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A generalized formalism of QCD multipole expansion including constituent-quark-field quantiza-
tion is proposed. It can be applied to study soft-gluon emission processes of heavy-quark —antiquark
systems with quark-flavor changing or quark pair annihilation. As an application, the radiative de-

cays J/f~y+rl and J/p~y+ r tare studied in this framework. It is shown that J/g~y+g is

dominated by a vector-meson-dominance mechanism in which the vector mesons are n 'Sl states of
cc and the calculated rate is in agreement with the experiment. The decay J/g~y+m. is dominat-

ed by a different vector-meson-dominance mechanism in which the vector meson is p .

I. INTRODUCTION

Multipole expansion in quantum chromodynamics
(QCD) has been studied by many authors. ' A gauge-
invariant formalism in terms of a constituent quark field
is given by Yan. This has proved to be a powerful tool
for studying soft-gluon emission in hadronic transitions
in the heavy-quark ( Q) and antiquark ( Q ) systems. '

Let a be the size of the heavy-QQ system and k the typi-
cal momentum of the emitted gluons. The expansion pa-
rameter in QCD multipole expansion is ka, so that the
expansion is good when ka is small, even though the
QCD coupling constant g, is large. It is shown in nuclear
physics that this expansion works even when ka —1. In
hadronic transitions, the quarks in the initial- and final-
quarkonium states are the same. Therefore the transition
rates can be calculated in the standard way of quantum
mechanics without quantizing the quark field. ' If we
want to generalize the idea of QCD multipole expansion
to study soft-gluon emission in processes with quark-
Aavor changing or quark pair annihilation, quantization
of the quark field will be necessary. In this paper we will

generalize Yan's formalism to include electroweak in-
teractions and quark-field quantization, and will derive a
general formula for the S-matrix element in the
multipole-expansion approach which can be applied to
various decay processes. These will be given in Sec. II of
this paper.

As an application of our general formula we calculate
the rates I (J/g~yrl) and I (J/ttt ytr ) in Sec. III.
We shall see that the dominant mechanisms in the two

I

decays are different. The decay J/t)'t~y+g is dominat-
ed by a vector-meson-dominance mechanism in which the
vector mesons are n S, states of cc and the calculated
I (J/t)'t~y7)) is in agreement with the experiment. On
the contrary, the decay J/f +y+tr is—dominated by a
different vector-meson-dominance mechanism with the p
meson as the vector meson, as was first calculated by
Fritzsch and jackson.

A brief concluding remark will be given in Sec. IV.

II. GENERALIZED FORMALISM OF QCD
MULTIPOLE EXPANSION

WITH QUANTIZED QUARK FIELD

Let us consider a system consisting of a heavy quark Q
and its antiquark Q. (Generalization to a system with
different quarks is trivial. ) The fundamental Lagrangian
of QCD is

gocD = —'F' g '""+g y—" i t3 —g, A ' —m
JM S

&X~F+LFP )

where tb is the field of Q, A „' (a =1, . . . , 8) is the gluon
field, A., is the SU(3) Gell-Mann matrix, XGF and XFP are
the gauge-fixing term and the gauge-compensation
(Faddeev-Popov) term, respectively. Starting from (1),
Yan obtained the gauge-invariant effective Lagrangian
for the heavy-quark system suitable for studying soft-
gluon emissions

&&= fd'x qt y" id„g, A„" —m—

,' f d'x d—'y—g+(x, t)y —,'~, %(x, t)[6,oV, ( x —yl)+(1 —6,o) V, (lx —yl)]+(x, t)y —'~, qt(x, t)
a=0

(2)

42 2300 1990 The American Physical Society



42 MULTIPOLE EXPANSION IN QUANTUM CHROMODYNAMICS. . . 2301

q(x, t)=U '(x, t}p(x),

,'A, , A„"(x,t)= U '(x, t) —,'A., A„'(x)U(x, t)

