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Flow in conical shock waves: A signal for the deconfinement transition?
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We investigate the hydrodynamical flow of nuclear matter in a conical-shock-wave scenario of a
central, asymmetric heavy-ion collision. This work is motivated by a suggestion of Chapline and
Granik that the creation of a deconfined phase of quarks and gluons behind the shock will appreci-
ably increase the deflection angle of the matter flow. We employ several hadron rnatter equations of
state recently suggested to solve the conical-shock-wave problem and compare the results with a
calculation using the bag equation of state. We find that large differences in the deflection angle ob-
tained in the rest frame of the shock vanish in the laboratory system. However, a signature for the
deconfinement transition may be the transverse momentum of the matter flow, which is up to a fac-
tor of 2 larger for the quark-gluon plasma. Thus, an excitation function of the mean transverse
momentum would show an increase at a certain bombarding energy, signaling the onset of the
deconfinement transition.

I. INTRODUCTION

One of the most intriguing questions of nuclear physics
nowadays is how nuclear matter behaves at high densities
and temperatures. ' Heavy-ion collision experiments at
various bombarding energies are up to now the only
means to probe this behavior far from the nuclear-matter
ground state. To extract information for theoretical con-
cepts of strongly interacting matter, one has to compare
the experimental results with dynamical models of
heavy-ion collisions, which require these concepts as in-

put. Such models may describe the collision in micro-
scopical or macroscopical terms, such as, e.g. , the hydro-
dynamical approach. ' The appeal of the latter is that
properties of nuclear matter are parametrized in terms of
macroscopic variables which are easy to interpret and are
related by an equation of state (EOS). A great deal of
effort has been spent to extract this EOS." Up to now,
because of the complexity of quantum chrornodynamics
(QCD), this EOS is of phenomenological origin.

To justify the application of ideal hydrodynamics to
heavy-ion collisions, one assumes that interactions be-
tween particles happen on a scale which is small as com-
pared to the system's size. They should also happen
sufficiently often and fast to establish local thermodynam-
ical equilibrium. Still, the full (3+ 1)-dimensional prob-
lern requires enormous numerical effort. Therefore,
models have been developed which try to appropriately
parametrize the actual flow pattern in a collision in sim-
ple terms and thus simplify the hydrodynamical equa-
tions.

One of them is the one-dimensional shock model, con-
venient to describe the central region in symmetric head-
on collisions. For a central collision of a small projectile
with a large target, the conical-shock-wave model was
developed, and refined. ' In this case, since the projec-
tile velocity is supersonic even for intermediate-energy
heavy-ion collisions, a conical shock wave may form,

which travels ahead of the projectile through the target
nucleus, compressing the target matter. After certain
simplifying assumptions, one is able to apply the equa-
tions of the oblique-shock-wave problem

" to fix the
flow velocity and the therrnodynamical variables irnmedi-
ately behind the conical shock wave.

To determine the full (conical) flow pattern behind the
shock, one may argue that, to some extent, the situation
in such an asymmetric collision resembles the case when
a bullet (the projectile) moves through a fluid (the target)
with supersonic velocity. Thus, the solution of the rela-
tivistic Taylor-Maccoll problem' ' may be convenient to
describe the flow of nuclear matter behind the conical
shock.

In Ref. 7 the oblique-shock-wave problem and in Ref. 8
the relativistic Taylor-Maccoll problem were investigated
with the following result: let us assume that, as predicted
by QCD lattice simulations, " a first-order phase transi-
tion to a deconfined phase, the so-called quark-gluon
plasma (QGP), takes place across the shock front. ' Then
the flow pattern behind the shock is appreciably affected:
as measured in the rest frame of the shock, the matter
flow is nearly twice as strongly deflected from the original
direction ahead of the shock, if a QGP is created as com-
pared to the case where there is ordinary hadronic matter
behind the shock wave. It was argued that this might
serve as a signal for the deconfinement transition in
heavy-ion collisions. The idea is that, if a QGP is created
by the conical shock wave above a certain critical bom-
barding energy, this increase of deflection shows up in the
excitation function of the mean deflection angle of matter
in asymmetric, central heavy-ion collisions, and thus
marks the onset of the deconfinement transition.

