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Weak mixing matrix under permutation symmetry breaking
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The two-Higgs-doublet extension of the standard electroweak model is considered. A permuta-
tion symmetry-breaking scheme is proposed and used to calculate the weak mixing matrix up to
second order. The CP-violation factor J and the correction to Bjorken's approximation are then
given. A special case is considered.

I. INTRODUCTION

The generation of the mass spectrum of leptons and
quarks and the related weak mixing matrix is a funda-
mental and unsolved problem in particle physics. One
way to attack this problem is to impose a certain discrete
symmetry on the electroweak model such that no new
gauge bosons appear. It has been considered by various
authors' to extend the permutation symmetry to the
Higgs sector of the standard electroweak model. This as-
sumption is plausible since the standard electroweak
model possesses S, symmetry except the Higgs sector.
Furthermore, under exact S„symmetry the mass spectra
for both quarks and leptons consists of only two levels.
One is (n —1)-fold degenerate, the other nondegenerate.
For three generations of quarks and leptons, the above
spectra give a rather good approximate description. The
recent results from CERN LEP and SLAC seem to rule
out the fourth generation of the neutrino. Therefore in
this article only three generations with S3 symmetry are
considered. The generalization to n generations is
straightforward.

In order to remove the above degeneracy and produce
a plausible form for the weak mixing matrix in a rather
general way, we break the permutation symmetry in two
steps. First, we add one more Higgs doublet to the stan-
dard model and let it break the permutation symmetry
spontaneously. Then it is followed by adding a rather
general small perturbation. In the first step, a satisfacto-
ry mass pattern is obtained. In the second step, the per-
turbation is calculated up to second order and a reason-
able form for the weak mixing matrix is derived. A gen-
eral feature comes out naturally, such as

I

1 ~ V,b
~ V„d ~ V„. The CP-violation factor J is then ex-

pressed in a compact form which is valid up to third or-
der. The corrections to Bjorken's approximation for the
mixing matrix are also given.

In Sec. II, the two-Higgs-doublet extension of the stan-
dard electroweak model is presented, and spontaneous
symmetry breaking is carried out. In Sec. III explicitly
symmetry breaking is introduced, and the perturbative
calculation is worked out up to second order. In Sec. IV
the CP-violation factor is considered. In Sec. V a com-
parison to Bjorken's approximation is made. A special
case is considered in Sec. VI. Finally, we conclude our
work in the last section.

II. SPONTANEOUS BREAKING OF S3 SYMMETRY

The two-Higgs-doublet extension of the standard elec-
troweak model has been used by many authors. In this
article, the two doublets are chosen to have the form

i=1 2.7

The transformations under S3 symmetry are chosen to be

P; —I ', i =1,2,

q
—I

where I' (I 2) is the one-dimensional totally symmetric
(antisymmetric) irreducible representation and I the
three-dimensional reducible representation which is just
the usual permutation between the quark generations.
The SU(2) X U(1) X S3-invariant Lagrangian density then
takes the form

qp a g qiLqidR + g qiLqjdt] 0]+cg e/j/&'V&LqjdR]t'2
l /~j ijK

+ a'gq Lq,„„+b'g q;Lq, „„ it]]+c'g e;JKqLq, „„tt]2+H.c.
ij K

(2)

Under spontaneous symmetry breaking, we have

0 0
iB

P2
(3)

The nonvanishing vacuum expectation value of $2 also
represents the breaking of S3 symmetry and time-reversal
invariance. Under the Hermitian basis of quark fields, 0
is shown to be +sr/2, and the mass matrix for down
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quarks is given by

M„= 8 W 8*
8* 8

A =ap&, 8 =bp&+icp2 .

where D is the diagonal matrix. Since the diagonal ele-
ments of P can always be absorbed into D by removing
from P' the part which is similar to M and is also diago-
nalized by U, therefore the most general form for P is

The mass matrix for up quarks can be obtained by simply
replacing a, b, and c in (4) by a', b', and c'. The mass ei-
genvalues are found to be

with

~P,, ~
«m, —m„.

mz = 3 —ReB —&3 ImB,

m, = 3 —ReB+ v'3 ImB,

mb A +2 ReB,

with similar expressions for up quarks. The correct mass
pattern is clearly shown in (5). We note that the nonvan-
ishing ImB comes from the second Higgs doublet. The
corresponding weak mixing matrix is just the unit matrix
which may be considered as the zeroth-order approxima-
tion in a certain perturbation scheme.

III. EXPLICIT S3 SYMMETRY BREAKING

In order to derive a reasonable weak mixing matrix, we
introduce a perturbative scheme in this section. We write
the mass matrices in the form

The zeroth-order eigenstates are then chosen to be the
eigenstates of M„with eigenvalues m„, m„and m„re-
spectively, and are denoted by u, c, and t . The prop-
erly normalized eigenstates corrected up to the nth order
are related to the zeroth-order ones as follows:

u u 0

p&n& o

to
L

The weak mixing matrix V calculated up to the nth order
of P is then given by

V&n) p&t? ) popo& p&n)
??

where U„= Ud = U".
The perturbative calculations are straightforward. The

first-order result is

U M„U =D„+P,
UM U =Dd,d

(7)

M„=M„+P',

Md =Md,

where M is obtained from the spontaneous symmetry
breaking of SU(2) XU(1) XS(3) as given by expression (4)
and P' is a small perturbation which represents an expli-
cit breaking of S3 symmetry. We first diagonalize M by
transformation U as before

V'"= D

DQ EQ

1

F

with

Pie E=
m, —m„' mt m~

Up to second order, the result is

F= Pz3

m] mq
(12)

I —(ID I'+ IE I')/2 D*+E "F/R — E*+F*D'/(—1+R)
V( }= D EF*(1+R)/R—1 —(iD i

+ iFi )/2 F* E'D(1+—R)—
E+DFR/(1+R ) F+D*ER 1 —(iEi + iFi )/2

(13)

where

m, —m„R=
mt m~

(14)

as can be seen from expression (13). This result is in good
agreement with the experimental data.