(3a)

in which —,'kp:1 V] and V2 are static potentials related
to the interactions between Q and Q in color-singlet and
color-octet states, V(x, t) and A„"(x,t) are related to the
original P(x) and A„'(x) by

to (1). Here e is the electromagnetic coupling constant, 6
is the electric charge operator of the quark (6=—,

' for c
quark, 0= —

—,
' for b quark), A„ is the photon field, g is

the SU(2) coupling constant, 0~ is the Weinberg angle,
8 „—,Z„are the intermediate-vector-boson fields, and
t, , t3 are SU(2) generators. The total Lagrangian is then

~QCD++em++ W

——'U-'(x, t)a U(x, t),

with U(x, t} defined by

(3b) Let x, and x~ be the space coordinates of Q and Q, re-
spectively. The coordinate of the c.m. is

X= —,'(x, +x2} .

U(x, t)=P exp ig, f dx' A'(x', t), (3c)
0

where P is the path-ordering operation and the line in-
tegral is along the straight-line segment connecting the
two ends. In (3c) x=0 is identified with the center of
mass (cm) of the QQ system. We see from (2) that it is
the field 4, not g, that represents Q and Q interacting via
the static potential. Therefore %' is regarded as the con-
stituent quark field in the potential model of heavy quar-
konia.

Expanding 3„"(x,t) in powers of x we get the mul-

tipole expansion.
Now we generalize (2) to include electroweak interac-

tions and %'-field quantization. We add the electromag-
netic (e.m. ) interaction

= —e Py"6A „P (4)

and weak interactions

1—
—Qy" (t+ W„+ +t W„)gV'2 2

1 —
ys

2
t3 —sin Ha 0 Z„P (5)

Translational invariant of the system with respect to X
leads to the conservation of momentum. We will not
take X=0 in the following discussions.

In most soft-gluon emission processes, the emitted
gluon energy is much smaller than the quarkonium
masses. We shall neglect the small recoil of the quarkoni-
um due to the emission and regard X as a constant. The
transformation (3c) is now written as

U(x, t }=Pexp ig, dx' A'(x', t)
x 2

L& LqcD+LqcD+L +L~ (8a)

where

and ql(x, t) and 2 „"(x, t) are given in (3a) and (3b). Since
the electroweak sector is independent of the QCD sector,
the g's in (4) and (5) can be transformed directly into 0's
by (3a), and thus the total effective Lagrangian is

8

L&CD= f d x 4(x, t)(it) —m)4(x, t) —
—,
' f d x, d'x2 g ql(x„t)y' ' ql(x„t)

o kti
X [5,oV, ( x, —

x2i )+(1—5,0) V2(ix, —x2i)]qj(x2, t)y —+(xz, t),
2

(8b)

L&cD = —g, f d x 0'(x, t)y" 3„"( tx)%( tx),
2

L, = —e f d x %(x, t)y"QA„(x)%(x, t),

(8c)

(8d)

gyxt~P t ~+ &+t gi (xv'2 '
2

+ 4(x, t)y"
cosOg

1 —
Xs

2
t, —sin O~Cg Z„(x)%(x,t) (8e)

Expanding A„"(x,tj in powers of (x —X) via the pro-
cedure given in Ref. 2 we get the multipole expansion

(x, t)=A;(X, t) —(x —X).E (X,t)+. . .
,

A"(x, t}=—
—,'(x —X)XB'(X,t)+

where E' and B" are the color-electric and -magnetic
fields. In (8) we have separated L&cD into two parts. The
part L &~D gives the bound-state properties of the QQ sys-
tem, while L &co gives multipole-gluon emission.