The aim of this work is twofold. First, the authors of
Refs. 7 and 8 used a particularly simple version of the
hadron matter EOS, i.e., an EOS with a constant adiabat-
ic index I =(t) lnp/t) inn ) (p is the pressure, n the net
baryon density, and tr the specific entropy). This enabled
them to obtain most results in analytical terms. In this
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paper we now want to show how more realistic equations
of state for hadronic matter [with I =I'(n, cr)] can be
treated in the formalism of the conical-shock-wave prob-
lem, i.e., the oblique-shock-wave problem in the vicinity
of the shock cone, and the Taylor-Maccol1 problem
behind the shock. We study their influence on the flow
pattern and, in particular, how they affect the importance
of the deflection angle as a signature for the phase transi-
tion to the QGP. The second aim is the following: since
the results are so far obtained in the rest frame of the
shock, we transform them to the observer's frame. This
is usually the rest frame of the target, i.e., the laboratory.
Here one is able to make definite predictions that can be
experimentally confirmed. We find that the EOS of the
matter under consideration has no influence on the
deflection angle of matter in the laboratory frame. Rath-
er, it is the transverse momentum of the matter flow
which exhibits the features of the deconfinement transi-
tion.

In Sec. II the oblique-shock-wave problem is briefly re-
viewed and solved for the hadronic equations of state of
Refs. 17 and 18. In Sec. III we investigate the Taylor-
Maccoll problem for the flow of nuclear matter described
by the EOS of Ref. 17. The results are compared to the
case when a QGP described by the MIT bag EOS is
formed across the shock front. ' In Sec. IV we interpret
our results obtained in the rest frame of the shock after
transforming them into the laboratory frame and point
out some consequences concerning experimental detec-
tion. In Sec. V we make some critical remarks concern-
ing the applicability of the discussed picture of a heavy-
ion collision and summarize this work.

II. THE OBLIQUE-SHOCK-WAVE PROBLEM
IN RELATIVISTIC NUCLEAR HYDRODYNAMICS

Let us assume that the conical shock wave formed in a
heavy-ion collision moves with constant speed, given by
the bombarding energy, through the target nucleus and
that its opening angle 2P, which is given by the collision
geometry, does not change (cf. Fig. 1).' The flow is
furthermore assumed to be steady and homogeneous
ahead and along both sides of the shock front. Across
the shock front it is assumed to be steady. Then, for a
given initial state of matter ahead of the shock front and
for given P and u", (the four-velocity of the target matter
relative to the shock front) the equations of ideal relativ-
istic hydrodynamics can be locally (i.e., in the vicinity of
the shock front) reduced to the equations of the oblique-
shock-wave problem"

[(e+p)u "u ]=0,
[(e+p)(u") +p]=0,
[(e+p)u "u']=0, [nu "]=0 .

Here e, p, and n are the energy density, the pressure, and
the net baryon-number density, respectively. u", u' are
the components of the four-velocity u & =y( 1,p) normal
and tangential to the shock front (P is the three-velocity)
and u is the time component of u". [A] denotes
3 2

—3 &, where the index 2 refers to the state behind and

targe

FIG. 1. Schematic picture for the oblique-shock-wave prob-
lem (flow along a wedge) to introduce notation used in the text.

1 refers to the state ahead of the shock. Equations (1) re-
late the initial state of matter and the upstream velocity
to the state of matter and the downstream velocity im-
mediately behind the shock front. If we furthermore as-
sume that the flow behind the shock front is steady and
homogeneous everywhere [i.e., that matter is character-
ized euerymhere behind the shock front by e2,p2, n2, u~2

determined by Eqs. (1) and not only in a small vicinity of
the shock], we end up with the hydrodynamical problem
of flow along a wedge. ' We note, however, that for a
conical shock geometry one must account for the radial
expansion of flow behind the shock front. This is done in
Sec. III under the more stringent assumption of conical
goto behind the shock. This requires in addition the solu-
tion of the relativistic Taylor-Maccoll problem' to deter-
mine the state of matter behind the shock front. For the
moment, however, let us first discuss the oblique-shock-
wave problem.

One immediately derives some important consequences
from Eqs. (1).

(a) The tangential component of the three-velocity p, is
continuous across the shock front:

(b) The Rankine-Hugoniot- Taub-adiabat (RHTA)
equation' for plane shocks holds also in this case:

[p](X, +X&)=[(Xn) ], (3)

X =(@+p)/n is the generalized volume. Therefore, all
final states of matter behind the shock front belong to the
RHTA of the plane shock problem. The actual final state
is, however, not uniquely determined by u~& as in the
plane case, but depends also on P.

(c) The ratio of the normal components of the three-
velocities p„p2 is the same as for plane shocks:



42 FLOW IN CONICAL SHOCK WAVES: A SIGNAL FOR THE. . . 2285

P2, .x=
Pi, .

&&+p2

&z+p]

(d) The product of the normal velocities is

(4)
problem. Hence y and x are uniquely determined by the
solution of the oblique-shock-wave problem for given u",

and P. Eliminating tan5 from (10) via (11) and tang be-
tween y and x in (10) one obtains

[P](1 f12) 3 (x)=«1—X)(x —X) . (12)

Consequences of this formula for the Mach angle in rela-
tivistic flow problems will be discussed below. Note that
in the nonrelativistic limit P, «1, and we regain the
well-known result of Ref. 10.

