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The energies, fine-structure splittings, leptonic widths, and dipole electromagnetic transition rates
are calculated for the Y and charmonium systems using a potential model based on Richardson's in-

terpolating form for the running coupling constant. Using the definitions of the spin-dependent po-
tentials of Eichten and Feinberg and arguments based on lattice gauge calculations, we have deter-
mined the long-range spin-orbit potential from Gromes s consistency condition. It is also shown

that the sign dift'erence between the long-range spin-orbit potential and the perturbative spin-orbit
potential is important in explaining the measured values of the fine-structure ratio in both the Y and

charmonium P states. The question of whether the parameter A of Richardson's potential is sup-

posed to play the role of the universal QCD scale is addressed. It is argued that the agreement of
the Y and charmonium leptonic widths with experiment is convincing support for Richardson's
form for the running coupling constant since these numbers reflect directly the values of the various
S-state wave functions at the origin. Certain problems with the magnitudes of the hyperfine split-

tings and dipole transition rates of charmonium are discussed.

I. INTRODUCTION

By careful consideration of the leading QCD relativis-
tic corrections, Eichten and Feinberg' (EF) were able to
derive expressions for the spin-dependent potentials of an
interacting heavy-quark —antiquark (QQ ) pair. They ex-
pressed the two spin-orbit potentials, the spin-spin poten-
tial, and the tensor potential in terms of the expectation
values of bilinear combinations of the color-electric and
color-magnetic fields. Evaluating EF's expressions in the
context of a lattice gauge calculation, Huntley and
Michael ' and Campostrini, Moriarity, and Rebbi
presented important evidence that one of the spin-orbit
potentials supported a long-range, or nonperturbative,
component. They did not see any evidence of long-range
behavior in the other spin-orbit potential, the spin-spin
potential or the tensor potential. Thus, from lattice
gauge calculations, one may infer that the behavior of
these potentials is dominated by short-range components,
where perturbation theory should be an adequate approx-
irnation. Such an inference is consistent with the hy-
pothesis of electric confinement, ' where one assumes that
the color-electric field alone is responsible for the nonper-
turbative effects associated with quark confinement and
hence that perturbation theory is an adequate tool to
treat color-magnetic effects.

In an effort to create a context for understanding why
this particular spin-orbit potential has a long-range com-
ponent, I have ' suggested a generalization of the con-
cept of electric confinement to that of electromagnetic
confinement. This new terminology is intended to convey
the essentials of an observation made by Buchmuller,
that is, color electromagnetic effects would be expected in
the center-of-mass frame because of the rotation of the
tube of color-electric flux responsible for confining the

QQ pair. The new terminology is not intended to suggest
that the magnetic field has long-range correlations with
itself, since this would be inconsistent with the results of
lattice gauge theory.

As explained in detail in Ref. 6, one can use Gromes's
consistency condition ' to determine the nonperturba-
tive spin-orbit potential. This method has a solid founda-
tion in QCD, in contrast with an approach where one
makes an ad hac assumption about the nature of the
confining potential. " ' It is interesting to note that the

argument based on Gromes's consistency condition leads
to the same destructive interference between perturbative
spin-orbit effects and long-range effects as the ad hoc as-
sumption that the confining potential is a Lorentz scalar.
In Ref. 6 it was pointed out that this destructive interfer-
ence is important in reducing the fine-structure ratio r
below 0.8, the value resulting from one-gluon exchange
(OGE). Observations" of the fine-structure ratio yield
r =0.60—0.70 for the 1P and 2P states of the Y system
and r =0.45 —0.50 for the 1P states of charmonium. All
of these values are below the OGE value, which is impor-
tant experimental support for the destructive interference
between perturbative and nonperturbative spin-orbit
effects.

Most of the successful calculations of the properties of
heavy quarkonium" ' ' have some mechanism for
softening the strong-interacting coupling constant o., at
small distances, as required by the hypothesis of asymp-
totic freedom, and include the effects of a linear confining
potential. One may obtain the characteristic logarithmic
dependence of the running coupling constant on momen-
turn transfer, namely,

a, ( q I)= 12~
!33 —

2n& )ln(
I q

'
I
&~')
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by summing the contributions of all the vacuum-
polarization chain bubble graphs as a geometric series. '

In Eq. (1.1) the quantity nf denotes the number of quark
degrees of freedom and A the QCD scale parameter.
Richardson made the clever observation that if one
solved the singularity problem which arises with Eq. (1.1)
as values of lql ~A by making the substitution

Iq'I
I
q'I~1+

A A
(1.2)

then the momentum-transfer dependence of the potential
at small spacelike momentum transfers could be inter-
preted as that of a linear confining potential.
Richardson's potential contained only a single parameter
A since the coefficient of the linear term could be ex-
pressed as gm. A /(33 —2nf). However, the substitution
of Eq. (1.2) blurred the connection between the parameter
A and the QCD scale parameter, which should be a
universal constant for all heavy quarkonium systems. '

Richardson's initial calculations showed that his poten-
tial had considerable promise in accounting for the loca-
tion of the spin-averaged levels of charmonium and the Y
system when incorporated into a nonrelativistic model.