In the nonrelativistic approximation, the Hamiltonian
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of the system can be written as now

H =HQCD+HQCD+He~+HW

where

(10a)
6L ~+QCD

m(x, t)= . = . =i]p (x, t) .
5%(x, r) 54'(x, r)

HQcD f d x ]d xpq (xli r)+( x] ir)Hq (x2i r)+(xpi t)
(lob)

(1) (1)
HQCD ~QCD& Hem ~em& HW ~W

Therefore the canonical quantization of the 4' field is
given by

and I]p(x, r), % (x', t) l
=5'(x —x'); (12)

H —= — (a', +a', )+ V, (lx, —x, l)
2m

+ g Vp(lx] —x21)+2n]
2 2

(10c)

is just the quantum-mechanical Hamiltonian of the QQ
system.

The canonical momentum n(x, t) conjugate to ]p(x, t) is

others anticommute. With this equal-time commutation
relation, we can evaluate the S-matrix elements for soft-
gluon emission processes.

The gauge-invariant expression for the QQ bound state
has been introduced in Ref. 2 with X taken to be zero.
Here we give a more general expression. A gauge-
invariant color-singlet QQ bound state with momentum k
(momentum of the c.m. ), a set of spatial quantum number
A, and spin quantum number cr, can be expressed as

ll. ,o,k) = —f d x]d'x2fz(x] —x2)% (x],t)I ]II ( x2t)e'"' l0),
3

(13)

where a (a=1,2, 3) is the color index of the quark,
f&(x]—x2) is the spatial wave function of the bound
state, and I is the matrix determining the addition of
spins of Q and Q. This state is normalized as

Q, =g, f d x q] (x, t) ]II(x,t),
2

d, —:g, f d'x(x —X)]p (x, t) ql(x, t),
2

(17b)

f (A, ,o, k A, ', o', k') =5]]5
d k

(2~)

g f, li, , o k) (A, , ]r, kl = I .
d k

(2m )'

(14)

With the same normalization, a color-octet QQ bound
state with color index a (a = 1,2, . . . , 8) can be expressed
as

m, =——,'g,. fd'x(x —X)Xql (x, t)y %(x, t)
2

are the color charge, color-electric dipole moment, and
color-magnetic dipole moment of the QQ system, respec-
tively. Here we have separated HQcD into H, +H2. In
soft-gluon emission processes, H, is not small, so that we
should treat H, to all orders.

The time evolution of the gauge fields can be written as

la, l, o,k) = f d x,d xzfz(x] —xz)]p (x],t)
aP

XI %&(x, t)e'"' l0) .

In the following calculations we shall take HQcD as the
zeroth-order Hamiltonian and regard HQcD+H +Hw
as a perturbation. This is different from the conventional
perturbation in quantum field theory since HQcD is not
the free quark Hamiltonian. We shall use the following
shortened notation:

F(x, t)=e "F(x,O),

where F (x, t) represents A 0(x, t), E'(x, t), B'(x, t),
A„(x, t), etc. In the present picture of perturbation
theory, the time evolution of operators composed of
heavy-quark fields is determined by H0. Therefore the
time evolution of Q, , d, , m„etc. , can be further ex-
pressed as

and

HO =HQCD & Hint =HQCD +Hem HW &

HQcD H] +H2

H, —=Q, AO(X, t),

(16) G(x, r)=e 'G(x, O)=e 'G(x, O)e

where G(x, t) represents Q, (x, t), d, (x, t), m, (x, t), etc.
From (18) and (19) we have

(20)

H, = —d, E'(X, t) —m. .B'(X,t)

where

in which 80 operates only on the gauge fields.
Let li ) and lf ) be the initial and final states. To nth

order, the S-matrix element is
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Let

tl t

(f(E'"rli &=(f I dhr j dhh ' ' I dh„H;„r(hr)H; (hh) ' ' 'H;„r(h„) (21)

Equation (21) can be written as

(flE'"'lh) =( —i)"(f j rihr f der' ' ' f de„e ' " H;„,(0)e '
Hr„, (0)e ' " "i

—h')" J f de, J deh i de e ' 'rHr, (0)e ' ' ' " e " ' ' 'H„, (0) h)—oc 0 0

1 1
i2n—5(E~+ro~ E;) —f H;„,(0) . H;„,(0) H;„,(0) i

(22)

(23)

where E, and E& are energies of the QQ systems in the initial and final states, respectively, and ro~ is the energy of the
emitted gauge fields in the final states. In (23), it is understood that the resolvent (E; Ho+i—Bo) is the shortened no-
tation of (E; Ho+i—Bo+ie) with @~+0.