(e) Defining

p2 [p] (6)
[~]

(Po=—P,:—~P, ~
in the plane shock problem), one is able to

express the normal velocities P, „and P2 „as functions of
P and thermodynamical variables ahead of and behind
the shock front:

Pi „=Pa(1+P()cot P)

p2 —p2 ~2

Consequences (a) —(e) imply a very simple algorithm to
solve the oblique-shock-wave problem for an arbitrary
EOS: solving the plane shock problem, i.e., the RHTA
equation for a given center (ei,p~, ni ) one obtains a set of
thermodynamic states I(e2,p2, n2)). For given u~i and P
one immediately derives f3„Pi „ from geometrical con-
siderations (cf. Fig. 1) and from Pi =u i/(1+u, ), where
u t

=u~~ „+uf, . According to (7) one consequently
knows Po. One has now only to pick out the state
( ez, p z, n 2 ) among all solutions of the RHTA equation,
which yields, via (6) and (4), a Po in agreement with that
obtained via (7}. Note that different coinbinations of u~&

and P may yield the same Po, i.e., the same state

(e2,pz, n2} behind the shock front. Thus, the physical in-

formation contained in the RHTA is not suScient to
uniquely determine the solution of the oblique-shock-
wave problem.

To this end, it is more convenient to use the so-called
"shock-polar" representation. ' We define

Note that g is not constant, but depends on the particular
solution of the RHTA. Thus, (12) defines in general not a
circle but an epicyloid. For given u, the set of points
(y, x) is the so-called "shock polar" (cf. Fig. 2). Each
point (y, x) on this curve represents a solution of the
oblique-shock-wave problem for a diff'erent shock angle

Another representation of the solution of the oblique-
shock-wave problem is to consider 5 as a function of P
(Ref. 10) (cf. Figs. 3 —5). It is completely equivalent to
(12), but information about the magnitude of y and x is
not directly available [cf. Eq. (10)]. However, an advan-
tage is that the deflection angle of matter can be directly
read off. Therefore, we will use this representation in the
following.

Let us now present our results for oblique shock waves
when the compressed state is hadronic matter. In this
case Eq. (3) is the ordinary shock adiabat passing through
its center (e, ,p„n, ), which we take to be the ground state
of nuclear matter, e&

=eo-—157 MeV fm, p &
=pa =0, n ]

=no =0.17 fm '. To calculate (3), we take the hadronic
equations of state of Refs. 17 and 18. The corresponding
shock polars in y-x and 5-P representations are shown in

Figs. 2 —4. Note that the flow velocity behind the shock
becomes supersonic if the shock angle is smaller than a
certain value P,„. Above P,„, shocks are called "strong"
(solid lines in Figs. 2—4), below they are named "weak"
(dotted lines in Figs. 2 —4). In the limit 5~0,$~n/2
(corresponding to y ~0, x & 1), we have ordinary strong
plane shocks; in the limit 5~0, /=PM &m/2 (corre-
sponding to y~O, x~1) the shock becomes merely a
sonic disturbance. We note that the velocity of sound for
the hadronic equations of state is calculated along the
lines given in Ref. 17.

P2,, Pp, „
f3&

' (9)
0.3—

From geometrical considerations (cf. Fig. 1) one readily
expresses y and x as functions of P and 5, the defiection
angle of matter behind the shock front:

tan63'= 1+tang tan5
(10)

1

1+tang tan5

Note that [from (2)]

0.2-

0.1-

0.0
0.5 0.6 0.7

I

0.8 0.9 1.0

tan5= (1—y)tang
1+g tan P

and thus 5 is completely determined by p and y, which is,
in turn, given by the solution of the oblique-shock-wave

FIG. 2. Shock polars in y-x representation for hadronic
matter described by the Walecka model (no=0. 15891 frn

@0=922 MeV, lower curve) and the equation of state of Ref. 18
with Ko =300 MeV (upper curve) for u

&
=10. Dotted lines cor-

respond to supersonic flow behind the shock front, solid lines to
subsonic flow.



2286 D. H. RISCHKE, H. STOCKER, AND %'. GREINER 42

For a compression shock adiabat (3), we infer from (5)
that, in this case (p2 „~p~ „=p~sinpM, [p]/[E]
~(dP/de)o=P, o (the velocity of sound in the ground
state), p, =p, cospM),

cosQM 1— p,',o

u f(1—P2o)
(13)

P~ is the so-called Mach angle. ' Since

Eo
P, o= WO

9po
(14)

20 I $ ~
/

~ } ~ ~
$ I / ~

(a)

for the equations of state of Refs. 17 and 18 (Ko is the
ground-state incompressibility and po the chemical po-
tential in the ground state), the curves of Figs. 3 and 4
cannot terminate at the origin (as for the QGP shock po-
lar, see Fig. 5 below), but 5 has to vanish at the finite
value /=/MAO. One readily confirms that this value of
P~ in Figs. 3 and 4 is in accord with Eqs. (13) and (14)
(Ko=300 MeV, go=922 MeV for the EOS of Ref. 18,
Ko=248 MeV, go=923 MeV for the EOS of Ref. 17).