In a calculation where they explored the effects of rela-
tivistic corrections, Moxhay and Rosner' (MR) relaxed
the restriction contained in the relationship between the
string constant and A of Richardson's potential and
treated the string constant as a parameter. By carefully
taking the nonrelativistic limit of the Dirac spinors, they
obtained explicit expressions for the spin-dependent po-
tentials. Since the lattice gauge results of Campostrini,
Moriarity, and Rebbi were not available to MR, it was
unclear to them which of the spin-dependent potentials
would support long-range contributions. To restrict the
effects of the transverse degrees of freedom to short dis-
tances, they introduced a damping factor. MR also care-
fully considered the effects of spin-independent relativis-
tic corrections.

Improvements in the precision of the measurements of
the fine structure of the Y system and a better un-
derstanding of the implications of Gromes's consistency
condition for potential model calculations present an op-
portunity to subject Richardson's form for the potential
to a more careful scrutiny. In particular, if we assume
that perturbative QCD is adequate to treat color-
magnetic effects, then the expectation values of the per-
turbative spin-orbit, spin-spin, and tensor potentials are
measures of the accuracy of the wave functions generated
with Richardson's potential. It is the purpose of this
work to add that dimension to the experimental tests of
Richardson's parametric form for the running coupling
constant. We will also present results for the leptonic
widths and the dipole transition rates of the Y system and
charm onium.

Some of the goals of our present calculation can be
summarized as follows.

(1) To show that Gromes's consistency condition can
be used to determine the nonperturbative spin-orbit po-
tential regardless of the form of the central potential.

(2) To emphasize the importance of the fine-structure
splittings as measures of the accuracy of the wave func-

tions generated by Richardson's parametrization of the
running coupling constant.

(3) To explore the question of whether the parameter A
used in Richardson's parametrization of the running cou-
pling constants plays the same role as that of the univer-
sal QCD scale parameter.

(4) To see whether including the spin-independent rela-
tivistic corrections to the central potential makes the cal-
culation with Richardson's running coupling constant
more or less successful.

II. THE POTENTIAL MODEL

Our calculations are based on a Hamiltonian that con-
tains a kinetic energy operator K, a central potential E (r)
and the spin-dependent potential VsD,

' that is,

H =K+E(r)+ VsD(r) . (2.1)

We follow the spirit of earlier calculations done with non-
relativistic potential models "' and keep only three
terms in the expansion of the kinetic energy operator of a
quark-antiquark pair in mutual orbit in their center-of-
mass frame, namely,

K=2m+p /m —p /4m +. (2.2)

The major part of our central potential is based on
Richardson's interpolating form for the running coupling
constant:

a, ( q I)= 12~
(33—2nf )»(I+ lq'I ~A')

(2.3)

V(r) = Ar — f (Ar),
Sm.

(33 2nf )r—
where

(2.4)

f()4jsintx
VT' 0 X

1 1

2
dx

ln(1+x ) x
(2.5)

By using contour deformation techniques in the complex
plane, it is straightforward to verify that f (t) may be
written

—yl

f(t)=1—4
ln (y —1)+m

(2.6)

which is more convenient for the purposes of numerical
computation.

From the form of Eq. (2.4), it is clear that the two lead-
ing terms in the large-r behavior of the potential are
given by

8~)V(r)= dr ——— + 0 ~ ~

(33—2nf }r
(2.7)