Taking into account H, contributions to all orders and (Hi+H, +H ) to nth order, the formula for the S-matrix
element is

(f S~ i ) = —i 2n 5(EI + ro& E,)—
00 (x) 00

1
X g g g f H,

ll

(Hq+H, +Hii, )

X H)
E; —H()+i Bo

2

(Hi+H, +H)d, )
E; —Ho+i Bo

X (H, +H, +H~) . H,
1

E; —Ho+re

E, —Ho+I ao
2 0(E(rh+ (Ere;e)(f (Hh+H, +Hre)

E; —Ho+ iso —H)

1 E; —Ho+iso
E, —H +~'3 —H, ' E, —H +iB —H,

When ~i ) and )f ) are color-singlet states of QQ, we have Q, ~i ) =Q, )f ) =0, or H, ~i ) =H,
~f ) =0. In this case,

(f~S~ )= —2 5(E +,—E, ) f (H, +H,.+H. ) . — . (H, +H,.+H1 1

(24)

(25)

This is our general formula for the S-matrix element. It can be evaluated by using the equal-time commutation relation
(12).

As an example, let us consider the E1-E1 hadronic transition process

4f+g, +g~,
where 4, and 4f are the initial- and final-quarkonium states, respectively, and g, and gz are the emitted gluons.
and 4& are of the form of (13). The S-matrix element in the process is

With some algebra, (26) can be expressed as

2

(4~g, g~ ~S~C), ) = i 2m5(EI+oi, +—co~
. E;)—

X, —1
d .Eb d .Ec @.fg~g~ E II +i 0 0 bc

where X, is the number of colors and

(Do)b. =5b, do g,f.,b ~o—. —

1
(Ifg )gal ~S 4; ) = i 2ir5(E& +co, +—roz E, )g, dI2&g, gz d,—E' db .E

i 0 ~ 0 1

(26)

(27)

(28)
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Equation (27) has the same form as the quantum-mechanical formula given in Ref. 2, but now d„Ho are all quantum-
field-theoretical operators. The resolvent (E, H—o+iDo) can be evaluated by inserting complete sets of intermediate
states g~ lN ) (Nl into the matrix element. The intermediate state lN ) contains a QQ pair in the color octet and a soft
gluon. Ho —iao is the Hamiltonian of this system. Such a three-body bound state is diScult to study from the first
principles of QCD. What people used to do is to take a proper model to imitate this state. For example, we can take a
vibrational state of the quark-confining-string model or the hybrid state in the bag-model approach as the state lN )
(Refs. 3 and 8). Then Ho —iDo is taken to be the energy eigenvalue Ez of that state lN ), and the S-matrix element is
then easy to evaluate by using (12). Lengthy but elementary calculations give

g~ f d x'ff" (x')f~( x')x'f d x f)v(x)f, (x)x'
(@fgig2l&l@, ) = i(—2~)'&'(kf +co, +ai, k—

, )
2S,

x(g, g lE;(0)E;(0)l0), (29)

where f;(x), ff(x), and f„'(x) are the spatial wave func-
tions of the state i ), l f ), and N ), respectively. Equa-
tion (29) is just the quantum-inechanical formula given in
Ref. 3.

III. CALCULATIONS OF I (J/f +yri)—
AND r( J/1( y~'}

There have been some phenomenological studies of
I (J/f~yri) and I (J//~yes)in th. e literature. ' We
will give here a more theoretical calculation in the frame-
work of Sec. II. Of course, in our calculation, we still
have to take a potential model for the bound states of cc,
and as we have mentioned in Sec. II we have to take a
certain model for the complicated intermediate states.
The dependence of the calculation on the model for the
intermediate state can be compensated by taking effective
electric and magnetic multipole-expansion coupling con-
stants gz, g~ determined by taking certain measured ha-
dronic transition rates as inputs.