However, as one reads off Eq. (13), $~~0 as u, ~ao,
which is confirmed in Figs. 3 and 4. Let us note that (13)
implies

"s,o
sinPM =

Q)
(15)

with u, o=P, o(1 —P, o) '~, and only in the nonrelativis-
tic limit we regain the well-known result sing~ =p, z/p&.

In Figs. 3(a) and 4(a) we show the influence of the
stiffness of the equations of state under consideration.
One observes that for the EOS of Ref. 18 and for the
Walecka model the maximum deflection angle is in fair
agreement with the results of Ref. 7, obtained with a
Bethe-Johnson EOS. However, if the EOS becomes
softer (e.g., if we consider the possible excitation of ha-
dronic resonances such as in the EOS of Ref. 17, cf. Fig.
4) the maximum deflection angle increases up to values in
the range of that obtained with the MIT bag EOS for the
QGP (Fig. 5 and Ref. 7). Since the difference is only a
few degrees, the identification of QGP creation in oblique
shock waves by means of the deflection angle may cause
problems, even in the rest frame of the shock (for the dis-
cussion of possible experimental identification, see also
Sec. IV).

To conclude this section let us note that the influence
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FIG. 3. Shock polars in 8-P representation for hadronic
matter described by the Walecka model and the equation of
state of Ref. 18 (parameters as in Fig. 2). (a) is the analogue to
Fig. 2 (upper curve: EOS of Ref. 18, lower curve: Walecka
model); (b) shows the influence of varying ul for the EOS of
Ref. 18 (u, = 1, 10, 100, 1000 as indicated in the figure). Dotted
lines correspond to supersonic flow behind the shock front,
solid lines to subsonic flow.

~ ~ . I L I l I I I I a I I0
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80 90

FIG. 4 As in Fig. 3, for the EOS of Ref. 17. {a) shows the
influence of the stiFness of the EOS (Eo=248, 256, and 266
MeV, from above to below); (b) shows the influence of u I (for
Eo =248 MeV).
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of the initial upstream velocity u, is rather small as com-
pared to that of the stiffness of the EOS: for the QGP
[Fig. 5(b)] we observe that 6,„decreases monotonously
by -2 only when u, is increased by an order of magni-
tude. It changes, however, by —10' if we vary the bag
constant within the commonly accepted range of values
[Fig. 5(a)]. We note that the part of the shock polar cor-
responding to small P, 5 (x = l,y «1) is not physical,
since it represents unlikely transitions from hadron to
quark matter via a small amplitude shock discontinuity.
For the hadronic EOS we get similar results: between a
very stiff EOS (the Walecka model) and a soft EOS (the
EOS of Ref. 17 with ICo =248 MeV) 5,„varies by —13'
[cf. Figs. 3(a) and 4(a)], while a variation of u, changes
5 .,„by only 5' [cf. Figs. 3(b) and 4(b)]. Note that 5,„
has a maximum as a function of u, at u

&

——10 and then
decreases monotonously for all hadronic equations of
state under consideration.

III. THE RELATIVISTIC TAYLOR-MACCOLL
PROBLEM

25-
0)
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10—

I
C
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FIG. 5. As in Fig. 3, for the MIT bag EOS. (a) shows the
influence of varying the bag constant B (=400, 250, 140, 80
MeV fm ', from above to below); (b) the influence of u

1
(for

B= 140 MeV fm ').

The Taylor-Maccoll problem is the determination of
the hydrodynamical flow pattern of matter moving along
an impermeable conical surface. Let us first note that
there is, of course, no such object as an impermeable cone
in a heavy-ion collision. We rather assume that the flow
of nuclear matter in a collision of a small projectile with a
large target resembles that of air streaming along a bullet.
Whether or not this assumption is viable cannot be prov-
en, but it is very suggestive and leads to an appreciable
simplification of the hydrodynamic equations. In Ref. 8
the cone is thought to consist of projectile matter, play-
ing the role of "spectators. "

Under certain conditions' ' a conical shock front is
attached to the tip of the cone. Thus, for given shock an-
gle P one first solves (locally) the oblique-shock-wave
problem, as done in Sec. II. Then one accounts for the
modification of the flow and the thermodynamical quan-
tities behind the shock front due to the existence of the

shock cone shock cone

one cone

FIG. 6. Schematic picture of the Taylor-Maccoll problem (flow around a cone).
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conical surface. Along this surface the component of the
matter velocity normal to the surface vanishes. In physi-
cal terms this means that the cone is impermeable.