This form has the interesting feature that it leads to a
I q I

behavior for the potential at small spacelike
momentum transfers, which may be interpreted as a
linear confining potential, and the correct logarithmic
dependence at large values of lq I. However, we have
found that allowing the string constant 3 to be a parame-
ter opens up the prospect of better agreement with exper-
iment. Thus, our form for the central potential is
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The powers of r that appear in Eq. (2.7) are consistent
with one's expectations based on the results of recent lat-
tice gauge calculations. ' ' However, the magnitude of
the coefficient of the Coulomb term in Eq. (2.7) is 0.93
(assuming nf =3), which is considerably diflerent from
coefficient ( -0.24) obtained in these lattice gauge calcu-
lations. This difference is probably not a cause for seri-
ous concern since the lattice gauge calculations have been
done in the quenched, or pure gauge, approximation
where one does not consider the effects of vacuum polar-
ization. In fact, using a model developed by Poggio and
Schnitzer to consider the effects of vacuum polariza-
tion, Olsson and Suchyta ' have shown that it is
reasonable to expect a modification of the coefficient of
the Coulomb term by at least a factor of 2. Moreover,
since the magnitude of the effect in the Poggio-Schnitzer
model depends on the fourth power of the effective mass
of the quark-antiquark pair in the vacuum polarization
loop, modification of the Coulomb coefficient of the
pure gauge calculation by a factor larger than 2 is cer-
tainly possible. In this regard, we also note that the re-
sults of the recent lattice (pure) gauge calculation of
Ding, Baillie, and Fox suggest that the earlier pure
gauge results for the inverse r term were a factor of 2 too
small.

The central potential includes spin-independent (SI)
corrections as well as our modified form of Richardson's
potential, that is

E(r) = V(r)+ Vs, (r), (2.8)

To obtain the correct form for the SI corrections, one has
to be careful to take the nonrelativistic limit (NRL) in a
manner that is consistent with his/her assumptions about
the nature of the confining potential. As stated above, we
have assumed that the effects of confinement arise mainly
from the color-electric degrees of freedom, including only
those color-magnetic effects necessary to satisfy Gromes's
consistency condition. Thus, we keep the parts of the SI
correction that arise from the NRL of the time corn-
ponents of the Dirac spinors separate from those that
arise from the space components. In fact, as Olsson and
Miller point out, to consistently incorporate the effects
of a Lorentz invariant interaction in the center-of-mass
frame, one must also consider the effects of small tirnelike
momentum transfers in addition to the usual spacelike
momentum transfers. Considering all of these factors,
our form for the SI correction is

V'V 1
Vs, = + 2(g rg')p'+2ig "—rp.

4m 4m

tion theory is adequate to treat the transverse degrees of
freedom, then the expression for g is that from one-gluon
exchange, that is, —4a,. /3r and the SI correction takes
the form

7' V

4m

4n, 4a, g 2o. ,
3m~r 3m r ~r 3m r

(2.10)

We have verified that Eqs. (2.9) and (2.10) agree with the
relevant parts of Eq. (7) in Moxhay and Rosner' when
allowance is made for the difference between their way of
handling the transverse degrees of freedom and ours.

We assume that all of the relativistic corrections are
small enough to be calculated with first-order perturba-
tion theory. Thus, our unperturbed Hamiltonian is given
by

Ho=2m +p Im + V(r) . (2. 1 1)

Following the procedure outlined in Ref. 32, this Hamil-
tonian is used as the basis of a numerical solution to the
Schrodinger equation which generates unperturbed ener-
gies Eo and wave functions fo. The energies are then
corrected with the expression from first-order perturba-
tion theory, that is,

E(nLJ) =Eo(nL)+ ( JMLSn H' JMLSn ), (2.12)

where n is the radial quantum number, L is the orbital
angular momentum, J is the total angular momentum,
and S denotes the spin. The perturbation H' includes the
spin-independent corrections of Eq. (2.10), the spin-
dependent potential of Eq. (2. 1) and the last term of Eq.
(2.2).

In applying Eqs. (2.11) and (2. 12) to the calculation of
the energies and splittings of the Y system, we will find it
possible to obtain an excellent fit to the data without add-
ing an arbitrary constant to the potential. However, our
calculations of the properties of charrnonium will not be
as successful, and we will find it necessary to add an arbi-
trary constant to V to attempt to improve the agreement.

Finally, a cornrnent about the limitations of using first-
order perturbation theory. We cannot expect agreement
with experiment to be any better than the size of the
second-order perturbation theory corrections. Using the
measured fine-structure splittings as a way of assessing
the strength of the matrix elements and the spacing be-
tween levels as a means of estimating the energy denorni-
nators, we can make a rough estimate of the size of the
second-order corrections. Hence,

2g+ —,
'V' (g+rg')+ L

(2.9)

AEI, '=-(50 MeV) I500-MeV=5 MeV,

V'E,'-'=(100 MeV)-/500 MeV=20 MeV,
(2.13)

where V is the potential of Eq. (2.4), L is the angular
momentum operator, and g is the potential resulting from
the exchange of transverse gluons. The momentum and
angular momentum operators in Eq. (2.9) operate only to
the right. The operators V in Eq. (2.9) result from fac-
tors of the momentum transfer and thus operator only on
the potentials. If we assume that lowest-order perturba-

where the first result pertains to the Y system and the
second to charmonium. Although the approximations
used to obtain these two numbers are very crude, they are
nevertheless useful as rough guides to the kind of accura-
cy we may expect. Thus, whenever our results for the Y
system are within about 5 MeV of the experimental num-
bers, we shall speak of good agreement with experiment.
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The 20-MeV result of Eq. (2.13) can be used for the same
purpose in evaluating our calculated results for char-
monium.