The reason why I (J/g~yiI) and I (J/g~yrr ) can
be calculated in the framework of our generalized QCD
multipole expansion can be seen as follows. From the
point of view of QCD, the decay process contains two
steps. The first step is the emission (including QQ annihi-
lation) of a photon and at least two gluons to form a
color-singlet state. The second step is the conversion of
the gluons into g or m. . Examples of the diagrams are
shown in Fig. 1. In the two-body decay processes
J/g~y+ i) and J/p~} +m, the momen'ta of i) and no

are fixed:

M~ —m„2 2

q
= =1 50GeV,

2M~

4+k'+
A~ I, m)=

i (21+ I )!!

1/2

Qi (3la)

where

Q,.= fd'x r'Il'. (B,P)p(x) (31b)

and p(x) is the electric charge density. As an order-of-
magnitude estimate we take Qi ~a', where a =(r )'i
is the size of J/P. Then

A z ( oct upole ) &2/3
(ka) =0.02(ka)

Az dipole 35
(32)

For k given in (30), ka —1.6. Thus the ratio (32) is about
5%.

leading multipole-gluon emission in Fig. 1(a) is El M2-
since there should be no flip of spin. The leading mul-
tipole emission calculation may work fairly well for the
following reason. Take the first gluon emission as an ex-
ample. It may be emitted via electric dipole emission.
We know that J/it is a color-singlet state so that the
color charge distribution in J/g is antisymmetric with
respect to the interchange of c and c. Since the electric
quadrupole moment tensor is symmetric in x, and x2,
there cannot be electric quadrupole emission and the next
electric multipole emission is the octupole emission. To
make an order-of-magnitude estimate of the electric octu-
pole emission correction, we take the formula for electric
multipole emissions in classical electrodynamics. The re-
lated coefficient is'

M~ —m
q = =1 55 GeV.

2M~

If g or a is produced from the hadronization of two
gluons, the typical momentum of the emitted gluon will
be

(a)

Jly ~ Jlv

(C)

k ——'q ——'q —750 MeV . (30)

For such a low momentum scale, perturbative QCD does
not work well, while QCD multipole expansion can be a
better approach. Since g and m are pseudoscalars, the

FIG. 1. Examples of three different kinds of diagrams in

J/i(~y+r)(rr ). The solid line, wavy line, spiral line, and
dashed line denote the c quark, photon, gluon, and ~ or ~0, re-

spectively. Every gluon or photon can be emitted by both c and
C.
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a~ =0.54 . (33)

There is not yet an ideal datum for determining the

In the following calculation we take the Cornell
Coulomb plus linear potential model" for the cc bound
states, and take the string vibrational states as the model
for the intermediate states. The effective electric dipole
emission coupling constant az=gz/4m can be deter-
mined by taking the datum of I (P'~J/fvrn) as input
and it is

ag aM —(2—3)aE (34)

A. Calculation of I (J//~ yes )

From our general formula (25), the S-matrix element
for J/1(~y+r) is

effective magnetic dipole emission coupling constant
aM=gM/4~. A reasonable range for aM discussed in
Ref. 3 is