Matter is still in a steady state behind the shock, but
that state is not globally homogeneous. Rather, the flow
pattern is azimuthally symmetric and the flow and the
properties of the matter are homogeneous' along conical
surfaces with opening angles 28, with 8, (8(P, where
28, is the opening angle of the conical surface (cf. Fig. 6).
Thus, in spherical coordinates, all radial derivatives drop
out of the hydrodynamical equations. Under the assump-
tion of stationary, isentropic, irrotational flow the hydro-
dynamic equations reduce to the continuity equation,
Bernoulli's equation and the condition for irrotationality:

0.80 I ' I ' I ' I s I ' I ' I

0.75 -—

0.70-

0.65-

~ey
~y ~ eye ~

~ ~
~yy ~ yyy~ ye eyo~ ~ ~ yy~ yy

yeey ~ \ ~ ~ e ~ ~ y ~ y ~ ~~ y ~~ y ~~ yyo 'eeey
~ ~ ~ y ~

~ eye ~ ~~ ~ ~ \ ~
~ ~ ~~y ~ yy ~o \e ~ y ~ ~ oy ~~ey ~~ ~ ~ oo

~ oyeo ~ ~ ye ~ ~ ~ yy ~ ~ yy ~~ ey ~ ~ ~ eo ~
ey ~ ey ~ ~ ~ ~ y ~ ~ yye ~ ~y ~ ~

&.05-

s I s I ~ I s I s I ~ I s I0 cQ~ %tbt

0.00

d
d0

(nu esin8)+2nu, sin8=0,

+p d/3„

n
' ' de

y=const, /3s=

(16} W.)0-

&.15-

Combining these equations, one derives an ordinary
differential equation for the variable (g=—p„, the relativis-
tic Taylor-Maccoll equation

i2

1+(1—P, } +g'cot8
g2 g&2

i2

4.20-

W.25-

+30 s I s I s I s I

~ yye yy~ ~~ ~ ~ ~~ ~
~ ~ ~ ee

~ ~ ~ ~~ ~ ~ ~~ ye ~ eyey ~ ~ ~

~ ~

I s '. I

+j 2+(1—P, )
(2 gt2

=0, (17) 30 32 3C 38 38 CO C2 CC

e(deg)
where p, is the velocity of sound. The result of Ref. 8 is
obtained by substituting the value of P, for the Bethe-
Johnson EOS and exploiting Bernoulli's equation. Then
a dependence on upstream quantities enters (17). This is,
however, not a general feature of the relativistic version
of the Taylor-Maccoll equation, as stated in Ref. 8, but is
rather due to the special EOS used there.

The problem entering the solution of (17) is that p, de-
pends in general on the density n. A possible dependence
on a second independent thermodynamic variable drops
out, since the entropy per baryon 0. is constant in isentro-
pic flow and thus given by the solution of the oblique-
shock-wave problem. The density itself, however, is
determined by the continuity equation. Thus, one has to
solve simultaneously (17) and the first equation (16).
Starting from 8=/ one decreases 8 step by step by a
small amount until, at a certain value 0=0„ the polar
coordinate of p vanishes, p~=g'=0. This is the condi-
tion that no matter permeates the conical surface. Thus,
the cone angle 0, is determined. In the original Taylor-
Maccoll problem' 8, and P„at the cone's surface are
given and (17) is integrated from 8=8, until at some
value 8=/ the state of matter and the velocity coincide
with that obtained as solution of the oblique-shock-wave
problem. Thus, the shock angle P is found.

In Fig. 7(a) we show the solution of the Taylor-Maccoll
Problem for the hadronic EOS of Ref. 17, i.e. , P„and /3s

behind the shock front as a function of 0 for various
upstream velocities u, and a fixed shock angle /=45'.
As intuitively expected, Ps increases from its minimum
value at the shock front to zero at the cone's surface.

1.0 ~ ~ s ( ~ t I t I I ~ I s I s I ~

(b)

0.2-

0.0

-0.2 oo

s I s ( i I i I ~ I s I s I s I s

10 20 30 40 50 60 70 80 90

e(deg)

FIG. 7. (a) Radial and tangential velocities as a function of
the opening angle 0 (cf. Fig. 6) for the EOS of Ref. 17 with
I( 0 =248 MeV. The curves correspond to different values of the
upstream velocity u, (in the upper part from below to above:
u, =3, 5, 7, 10, 100, 1000, the corresponding curves in the lower
part can be identified by the fact that they terminate at the same
0= 8, ) for a shock angle S) =45'. Dotted lines: the flow velocity
Pq=(P'„+Ps)"' is supersonic; solid lines: P2 is subsonic. The
absolute value of the flow velocity decreases when the flow lines
approach the cone, due to the pileup of matter along the cone' s
surface. (b) As in (a), but with fixed u, =10 and for different
shock angles (in the upper part from above to below: P = 10, 15,
20, . . . , 80, 85 ).
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Simultaneously, p„ increases. However, since the density
has to increase towards the cone (there is a pileup of
matter along the cone due to the pressure exerted by the
cone's surface), the total velocity p2 = (p„+pz)' ~ de-
creases. Hence, the flow may change from supersonic
(dotted line) immediately behind the shock front to sub-
sonic (solid line) in the vicinity of the cone.