III. SPIN-DEPENDENT POTENTIALS

Using their approach for treating relativistic correc-
tions, EF found' that the spin-dependent potential of a
heavy Q-Q pair could be written as the sum of three
terms, each of which contains a factor of m, that is,

VsD = dV] de S] S2+ + + V4
m r 2 dr dr dr 3m

+ 2(r S,r S2 —
—,'S, S2)V3,

m
(3.1)

where S=S]+S2 V& and V2 are the spin-orbit potentials,
and V3 and V4 carry the radial dependence of the spin-
spin and tensor potentials. EF presented explicit expres-
sions for each of the spin-dependent potentials in terms of
expectation values of bilinear combinations of color-
electric and -magnetic fields and the Wilson loop factor.
In particular, the potentials V3 and V4 involve correla-
tions of the color-magnetic field at different points in
space and time, and the potential Vz involves correlations
of the color-electric field with the color-magnetic field at
different points in space and time. However, the poten-
tial V~ has a different qualitative behavior; its bilinear
combination of color-field operators is evaluated at the
same point in space. Thus, the assumption that all
color-magnetic interactions are short ranged and amen-
able to treatment by perturbation theory is not a barrier
which prevents the potential V, from developing a non-
perturbative component. Indeed, the lattice gauge calcu-
lations of Michael, Campostrini, and co-workers
shows that only V& has a long-range part.

The central potential and spin-orbit potentials must
satisfy Gromes's consistency condition

[V(r)+ V, (r) —V2(r)]=0 .
d
dr

(3.2)

V, (r)= V, (r) —V(r), (3.3)

and the spin-orbit contribution to Eq. (3.1) can be written

LS dVz 1 dV
dr 2 dr

(3.4)

Since all of the correlation functions appearing in the
definitions of V2, V3, and V4 involve two different points
in space and at least one factor of the magnetic field, we

In Refs. 6 and 7, I have argued that since only V and V&

have nonperturbative parts and since Eq. (3.2) is satisfied
by each order of perturbation theory, Eq. (3.2) can be
used to determine the nonperturbative part of V, . How-
ever, this argument must be modified when Richardson's
form is used for the running coupling constant because it
is no longer clear how to carry out the separation into
perturbative and nonperturbative parts. Thus, we use
Gromes's relation to determine V, directly in terms of V
and Vz, that is

will assume that perturbative QCD suffices to determine
these potentials. Under this assumption the form of Eq.
(3.4) makes it clear that the nonperturbative effects in the
spin-orbit potential contribute with a sign opposite to the
perturbative sects U. sing the lowest-order expressions to
consider the color-magnetic effects, we have that'

4 o., 4o.,V= ——,V=
3 r r

V4 =27-' V2 = a5(r),
(3.5)

4e,.+,(r S,r.S~
—

—,'S, S~) .
m r

(3.6)

It is instructive to consider Eq. (3.6) in the OGE limit.
Then the central potential is also given by the lowest-
order perturbation theory limit, V(r)~ —4a, /3r. The
matrix elements of both the spin-orbit and the tensor po-
tentials are thus those of r . In the OGE limit, the
fine-structure ratio r, which is defined by

M('P2) —M( P, )

M( P, )
—M( Po)

(3.7)

is equal to 0.8, a universal constant for all P states. Be-
cause of the minus sign in the first parentheses of Eq.
(3.6), long-range spin-orbit effects tend to reduce the size
of the spin-orbit matrix element. The effect of this reduc-
tion is to give a value of r less than the OGE value. Thus,
the observed values of r in charmonium and the Y system
find a very natural explanation in the destructive interfer-
ence between the nonperturbative and perturbative spin-
orbit contributions.

IV. RESULTS

Our calculation of the energies, leptonic widths, and
dipole transition rates of the Y system requires values for
four parameters: A, m, o.„and A. We first consider
variations of A and 3 and concentrate on fitting the
differences between the centers of gravity of the 1P and
2P states and the 1 S] state. These energy differences
also presuppose a value of the perturbative coupling con-
stant o., since this parameter determines the strength of
the triplet-singlet splitting according to Eq. (3.6). We
select a value of n, which gives reasonable values for the
fine-structure splittings of the P states. After choosing
o., =0.33, we determined that A=0.431 GeV and that
3=0.159 GeV . Then the mass was varied to obtain

where n, is the coupling constant that controls the sizes
of the fine-structure and hyperfine-structure effects. Un-
like the expression of Eq. (2.3), it does not run. It is the
same coupling constant that appears in Eq. (2.10) since
there we were careful to separate the effects of the mag-
netic degrees of freedom from those of the electric de-
grees of freedom. Thus, the spin-dependent potential is
given by

L'S 8 +s 1 d V 32~+s
V + S, S25(r)mr3r2«9m~
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agreement of the 1 S, state with the measured value of
9460 MeV. This yields m =4.896 GeV.