& yr)ISI J/&) = t'2~fi—(~~+E„~~) &'rt H, . H2 +.&
1 1

1 1

1 1

The three terms in (35) correspond to the three kinds of
diagrams in Fig. 1. Since bound-state contributions to
the intermediate states are to be taken into account in the
evaluation of (35) in our approach, the physics is different
for different kinds of diagrams. In the nonrelativistic ap-
proach, Fig. 1(a) describes a process that a virtual ha-
dronic transition Jg/~g(n S~)+rt first takes place and
then the c and c in P(n S, ) annihilate into a photon. Ac-
cording to the discussions in Sec. II, this amplitude is
proportional to gFgMf„o(0), where f„o(0) is the wave
function at the origin of the P(n S&) state. The other
two diagrams, Figs. 1(b) and 1(c) are different. They de-
scribe processes in which J/1(t first emits a photon and a
gluon and transits into a virtual vector-meson state with c
and c in color octet, and then the color octet c and c an-
nihilate into a gluon. In the nonrelativistic approach, the
color octet c and c annihilate at x~=x2=X. Thus the
U(x, t) defined in (7) is now unity and hence %=/ and
A„"= A„'. Therefore QQ annihilation in our formalism
is exactly the same as that in perturbative QCD. The
coupling constant g, at the annihilation vertex should
then be taken to be the conventional QCD coupling con-
stant at the scale M& instead of being gE or gM. Accord-
ing to this, the amplitudes of Figs. 1(b) and l(c) are pro-
portional to gFg, f„'o(0) or g~g, f„'o(0), where f„'o(0) is
the wave function at the origin of the vector-meson state
in which c and c are in color octet (e.g., the string vibra-
tional state). We know that g, &gz(g~) and
lf„'o(0)l & lf„o(0)l. Therefore the contributions of Figs.
1(b) and 1(c) are smaller than that of Fig. 1(a). Further-
more, QCD corrections to the annihilation vertices are
significant. '~ So that the effective f„o(0) and f„'o(0) in

the tree-graph formula are not simply the ones calculated
from the potential model. Instead, they should be deter-
mined by taking the data of related decay widths [say
I (J/i(~e+e ) and I (J/g~ggg)] as inputs. The ratio
If„'o(0)l/If„o(0)l determined in this way is even smaller

& glg~gME;D, B;I0&, (36)

where D, —:8 —g, (A,, /2)A' is the covariant derivative.
The operator in (36) can be written as

g g~E'D Bt'=g gMd (E'B&') gag~(D E'—)Bt' . (37)

Voloshin and Zakharov argued that the second term in
(37) is smaller than the first term and they suggested the
approximation

& rtl g Eg,ME'D Bi'I0& =~q» & rtlgEgME'Bi'I0& .

The matrix element &rtlgzg~E'B&'IO) is then related to
the Gross-Treiman-Wilczek formula'

& g I a,F„',j'"'I0 ) =2rr&2/3 f m (39)

i.e.,

than that calculated from the potential model. Therefore
the decay J/g~y+q is dominated by the process de-
scribed by Fig. 1(a) which shows a f(n S, ) vector-
meson-dominance mechanism for the interaction between
the photon and the hadrons. As an approximation we
neglect the contributions of Figs. 1(b) and 1(c) in the fol-
lowing calculation.

When we take the string vibrational states (or hybrid
states in bag model) as the model for the intermediate
states, the hadronic transition amplitude factorizes into

two factors —the first factor describing the soft-gluon
emissions and the second factor describing the hadroniza-
tion gg~rt, and so does the first term in (35). The eval-
uation of the first factor is straightforward, while the
second factor needs more consideration. This is an E1-
M2 gluon emission process, the hadronization matrix ele-
ment is of the form
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(rijgFgMEg BI'I0& =— (illa, E' B'10&S,,
3 cx

(ala, F„',j '& Io&S„
12 o.,
gEgM 477

g, 3 6
(40)

Note that the QCD coupling constant g, in (40) is the one
at the scale I„,so that it is large.