Observe that there exists a maximum cone angle if
u, =10, which is, of course, related to the fact that for
this value the deflection angle 5 immediately behind the
shock has a maximum as a function of u, [cf. Fig. 4(b)].

In Fig. 7(b) we vary the shock angle P at fixed u, . It is

intuitively clear inspecting Fig. 6 that there is a one-to-
one proportionality between L9, and 5, a fact that is
confirmed in Fig. 7(b). The smaller 5 is, the smaller 8,
should be, although always 6I, &5. Thus, the statement
of Ref. 8 that the cone angle 0, increases with the shock
angle P is not correct in general: for large P [beyond
$(5,„)], the deflection angle 5, and thus H„becomes
smaller again (cf. Figs. 3 and 4). We mention that our
solution of the Taylor-Maccoll problem for the MIT bag
EOS is in agreement with the results of Ref. 8. To sum-
marize this section we note that, provided the flow pat-
tern of matter behind an oblique shock front obeys the
Taylor-Maccoll equation, the deflection angle of matter is
simply increased as compared to the homogeneous case
treated in Sec. III. Thus, if the deflection angle obtained
from the solution of the oblique-shock-wave problem for
the QGP behind the shock front differs from that ob-
tained with a hadron matter EOS, this difference will be
qualitatively preserved in the conical flow.

[P2,. Pl—»2,,~rl 0I
ylab 1 —p p

(19)

Hence, the deflection angle a of matter behind an oblique
shock front with respect to the beam (i.e., x) axis is given
by

plab

tan~ —— ——y,
-'

iplab
i

(20)

with the notations (9). Amusingly enough, because of
(10), we obtain

tan+ =y, cot2)); (21)

IV. OBSERVABLE CONSEQUENCES
OF QGP FORMATION

Let us now discuss the results with respect to the ex-
perimental identification of the QGP. We first stress that
the results of the preceding two sections refer solely to
the rest frame of the shock front. Hence, to establish ex-
perimentally confirmable predictions we have to trans-
form our results into the laboratory frame. To this end
we refer to our picture envisaged in Sec. I that the target
is at rest in the laboratory, i.e., that the shock front
moves with u, in the —x direction through the target (cf.
Fig. 8). ' Then, the four-velocity of matter behind the
shock front is

(u 2 ) [) ll 2(1 plp2, ) Y1Y2(p2, pl) l 2p2,

(18)
and thus

U2

LT

I~ yLab
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Lab &Lab

/u~/~
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FIG. 8. Schematic picture of the flow in the laboratory system.
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FIG. 9. The deflection angle of quark matter in the laborato-
ry frame for the Taylor-Maccoll problem in the vicinity of the
cone (a„solid line: 8 =140 MeVfm ', dashed line: B =80
MeVfm, dashed-dotted line: B =400 MeV frn ') and im-

mediately behind the shock front (o.'z, dotted line, cf. Fig. 8) as a
function of the shock angle P.

i.e., the deflection of matter in the laboratory frame does
not depend on the properties of the matter under con-
sideration, i.e., on the EOS. It solely depends on the
shock angle P and the velocity of the shock front. Thus,
there is no hope to detect the QGP by measuring only the
deflection angle behind an oblique shock front for given

u, and P.
This dilemma might be resolved by considering the

conical flow behind the shock front. The flow pattern de-
pends on the EOS, entering (17) via p, . Thus, the pattern
looks different for hadronic matter than for quark matter
in the rest frame of the shock. It is very unlikely that
these differences also vanish in the laboratory frame.
Indeed, Eq. (20) is now replaced by

p„sin8 —
~pa cos8

tana= . y]
' (22)

p, p„—cosH ~p~~sinH

and thus tan@ depends on 0 and also, in contrast with the
oblique shock, on the EOS under consideration (via p„
and Pa). In Fig. 9 we show for the QGP how the
deflection angle of matter immediately behind the shock
front (ad ) and in the vicinity of the impermeable cone
(a, ) vary as a function of the shock angle P. One notes
that the difference between both, as measured in the labo-
ratory frame, is at most of the order of 2'. This result is

fairly independent of the bag constant and the upstream
velocity. The same behavior can be found for the ha-
dronic EOS. Thus, there seems little hope to identify the
QGP by means of the deflection angle of the matter flow

in a conical shock wave in heavy-ion collisions.
However, the deflection angle is not a Lorentz-

invariant quantity as, for example, the transverse momen-
tum p~ of the matter flow. Any difference in p~, calculat-
ed in the rest frame of the shock, would be preserved in
the laboratory frame. This is immediately clear noting
that p~ /M = u 2