Our value of A is about 8%%uo larger than Richardson's
original value of 398 MeV. Our value for 3 is about
10% smaller than the value one would expect from using
the expression 8m A /(33 —2n&). Our value of A is about
6% smaller than that of Moxhay and Rosner. ' The
difference between our value and MR's can probably be
traced to different ways of handling the effects of the
transverse QCD degrees of freedom.

Our results for the energies of the Y system are listed
in the fifth column of Table I. There they are compared
with the results of our earlier calculation than I did, the
results of Gupta, Repko, and Suchyta' (GRS), the results
of Schmitz, Beavis, and Kaus' and with experiment.
The agreement with experment is excellent. In no case
does the difference between the calculated results and ex-
periment exceed the 5-MeV criterion that we discussed at
the end of Sec. II. The close agreement of the fine-
structure splittings with experiment, and especially the
agreement of the calculated values of r with the measured
values, is an important indication of the validity of our
treatment of the color-magnetic effects and our means of
selecting the long-range part of the spin-orbit potential.

The comparison with my earlier calculation is of spe-
cial interest. This earlier calculation was based on a
linear confining potential and all of the perturbative dia-
grams to the full one-loop radiative level. There the ex-
pression for the running coupling constant included only
the lowest-order vacuum-polarization corrections, that is,

3a n
a, (r }=a, 1 — + (33—2n }(inner +yz )

2~

(4.1)

where p is the renormalization scale and yz is Euler's

constant. Our present results show improvements over
the full one-loop results in two important respects. Our
present values for the fine-structure splittings are larger,
and in the 1P case closer to experiment. The discrepancy
of about 17 MeV in the 2 S~ energy of the earlier calcu-
lation has been reduced to an acceptable level of about 4
MeV.

Some of the most pronounced differences between the
two calculations arise from the values of the radial wave
function at the origin. The present calculation yields a
value of ~R (0)~ =7.48 GeV', which is to be compared
with the earlier result ~R (0)

~

=5.00 GeV'. This 50% in-
crease has important implications for the leptonic widths
listed in the fifth column of Table II. These results were
obtained with the formula

4A eg 16',r„=, IZ(0)l' 1—
M2(QQ ) 3' (4.2)

where a is the fine structure, e& is the quark charge, and
M denotes the mass of the Q-Q state that decays. The
factor in the large parentheses arises from the radiative
corrections and the value of the coupling constant a,
there requires some further consideration. We do not ex-
pect that its value should be the same as that describing
the color-magnetic scatterings of Q-Q pairs, as in Eqs.
(3.5} and (3.6), because the four momentum transferred in
the annihilation is much larger and timelike. Thus, we
choose a, =0.18 for Eq. (4.2), a value from the analysis of
quarkonium decays. ' Such a value reduces the lepton-
ic width of Eq. (4.2) by about 30%. Leptonic widths
from my earlier one-loop calculation are listed in the
fourth column of Table II. These values were not
corrected for the radiative correction of Eq. (4.2). Thus,
including the radiative corrections would reduce these
values about 30%. Since the radiative correction should

TABLE I. Energies of the low-lying S and P states of the Y system (MeV). The parameters used for the present calculation are
A=0.431 GeV, A =0.159 GeV, a, =0.33, and m=4. 896 GeV.

State

1 'Si (Y)
1 'So (gb )

2'S
2 'So
3 -'S,

3'S,

1P',
1 'Po
1 'Pl (hb)
2 P2

2 'Po

~1P

SBK (Ref. 14)

9461

10023

9908
9880
9849

10 292
10 270
10 245

0.90
0.88

Fulcher (Ref. 6)

9460
9420

10006
9983

10 355
10 336

9908
9895
9874
9901

10 268
10256
10239
10 262
0.63
0.63

GRS (Ref. 13)

9460
9412

10016
9993

10 358
10 340

9914
9894
9862
9900

10 270
10 254
10 229
10 259
0.65
o.es

Fulcher
(present work)

9461
9369

10019
9975

10 357
10 324

9912
9893
9865
9900

10 270
10 254
10 232
10 261
0.67
0.70

Expt.