With all these we can evaluate the first term in (35) and
calculate the rate I (J/it ~y i)). Our calculation is in the
Coulomb gauge. The calculation is straightforward but
lengthy. The result is

1 +Mr(J/q-yq) =
12m aE

O,'E 2 2
2

2e Cg 4w

3&6
(41)

P, PL
in which the amplitude h„'t „& is defined by

I i

P, PL
h„', „I=—

I

& R„, I "IR,, & «,, I.' IR„, &

f„i(0),
(M~ E„(—c—o„)(M~ E»L )— (42)

where n, , n, K are principal quantum numbers; I, , I,L are
orbital angular momentum quantum numbers; and

R„ I,R„I,R&L are the radial wave functions of the initial-,
)

fina-, and intermediate-quarkonium states in the hadron-
ic transition process, respectively, f„i(0) is the wave func-

tion at the origin of the final-quarkonium state in the ha-
dronic transition process. As has been mentioned, f„p(0)
should be determined by the datum of the related lepton-
ic width 1(f(n S, )~e+e ). For n =1,2, the deter-
mined f,p(0) and fop(0) are smaller than the ones calcu-
lated from the Cornell potential model by almost the
same factor 0.57. For n ~3, the states are above the
charm threshold and there are significant state mixings,
so that the data r(g(n S~)~e+e ) for n ~3 are not
useful. We expect that the QCD corrections will not vary
seriously with n as is inspired by the case of n =1,2.
Therefore we use the same factor 0.57 for all n. In our
calculation we keep five terms in the summation

g„h,'II„'p. The values of h ip„'p (n =1, . . . , 5) are listed in

Table I.
Actually, the values of a, at the scale I„ is not pre-

cisely known. The currently accepted value of a, is close
to our az given in (33). So we take a, =a@ in (41) and

l

this gives

1 (J/Q-~yr)) =0.020 keV
aE

0.020 keV, o'M =aE
0.059 keV, aM =3aE, (43a)

and the corresponding branching ratio is

'2. 9X10, eM =aE

8.6X10, a =3a (43b)

This is to be compared with the experimental value'

8 (J /g —~ ) il ) = ( 8.6+0.8 ) X 10 (44)

There are some uncertainties in (41): namely,
(aM /az ) is not well determined, (az /a, ) is not precisely
known, and we do not know how good the approximation
(38) is. To eliminate these uncertainties, let us consider
another El M2 transition -process P'~J/gi+ri It has.
been calculated in Ref. 3 with the same uncertainties and
the result is

2r{ttj'~( J/g)i) ) =
243m eE

'2
1

3m

2 2

Iq„(g' (J/g)i))l' ~- fv'3

2

(45)

where

P, PLfn, I, nl =
(R„,l»'jR', &«,', I»' IR„, &

~KL
(46)

Now we take the ratio

r(J/f yil) —,', (eQ) [{M&—m „)/M„]jq„{J/P 1 rI)l Ig A Ip p I

r(p' (J/i')i)) —„', I q„[g' (J/it )i) ll'If ~pIpj'
(47)
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TABLE I. The calculated h ]O„o.

g 111 (~ V
—5/2)

The value of (md —m„)/(md+ m„) is about 0.3 (Ref. 16).
When taking a, =o.E, we obtain

0.61
—0.42
—0.02

—7 x10--'
—6x10--'

The uncertainties in the two processes cancel each other
in R „,and R „just test the soft-gluon-emission dynamics
in our approach. Our theoretical result is

r, (J/q-y~o) =2.3 X 10 keV

2 3X10 keV, a =aE,
6.9X10 keV, aM =3aE .

and the corresponding branching ratio is

3 X 10, (AM =exp
B,(J//~year )= '11X10, aM=3aE .

(52a)

(52b)

R„I,q„„„=0.012 . (48)

R „I,„,=0.009+0.005 .

B. On the rate I (J/f~ ye )

(49)

It is in agreement with the corresponding experimental
value'

Therefore the contribution of the mechanism of Fig. 1(a)
is about an order of magnitude smaller than that of the
second mechanism. Thus we conclude that the decay
J/P~y+7r is dominated by the mechanism
J/q-p'*+~' y+~'.