= u z' [cf. Eq. (18)]. In general, M
denotes the mass of a fluid element and thus an "average"
particle mass in the fluid. However, our "fluid" has to

"fragment" at freeze-out, before experimental detection
is possible. Thus, several particles (mainly pions and nu-

cleons) with different masses and consequently different
transverse momenta, but with (nearly ) the same pt/M
will enter the detector. It is thus natural to consider the
scaled quantity p, /M rather than pi alone. To get an

idea of the order of magnitude of the effects described
below one may use M -M~ = 1 GeV, if the observed par-
ticles are nucleons.

In Fig. 10(a) we show pt/M versus the shock angle P
for u ]

= 10 and various equations of state for the
oblique-shock-wave problem. One observes that there is
a difference in the maximum pt of —100 MeV/c between
nucleons emerging from the QGP or from hadronic
matter, provided that the hadron matter EOS is not too
soft and the bag constant not too small (B should be in
the range of values that produce reasonable
deconfinement temperatures T* at vanishing baryon
number, ' i.e., T'=m„~B =190 MeVfm ).

To make predictions that can be experimentally
confirmed, let us express the shock angle P, which is not
an observable quantity, by the kinetic energy of the
matter flow in the laboratory frame [Fig. 10(b)]. There is
a one-to-one correspondence between P and E&„',", since
8&„'," has a maximum for plane shocks (P=tr/2) and van-

ishes for /=PM. We first observe that the difFerence be-

tween p] /M of quark matter and of hadronic matter is

larger for large values of E&,',
" /M. For example, for

Ef g M, the transverse momentum of fragments origi-
nating from the QGP is even twice as large as that of ha-
dronic matter, which has never undergone a phase transi-
tion (if we consider, for instance, B =200 MeVfm and
the EOS of Ref. 17 with It. o =266 MeV). We further note
that also for given p~/M the kinetic energy of nucleons is

larger by at least 100 MeV, if there is a deconfinement
transition across the shock front.

The dependence of the upstream velocity u
&

is shown
in Fig. 10(c). As is intuitively clear, pt/M is larger for
larger u

&
and assumes its maximum value at larger values

Considering conical flow behind the shock front does
not qualitatively change this behavior. However, the an-

gle of deflection of matter increases in the rest frame of
the shock due to the assumed existence of an (imperme-
able) cone. Hence u2~—=pt/M increases in this frame
and thus, because of Lorentz invariance, also in the labo-
ratory frame. This increase is of the order of about 0.1

(
—100 MeV/c difference in transverse momentum for nu-

cleons) and fairly independent of the value of the
upstream velocity.

From the above it is clear that the creation of a QGP
through the conical shock wave exhibits itself by a sud-
den increase in the excitation function of p~/M at fixed
Ef"„'," /M (or of F. f",'," /M at fixed pt/M) at some critical
bombarding energy. In this context let us briefly discuss
two aspects, which may be of some importance concern-
ing the experimental identification of this effect. Both as-
pects are related to the following fact: the kinetic quanti-
ties p~ and Ef",',." are not exactly equal to the mean trans-
verse momentum and the mean kinetic energy of matter
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fragments measured in an experiment. For instance, our
quantities neglect the intrinsic thermal motion of the
fluid at freeze-out, which essentially broadens the range
of possible p~ values. However, as a very simple estimate
shows, the relative fluctuation of the mean transverse
momentum is proportional to I/&M, i.e., for given
freeze-out temperature, the relative dispersion of p~ is
half as large for a particles as for nucleons (and only
—I/5 of the dispersion for pions). Thus, the first con-
clusion is that from the experimental point of view it is
advantageous to consider pt/M of heauy particles in or-
der to observe an effect of the deconfinement transition.

Second, when estimating the relative fluctuation of p~,
one also realizes that this quantity is (roughly) inversely
proportional to E&,',

" /M. Thus, the relative distortion in-

duced by the temperature is smallest for fragments with
large kinetic energy. As we already observed in Fig.
10(b), the effect of the deconfinement transition is also
most dramatic for large Ef,'," . Therefore, the mean trans-
verse momentum of heavy fragments with large kinetic
energy is a very promising observable to detect the
influence of QGP production on the matter flow.

