation usually occurs at some g% |q|.

The present paper calculates the dilepton multiplicity
N from first principles in order to display the possibility
of resonant propagation in a finite-temperature plasma.
At large T the plasma is composed of quarks and gluons;
at smaller 7, of hadrons.

II. DILEPTON MULTIPLICITY

Finite-temperature nuclear matter is produced experi-
mentally by colliding two heavy nuclei. Long before the
collision the two incoming nuclei are in an asymptotic in-
itial state |I). If the free lepton states are normalized in
a box of volume ¥, then the inclusive differential proba-
bility for emission of leptons into dimensionless cells

Vd’zp_{(277')3 of phase space, from the reaction
I—1,l,+anything, is
- Vdip, vdip,
(FL,LISI)|?*—— 2.1
%‘ 1LISLD| (27  (2m)}

Inclusive probabilities are not normalized to unity. Ele-
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mentary counting shows that integrating over the two-
particle inclusive probability yields the two-particle mul-
tiplicity.!! The multiplicity calculated from (2.1) will de-
pend on the specific initial state |I) as, for example, in
Drell-Yan calculations which always depend on the
quark structure functions of the projectiles.

By contrast, in ultrarelativistic heavy-ion collisions the
reactions will be so rapid that within a short time
(0.5-1.5 fm/c) the particles will thermalize.>'> Thermal-
ization erases all information about a specific initial state
|T) and replaces it with an ensemble average over all
states |I) each weighted by a Boltzmann factor. Conse-
quently the thermally averaged dilepton lepton multipli-
city is
~BE; Vdip, Vdip,
Z (@ @n)

N=3S [{FI,T,|S|I)*¢ , (22
I F

where Z =Tr[exp(—BH)] is the canonical partition
function. This formula gives the multiplicity in the local
rest frame of the plasma. If the plasma has four-velocity
u, in the lab, then E; is replaced by P;-u and Z by
Trlexp(—pBP-u)].

For high-energy dileptons produced by a single virtual
y with energy ¢°=E,+E, and momentum q=p; TPy
the emission amplitude is

el Y ,0;

(F1,I,|S|I)= e
v vV 2E2E,

fd4x e TX(F| AMx)|T) ,
2.3)

where A* is the exact Heisenberg field, e is the unrenor-
malized charge, and lepton spinors are normalized to

@u =2m,vv = —2m. Substituting this into (2.2) gives
d3 d3
N=edL, an—tL _CP 2.4
(2m)’E, (2m)’E,
where the lepton and photon tensors are given by
L,=% 2 Uy Y 0a02Y,4
spins
=[p P2 tPopup 1= (PPt m*E,] 2.5)
M= 3 [ dix diye* TV (F| 4H(x)(T)
F I e,
X I AY(p)|F) 7 (2.6)
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The photon tensor can be simplified by using
E,=Ep+4q° to write the Boltzmann factor in terms of
Ep. Then the sum on I can be performed by complete-
ness to give

M‘uvze*ﬂqoz f d3x d4y eiq'lx—y)

F
—BE,
zZ

Because of translation invariance, the matrix element de-
pends only on the difference x —y. The four-dimensional
integration over x +y gives the total space-time volume
Q. Thus

X (F| AMx) A" ) |F) < 2.7)

M= Qe ~Pa"2mpiq) (2.8)
d*x o PEF
p“"(q)_f - "”2<F|A“(x)A (0)|F)=—
(2.9)

The tensor p*” (including the single factor of 2) is the
photon spectral function at finite temperature. At T =0
it reduces to the usual spectral function because the only
state |F) that survives B— o is the vacuum. For later
purposes it is important to note that

B’ prv(q,q)=p"*(—¢° —q) (2.10)
and that p"” is symmetric in ¢ and v.

Since N is the total multiplicity in the entire four-
volume (1, the quotient is the multiplicity per unit space-

time volume: N/Q=dN/d“x. Combining (2.4) and
(2.8) gives
dN d’p, d’p,

=2medL,,p"(g)e P’ 2.11)

d*x (27)VE, 2n)VE,

This is the fundamental result. From here on the princi-

pal issue will be how to calculate the spectral function.
The same result can also be expressed in terms of ma-

trix elements of the current. McLerran and Toimela*

define the tensor

. ;'BEF
we(g)= [d*x e T4% 3 (FlJHx)J0)|F )<
F
(2.12)
This is related to p"*( —g) by Maxwell’s equations:
W (q)=2m(q’g" —q"q )po —q)q’g" 4% .
(2.13)
Therefore (2.11) can also be written
dN _ v d? d3
?,LWW 9 27 TP g
d*x (27)E, (2w)’E,

This is essentially Eq. (15) of McLerran and Toimela.*
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III. THE PHOTON SPECTRAL FUNCTION

There is an advantage to expressing the dilepton cross
section in terms of the photon spectral function, viz., the
spectral function can be directly related to the photon
proper self-energy. To do that, first express the real-time,

thermal propagator in coordinate space:
DM (x)= —2miO6(t)p""(x)—2mi6( —t)p*"*(—x) . (3.1

The Fourier transform gives the dispersion representa-
tion

p*(o,q)
q°—o+in

_p*o,—q)
q0+o—in

=" do
(3.2)
Using (2.10), the imaginary part is

ImD**(g% q)=—m(1+e P2’ )p"(q%q) . (3.3)