IV. CONCLUSIONS

(50)

Thus the rate contributed by Fig. 1(a) is

r, (J/q

AM1

12m aE

2 2 2

Iq.(J/q-y~') I'
M~,

2ea
3&6m,

2 —m4m.
]OnOfm ~h

md Pl~ n

2

(51)

The decay J/P~ y+nis isos. pin violating. There are
two possible mechanisms that can contribute to this de-
cay process. One possibility is the P(n S~ ) vector-
meson-dominance mechanism shown in Fig. 1(a) and the
other is J/g~p '+m. ~y+m which is a vector-
meson-dominance mechanism with p being the vector
meson. Since the branching ratio of the isospin-
conserving decay J/f~p +n. is large, ' the second pos-
sibility may play an important role in J/1(t~y+m .
[Note that B(J/P~p +g) is about 2 orders of magni-
tude smaller than B(J/g~p +~ );' therefore, the con-
tribution of J/P~p *+g~y+g in J/g~y+g is
negligible. ] Fritszch and Jackson have calculated the
contribution of the second mechanism in J/t(~y+n.
and the result is B(J//~yes )-2X10 which is close
to the experimental value (4+1)X 10 . What about the
first mechanism? To complete the study of J/g~y+ m,
we must answer this question. '

The calculation of I ( J/P~ym. ) from Fig. 1(c) is com-
pletely similar to the calculation in the preceding subsec-
tion. The only difference is that the hadronization matrix
element is now'

& rr'IgF. gM&)'BI'I0& =
S

~EgM 4n d f m'6, .
3v'2 m„+m„

We have given in this paper a generalized formalism of
QCD multipole expansion in which electroweak interac-
tions and constituent-quark-field quantization are includ-
ed. A general formula for the S-matrix element [cf. (24)
and (25)] is derived in this framework and it can be ap-
plied to the study of soft-gluon emissions in processes
with quark Aavor changing or quark pair annihilation.
This is the first attempt to apply QCD multipole expan-
sion to the study of heavy-quark decay processes other
than hadronic transitions. In our new formalism, the QQ
annihilation calculation is exactly the same as that in per-
turbative QCD, while for soft-gluon emissions the new

approach is essentially different from the perturbation
calculation. The general formula is then applied to the
calculation of the radiative decay rates I (J/f~y rj) and
I'(J/g yn) We do .no. t expect that our approach can
be used to study radiative decays of Y since the emitted
gluons in those processes are not soft and multipole ex-
pansion may not work well. Also vector-meson domi-
nance via Y(n S, ) is more questionable since the b quark
is heavy.

In our new approach we have seen that J/P~yg is
dominated by the vector-meson-dominance mechanism
shown in Fig. 1(a) in which the vector mesons are
g(n S& ) states. The rate I (J/P~yg) obtained in our
approach is in agreement with the experiment [cf. (43b)
and (44)]; especially, the ratio R„defined in (47) tests ex-

clusively the soft-gluon-emission dynamics in our ap-
proach and our prediction (48) fits the experimental (49)
fairly well. The result is encouraging.

We would like to point out that the physical picture of
J/g~y+g in Ref. 9 is similar to ours. The differences
between the two approaches are (1) the mechanism serves
as a phenomenological model in Ref. 9, while in our ap-
proach it is the consequence of our general formula (25),
and (2) in Ref. 9 only the contributions of the n =1 and
n =2 g(n S, ) states are taken into account and the rela-
tive strengths of these contributions are taken from an as-
sumption, while in our approach the relative strengths of
all P(n 'S, ) contributions are calculated from the soft-
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gluon-emission dynamics in the framework of our gen-
eralized QCD multipole expansion. (See, for example,
the results listed in Table I.)

Therefore our calculation is more closely related to
QCD.

Our calculation also shows that the mechanism shown
in Fig. 1(a) is not essential in J/1(j~y +m . The decay
J/P~y+tr is dominated by a different mechanism
J/P p "+n. y+tr .

There are still some effects we have not considered in
this paper. For example, coupled-channel effects (state
mixing and continuous spectrum contribution to the in-
termediate states), relativistic corrections, etc. We do not

expect that these corrections will affect the main con-
clusions of this paper. They will be considered elsewhere.
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