9460.3+0.2 "

10023.3+0.3

10 355.3+0.5

9913.2+0.6
9891.9+0.7
9859.8+ 1.3

10 269.0+0.7
10 255.2+0.4
10 235.3+1.1

0.66
0.69

"'Particle Data Group (Ref. 17).
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TABLE II. Leptonic widths of the low-lying S states of the Y system (keV).

State

Y(1S)

MR (Ref. 18) GRS (Ref. 13)

1.21

Fulcher (Ref. 6)

1.32 '

Fulcher
(present work)

1.37

Expt.

1.34+0.05

Y(2S) =0 41
1S

0.55 0.65 ' 0.58 0.60+0.04

Y(3S) =0.29
1S

0.41 0.50"' 0.41 0.44+0.03

'Does not include the radiative correction.
"Particle Data Group (Ref. 17).

be included in the leptonic width formula, a comparison
of columns 4 and 5 of Table II allows one to assess the
relative merits of the modified Richardson's potential of
Eq. (2.4) and the potential used in Ref. 6 in producing
reasonable values for the wave function near the origin.
The measured leptonic widths give a clear preference for
the results obtained with the modified Richardson's po-
tential. For the purposes of comparison, leptonic widths
from the recent GRS calculation and MR's calculation
are also listed in Table II ~

The rather large difference in the values of ~R (0)~ be-
tween these two calculations can mostly be traced to a
problem with the running coupling constant of Eq. (4.1).
As one would expect, the expression in the large
parentheses there softens the coupling constant whenever
the factor (lnpr+yz) is negative. However, for very
small values of r, the coupling constant is softened too
much, or "oversoftened" as I have said earlier, ' ' be-
cause the expression in large parentheses can change sign.
In the region of oversoftening, the perturbative central
potential becomes repulsive and reduces the wave func-
tion at the origin. Clearly, the change of sign in Eq. (4.1)
is an artifact of the use of the lowest-order vacuum-
polarization correction because it does not occur when
one includes the next term or when one uses a geometric
series to sum all the contributions of the vacuum-
polarization bubble graphs.

Our result for the Y energies presented in Table I agree
with experiment as well as those of Gupta, Radford, and
Suchyta, ' whose work was built upon a tradition of ex-
cellent agreement between theory and experiment. '
Our results for the leptonic widths are slightly closer to
the measured values than those of GRS. It is instructive
to compare the theoretical underpinnings of GRS's latest
calculation with those of the present work. Concentrat-
ing on the effects of hard gluons, these authors were able
to eliminate some of the troublesome singular effects of
the perturbative potentials by considering improvements
to the usual quasistatic approximation. ' Since their
improvement of the quasistatic approximation is based
on observations about the softening of the running cou-
pling constant at high-momentum transfers, GRS's re-
cent calculation includes some of the effects of higher-
order renormalization-group improvements of the run-

ning coupling constant. In this sense, the improvements

of their most recent calculation over some of their earlier
work are quite similar to our own progress in going from
the running coupling constant of Eq. (4. 1) to that of Eq.
(2.3). Our results for the fine-structure splittings are
somewhat smaller than those of Schmitz, Beavis, and
Kaus' and are closer to the measured values than theirs.
Our predictions for the locations of the 1D states are list-
ed in Table III, where they are compared with results of
Kwong and Rosner and of GRS.

Our results for the dipole transition rates presented in
Table IV were obtained with the expressions

I ( 5, P )= —',
- a &eco„l(f~r &)I',

I ('PJ 'S, )= ,'aegean'„—(f~r~i)
~

(4.3)

(4.4)

where co& denotes the energy difference of the initial and
final state. Agreement with experiment for the 3S~1P
and the 3S~2P transitions is very good, and agreement
with the 2S ~1P transitions is satisfactory since the cal-
culated results lie within 2 standard deviations of the
measured values. Our results for the matrix elments and
transition rates are also compared with those of Kwong
and Rosner and of GRS. The excellent agreement with
the work of Kwong and Rosner is very gratifying because
their wave functions were obtained with a potential based
on the inverse-scattering method. Our results for the
2S~1P and the 3S~2P transitions are somewhat closer
to the measured values than those of Gupta, Radford,
and Suchyta. '

In an attempt to see if we could find independent ex-

perimental support for the form of the SI relativistic
correction in Eq. (2.10), we also carried out a calculation
of the properties of the Y system without including this

term. The parameter set determined in this manner did

not differ too much from that used to obtain the results of
Tables I—IV; that is, the new values are A=0.483 GeV,
3=0.147, GeV, a, =0.33, m=4. 900 GeV. Our results

obtained with this set of parameters were very close to
those presented in Tables I, II, and IV. For example, in

most cases the energies did not differ by more than 1 or 2

MeV. An exception was the 3 S, energy, where the

difference with experiment was 9 MeV, somewhat larger
than the 2-MeV difference in Table I. Thus, from the

perspective of agreement with experiment our results
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TABLE III. Predictions for D-state energies (MeV).