IV. THE CP-VIOLATION FACTOR

We note that the above V ' and V satisfy the unitari-

ty condition up to the first and the second orders, respec-
tively. If P,2, P», and Pz3 are about the same order of
magnitude, then from expressions (12) we have

The CP-violation factor J defined by

Im( V, V„, V, V„, ) =J g e „e,,„
pk

(17)

owing to m, & m, )m„. This then implies

1& V,b& V„d & V„, (16)

can be expressed in various forms. For example, in
Maskawa-Kobayashi form for the weak mixing matrix, J
takes the expression

J=S)S S3C/ C2C3Sg,
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where S, =sin8, , etc. In our second-order expression (13)
for the weak mixing matrix, it can be easily shown to
have the form

J=Im(DE*F) . (18)

We note that since the third-order state shift contributes
only to the forth-order term in J, the expression (18) for
the CP-violation factor is still valid even when the third-
order state shift is considered.

(19)

U. 8JORKKN'S APPROXIMATION

It is well known that all weak mixing matrix elements
can be expressed in terms of their independent magni-
tudes up to certain ambiguities. ' Bjorken proposed an
approximate scheme to determine all phases of general-
ized Kobayashi-Maskawa matrix elements from their
moduli. The basic assumption in this scheme is that ma-
trix elements decrease rapidly with increasing generation
change. For three generations, it gives the approximate
relations

V12 V22 + V11 V21

V23 V33 + V22 + V32 V21 V
(23)

The above expression can then be used in all phase con-
ventions. Since R is just the ratio of the two level dis-
tances in the —', charged quark mass spectrum as defined

in (14), we then have

m mt c
V13 V23

This gives the upper bound for the top-quark mass:

m, (57m, .

(24)

(25)

We also note that the CP-violation factor J now takes the
form

The above expression (22) is valid only in the Hermitian
basis for the quark mass matrix. Since this relation is ob-
tained from the ratio of two unitarity relations expressed
up to second order in our scheme, the corresponding
rephasing-invariant form can be readily obtained:

cd us~ ts cb (20) J=R ImD E*
V„b+ V,d

——V„,V„. (21)

We see that our first-order result (11) satisfies the above
relations automatically except the term Vus V„which
amounts to second order in the present perturbative
scheme. Our second-order result (13) reproduces the re-
lation (21) but gives corrections to expressions (19) and
(20). These corrections can be read out directly from ex-
pression (13) as follows:

v„„=1-(ID I'+ IE I') r2,
v„= 1 —

( ID I'+ IFI') i2,
v„=l —(IEI'+ IFI')n,

V,d = —V„*,—EF*,
(21')

We note that the correction terms to the Bjorken approx-
imate relations are all second order in our scheme. Since
D, E, and F correspond to the interactions between
different generations, these correction terms in (21') are
just the neglected higher-generation-changed ones in
Bjorken's approximation. Therefore the present pertur-
bative scheme can automatica11y produce the higher-
generation-changed corrections to Bjorken's approxima-
tion.

VII. CONCLUSIONS AND DISCUSSIONS

In this article, we extend S3 symmetry to the Higgs sec-
tor of the extended standard electroweak model which
contains two Higgs doublets. Symmetry is then broken
in two steps. The first step is to break symmetry spon-
taneously, and a reasonably good quark mass pattern
which is given by expression (5) is thus obtained. The
second stage of explicit symmetry breaking is then fol-
lowed by introducing a small perturbation which assumes
a most general form. The weak mixing matrix is then
calculated up to second order which is given in expres-
sion (13). The first-order result simply reproduces
Bjorken's approximate relations for the weak mixing ma-
trix, while the second-order result gives the corrections to
them. The CP-violation factor is also expressed in a sim-
ple form (18). A relation which expresses the top-quark
mass in terms of the weak mixing matrix elements is de-
rived and is given in (24).

We note that the complex parameters D and F can al-
ways be chosen to be real by redefining the phases of the
quark fields without changing the form of the weak mix-
ing matrix (13). In this choice, we have at most five pa-
rameters and the CP-violation factor becomes

—DF ImE .

VI. A SPECIAL CASE

In this section, we consider a special case in which we
assume that the matrix elements of the perturbation P are
equal to each other if they have the same generation
change. That is, P, z =P23. Then from expression (12) we

have F=RD. This in turn implies

A rough estimate of the magnitudes of these parameters
can be obtained by comparing them to Wolfenstein's
form. " It gives

with k. =0.22.

V12+ Vz1

V23+ V32
(22)
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