Of course, more detailed calculations are necessary to
account for all effects induced by the freeze-out (cf. also
Ref. 21). However, since we do not expect that our sim-
ple model is able to make viable quantitative predictions,
we are for the moment content to point out qualitative
effects of the deconfinement transition on the flow of nu-
clear matter in heavy-ion collisions.

V. CONCLUSIONS AND SUMMARY

0.7-
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0, 1—

0.0

FIG. 10. The transverse momentum of the matter flow
behind an oblique shock front as a function of the shock angle P
(a) and the kinetic energy of fragments in the laboratory frame
(b). Solid lines, from above to below: B =400, 250, 140, 80
MeV fm . Dotted lines: results for the hadronic EOS of Ref.
17 (upper curve: K0=248 MeV, lower curve: Ko=266 MeVj.
Dashed curve: the EOS of Ref. 18 (K0=300 MeV). (c) The
dependence of p, /M vs Ef"„',"g on u, . From below to above:
u', =2, 10, 100, solid line: bag EOS with B=250 MeVfm
dotted line: hadron matter EOS of Ref. 17, Ko =248 MeV.

In conclusion, let us make some critical remarks con-
cerning the assumptions entering our calculations. In ad-

dition to the fact that the viability of the hydrodynamical
approach may be limited by principal facts (deviations
from local thermodynamical equilibrium may be large),
we stress the following points which are connected with
the special picture of a conical shock wave.

(a) If the rate of deceleration of the projectile is of the
order of the rate of matter passing through the shock
front, the assumption of a uniform shock-front velocity
and of a steady flow through this front is violated.

(b) The shock angle may vary in time or space (curved
shock fronts), which will in effect introduce some kind of
6 average on the results.

(c) The assumptions entering the shock geometry, e.g. ,

that of a conically shaped shock front, may be too simple.
This picture is viable for the flow pattern of a fluid along
a "tough" (i.e., "tougher" than the fluid) object, e.g. , a
bullet in air, as experiments have confirmed. ' In our
case, however, it would be more reasonable to consider a
collision of "drop on drop. " Then, however, we are fac-
ing the problem that the deceleration of the projectile
may be too large, see (a).

(d) Since there is no impermeable object such as a cone
in heavy-ion collisions that exerts a force on the fluid, the
validity of the Taylor-Maccoll equation is by no means
clear. Our assumption that (17) applies relies solely on
the very suggestive picture that our asymmetric collision
resembles the motion of a bullet in air.
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However, the question whether the conical-shock-wave
picture for heavy-ion collisions is too simple and thus
inapplicable can only be proved by full (3+ 1 )-

dimensional calculations. ' The intention of this
work is simply to confirm that, in a very simple and sug-
gestive picture, ' there may be principal differences in
flow quantities, if a deconfinement transition happens
across the shock. These differences, however, cannot be
observed measuring the excitation function of the
deflection angle, ' but only via that of the transverse
momentum of emitted fragments.

In summary we extended the studies of Refs. 7 and 8 to
more realistic nuclear equations of state and investigated
the difference between oblique shock waves (and conical
flow behind such a wave) in pure hadronic matter and in
the case that a QGP is created via such shocks. We
found that the softer the hadronic EOS is, the more the
flow pattern of such hadronic matter resembles that of
quark matter behind the shock front. For given shock
velocity and shock angle, there is no effect of the EOS on
the deflection angle as measured in the laboratory frame
(the rest frame of the matter in front of the shock wave).
Assuming conical flow behind the shock wave, one finds
that, for a given shock angle P, the deflection angle of
matter immediately behind the shock front and in the vi-
cinity of the cone differs very slightly as measured in the
laboratory frame (probably within the experimental accu-
racy). The effect of the deconfinement transition on the
hydrodynamical flow behind a conical shock wave may

nevertheless be observed, if one considers the excitation
function of the transverse momentum of heavy emitted
fragments. For instance, p~ of a particles with a kinetic
energy of the order of their mass is larger by —800
MeV/c if they originate from quark-gluon rnatter instead
of hadronic matter. Thus, in the case of QGP creation,
we expect a sharp increase of the excitation function of
the mean p~ at some critical bombarding energy, signal-
ing the onset of the deconfinement transition.

Let us finally mention that another way to identify the
creation of a QGP is to perform an event-by-event
analysis of heavy-ion collisions. Events with an unusually
large p~/M in the range of bombarding energies, where
the deconfinement transition is expected (-5—20
GeV/nucleon), would also indicate the transient existence
of a QGP. We note that in this work a possible coex-
istence of quark and hadronic matter behind the shock
front was not considered. Further investigation along
these lines would be interesting, especially with respect to
the stability of the shock fronts. It may clarify the ques-
tion, why related calculations show the opposite behav-
ior of the mean transverse momentum in the phase tran-
sition region than predicted above.
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