The next task is to relate the propagator D*¥ to the
proper self-energy. At T =0 this is trivial, but for 7>0 a
bit more effort is necessary because (3.2) has singularities
in all four quadrants of the complex ¢° plane. That part
of the propagator with singularities only in the second
and fourth quadrants obeys the Feynman prescription.
These are related by

DM (g)=D{(q)(1+n)—DE*(g)n (3.4)

where n = l/[exp(qO/T)— 1]. The imaginary part of this

gives
ImD#*¥(q)=(14+2r)ImDE"(q) (3.5)

Comparing (3.3) and (3.5) gives for the spectral function

L ImDEY(
w oBe0_ lmﬁ-‘qq

(g% q)= (3.6)

To apply (3.6) one needs to relate D to the proper (i.e.,

one-photon-irreducible) self-energy II*¥ using the
Schwinger-Dyson equation
(g’gh —T4)D}'=—g" +aqtq*/q* , (3.7

where a is a gauge parameter. Because of current conser-
vation g, I1""=0. At T =0 one subtraction renders the
self-energy finite and the 7>0 contributions do not
change this. Thus

*(q)=

(g% —gtg")+ 5118, (3.9)
3

1
Z;

where Z; is the T =0 wave-function renormalization
constant and H*j" is a finite function of g#, T, and the re-
normalized charge e. Current conservation requires that
it be a linear combination of two conserved tensors:!>!*

4 =T, PE+ 1, P (3.9)

In the rest frame of the fluid the tensors are
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Os — rs— r. 99 q Z qu
PY=0, P¥=0, PF=—-8"+ Q2 P’”(q)z—i‘—eo—(pTP‘fV‘FPLPfV)‘FQ“QV terms ,
q (3.10) T ePr—1
2
P 19‘ PO:_ 9 Q Prs_ . qrqs _LO X (312&)
) " - ¢l mll, (3.12b)
pPj= ’ :
Both four-tensors are orthogonal to ¢,. The three- ! (qz—ReIIj )2+(ImHj >

tensors P{ and P’ are transverse and longitudinal to the
three-vector g°, respectively. These tensors are idempo-
tent (PyPr=Py,P; P, =P, ), orthogonal (PP, =P; Py
=0), and sum to g**—q*q"/q>. The solution to (3.7) is

Zy Pl
qz_nL

Z, Py
qz‘nr

Dg¥(q)=— +q*q"” terms . (3.11)

for j =T or L. This automatically satisfies (2.10) because
ImII is an odd function of ¢°.

IV. RESULTS AND CONCLUSIONS

We may now substitute the spectral function (3.12) into
the dilepton multiplicity (2.11). The terms in (3.12) pro-
portional to g#q " do not contribute when contracted with
the lepton tensor (2.5). The factor Z, renormalizes the

Applying (3.6) to this gives for the spectral function bare charge, Z;e} =e®. Thus
|
AN L, (PEpr+ PP, ) 4o _dp: /(eﬁq"—n @.1
d*x w T PT T ELPLY 0 0VE, (20)'E, ' '

This is the general result and it depends on the directions of p; and p,. If the data are binned only by the total g¥, then

integration gives

d’p d’ Pz 27
S5 8%p1+p2 =)Ly (p1op2) =5 B (4,4, 7478, » (4.22)
172
2 2
B= |1+ 2"’; [1— 4mz (4.2b)
q q

Since the lepton mass m is typically much smaller than
q*, usually B~1. Contracting (4.2a) with P& and P}

gives, for the differential multiplicity,

dN a 0
——=——=———BQR+R, )/ —1), (4.3a)
d*xd% 127* roor

2
—q“Imll;
R=— — o (4.3b)
(g"—Rell;) +(ImIIj)
For q0>0, ImHj is negative.15 The combination

2R ++77; enters because there are two transverse modes
and only one longitudinal mode. In a Lorentz frame
where the plasma is not at rest, qo in (4.3) should be re-
placed by g-u, where u* is the four-velocity of the plas-
ma. The self-energies are functions of the Lorentz-
invariant variables T, ¢2, and g-u. The validity of (4.3)
depends on the wavelength being smaller than the system
size. The mean free path of the ¥ can be much larger
than the system size, which is necessary if it is to carry
information about the hot interior. The larger the mean
free path ( ~\q1/lImH|) becomes, the more nearly 7
approaches 8(q> —Rell;). This is the case in geometrlcal
optics, where ¢°= lq}/n is the only frequency that can
propagate in a media with index of refraction n.

There are some general properties of (4.3) that are
noteworthy. (i) The imaginary parts of the self-energies

describe both the absorption of the virtual y into the
plasma and the creation of the virtual ¥ by the plasma. If
'y and T'; are the rates for creation of the transverse
and longitudinal modes, they are related to the self-
energy by'’

Ty=|ImI,|/(ef’—1)
. (4.4)
[, =ImIl, |/(eP" —1),

where the absolute value bars take account of the fact
that ImII is negative. (ii) The real and imaginary parts of
Il are proportional to the electromagnetic coupling a.
Therefore, for large g2 the denominators of (4.3b) are
negligible and

R ;=~|Imll;| /g 4.5)

Consequently for large g2 the dilepton multiplicity (4.3)
becomes

2 +T
dN - T L , 4.6)
d*xd*q 127* q’
which is the starting point for many calcula-

tions.* 71016718 (i) The most interesting possibility is

that (4.3) can have a resonance at q2=ReHj. Precisely at
the resonance
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‘7{1‘ i resonance

This is automatically of order 1/a, whereas (4.5) is of or-
der a. The signal this resonance creates for the quark-
gluon plasma is explored in a separate paper.'®
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