State

1 'D3
1 'Dq
1D',
1'D
1 ID

KR (Ref. 38)

10 160
10 156
10 150
10 157
0.71

GRS (Ref. 13)

10 163
10 153
10 141
10 154
0.96

Fulcher
(present work)

10 172
10 169
10 163
10 169
0.55

Expt.

without the SI corrections of Eq. (2.10) are almost as
good as our results with it. Nevertheless, we feel that the
SI corrections should be included because their theoreti-
cal foundation is solid.

To investigate the prospects of Aavor independence in
the potentials we first did a calculation of the energies
and leptonic widths of the charmonium system with the
same potential parameters as those used for the Y system.
This calculation encountered several problems. For ex-
ample the fine-structure splittings were about a factor of
2 too small, the leptonic widths were about 30% too large
and the energies of the 2S and 1P states were about 50
MeV too low. We were able to take care of this set of
problems by readjusting parameters. Increasing a, to
0.50 cleared up the problem of the size of the fine struc-
ture. We were able to move both the 2S and 1P energies
closer to experiments by increasing the string constant A

to 0.190 GeV . To solve the leptonic width problem we
were forced to reduce the charmonium mass to m, =1.30
GeV. Thus, we had to add an arbitrary constant of 310
MeV to the central potential. However, we were able to
effect these improvements while keeping A fixed at 0.431

GeV. Using the same value of A for both the charmoni-
um and Y systems represents a significant accomplish-
ment because it is consistent with the existence of a
universal QCD scale. '

Our results for the charmonium energies and leptonic
widths are presented in Tables V and VI. A11 of the num-
bers presented in Table V meet our criterion of 20 MeV
discussed at the end of Sec. II. In particular the agree-
ment of the calculated fine-structure ratio r with experi-
rnent is very significant because it supports our argument
about the destructive interference between the long-range
spin-orbit potential and the OGE spin-orbit potential. It
is also understandable why our calculated leptonic widths
might be slightly larger than the experimental results.
These were based on Eq. (4.2) with a, =0.18 in the radia-
tive correction as in the Y case. Since the momentum
transferred in charmonium decay is substantially less
than in Y decay, one should expect a larger value of a, to
be appropriate. A 15%%uo increase in a, would decrease the
leptonic widths about 7%. This reduction would place
the 1S result at 5.00 keV, in agreement with experiment.
However, our use of the value 0.50 for a, in the color-

TABLE IV. Dipole matrix elements and electromagnetic transition rate~ for the Y system. All transitions are between triplet
states.

Transition KR (Ref. 38)

(r) (GeV ')
Fulcher

(present work) KR (Ref. 38)
I (keV)

GRS (Ref. 13)
Fulcher

(present work) Expt.

2S1~ 1Pq

1P,
Po

3S, ~1P2
1Pl
1Po

3S, ~2P.
2Pl
2Po

1P, ~1S1
1P,
1Po
2P2 ~1S,
2Pl
2Po
2P2 ~251
2Pl
2Po

—1.646

0.023

—2.672

1.098

0.240

1.911

—1.623

0.023

—2.628

1.079

0.242

1.870

2. 14
2. 18
1.39
0.03
0.02
0.01
2,78
2.52
1.65

37.8
32.8
26. 1

9.75
9.31
8.48

18.7
15.9
1 1.3

1.86
1.68
0.74
0.36 (?)
0.05
0.01
2.20
2.08
1.03

31.6
28.4
25. 1

9.5
6.6
3.1

14.7
13.0
11.2

2.07
2. 1 1

1.35
0.03
0.02
0.01
2.64
2.46
1.41

36.4
31.6
25.2
9.81
9.35
8.70

18.1

15.3
11.8

2.90+0.59 '
2.96+0.60
1.89+0.44
0.06+0.05 "

0.04+0.03

3.33+0.8 '
3.12+0.7
1.25-t-o. 3

'Based on a total Y(2S) width of 44+9 keV and the branching ratios of Ref. 17.
From Ref. 39.

'Based on a total Y(3S) width of 26+6 keV and the branching ratios of Ref. 27.
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TABLE V. Energies of the low-lying S and P states of the charmonium system (MeV). The parame-
ters used in the present calculation are A=0.431 GeV, A =0.190 GeV, a, =0.50, and m, =1.30 GeV.
c.o.g. stands for center of gravity.

State

(1S)
Q,', g (2S)
1 P (y)

3p

1 'Po
1 'Pi (h, )

SBK (Ref. 14)

3076

3561
3490
3412

0.91

GRS (Ref. 13)

3068
3672
3554
3507
3412
3519
0.49

Fulcher
(present work)

3074
3651
3561
3506
3407
3525
0.56

Expt.

3067.5+1.7 '
3663+? '

3556.3+0.4
3510.6+0.5

3415.1+1.0

0.48

'Determined from the spin averages of the triplet and singlet states.
Based on the value of 3594.0 for the g, state as listed in Ref. 45.

magnetic scattering potentials of Eqs. (3.5) and (3.6) did
lead to a problem with the hyperfine splittings, where our
calculated values are about 50—70%%uo too large. It may be
that our decision to use a single coupling constant for all
the magnetic potentials is at fault here. Perhaps if one al-
lows the coupling constant to run to a smaller value for
the spin-spin potential this problem would be solved. Of
course, such a proposal would also have an effect on the
hyperfine splittings in the Y system.

Our results for the dipole transition rates of the char-
monium system are shown in Table VII. The matrix ele-
ments used to determine these numbers are also present-
ed here. Results from Moxhay and Rosner's calculation
and GRS's calculation are also listed. The discrepancy
between our calculated results and experiments is a factor
of 2 or so in most cases, which represents the biggest
problem for our calculation. Removal of this discrepancy
will probably require some new physics since the matrix
elements listed in Table VII do not change radically as
the parameters are varied by reasonable amounts. Rela-
tivistic corrections to the dipole formulas of Eqs. (4.3)
and (4.4), which have been studied by Grotch and co-
workers, present on opportunity to remove this
discrepancy.

V. CONCLUSIONS

Our calculation of the energies, fine-structure split-
tings, leptonic widths, and dipole transition rates has

been very successful. Since a linear confining potential
and Richardson's form for the running coupling constant
are the main ingredients used to generate the wave func-
tions, the agreement with experiment is impressive sup-
port for both. In particular, the agreement of our calcu-
lated values for the leptonic widths of the Y and char-
monium S states with experiment shows that our
modified form of Richardson's potential generates good
values for these wave functions at the origin, since the ra-
diative corrections are included in the leptonic width for-
mulas. Using Gromes's consistency condition and argu-
ments based on lattice gauge theory, we have determined
the long-range spin-orbit potential and demonstrated that
it has a sign opposite to the leading perturbative spin-
orbit potential. Convincing experimental support for this
destructive interference is garnered from the fine-

structure ratios of both the charmonium and upsilon P
states.

We have carried out an extensive comparison with an
earlier calculation of the properties of the Y system that
was based on a linear confining potential and all of the
perturbative diagrams of QCD to the full radiative one-
loop level. In most respects, the results obtained with
Richardson's interpolating form for the running coupling
constants are superior. In particular, the leptonic widths,
the magnitudes of the fine-structure splittings, and the
spacing between the S states are all in better agreement
with experiment.

Our calculation of the properties of charmonium,

TABLE VI. Leptonic widths of the low-lying S states of charmonium (keV).

State

1S

2S

MR (Ref. 18)

=0 44
1S

SBK (Ref. 14)

=0.50
1S

GRS (Ref. 13)

5.57

2.87

Fulcher
(present work)

5.34

2.56

Expt.

4.72+0.35 '

2.15+0.21

'Particle Data Group (Ref. 17).
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TABLE VII. Dipole matrix elements and electromagnetic transition rates for charmonium. All transitions are between triplet
states.

Transition

2S|~ 1P2
1P)
1Po

(r)
(GeV ')

—2.583

MR (Ref. 18)

41
48
37

I (keV)
GRS (Ref. 13)

25
29
20

Fulcher
(present work)

35
52
64

Expt.

19.0+3.4 '
21.1+3.7
22.6+4.0

1P2 ~1S)
1P)
1PO

2.128
609
460
226

326
250
117

633
462
210

351+'"
(355
95+37

'Particle Data Group (Ref. 17)~

where relativistic effects are expected to be more impor-
tant scored several important successes but also encoun-
tered some problems. The magnitudes of the hyperfine
splittings were 50—70 /o too large. These splittings de-
pend on the values of the radial functions at the origin.
Since the agreement of our calculated values of the lep-
tonic widths with the experimental values is an indication
of the accuracy of these wave functions, it is likely that
the resolution of this discrepancy will require the con-
sideration of higher-order perturbative effects. The di-
pole electromagnetic rates were too large, and the resolu-
tion of this problem will probably require some new phys-

ics since most of the dipole matrix elements are not very
sensitive to reasonable changes in the values for the pa-
rameters.
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