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Role of baryons in chiral-symmetry restoration at high temperature
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To help provide insight into the apparent remarkable rise in baryon susceptibility at the
high-temperature phase transition in /CD, we study the three-dimensional lattice SU(2) chiral
model at finite temperature. The purpose of this study is to determine the extent to which
a rising susceptibility is a natural consequence of chiral-symmetry restoration in a nonlinear
a model. Indeed the susceptibility, defined in terms of a discrete (uoncouserved) version of
the winding number, is found to rise rapidly in the vicinity of the phase transition, suggesting
that a proliferation of baryons and antibaryons (i.e., Skyrmious) plays a significant role in the
restoration of the chiral symmetry. These results support the idea that the cooling of the quark
plasma could result in copious antibaryon production.

I. INTRODUCTION

Numerical simulations of @CD with quarks suggest
that the baryon susceptibility, defined in the usual way
in terms of the quark baryon number, rises dramati-
cally at the high-temperature phase transition in a man-
ner suggestive of the liberation of light baryonic degrees
of freedom (i.e. , quarks). Paradoxically, similar sim-
ulations provide no evidence for such light degrees of
freedom in measurements of the high-temperature static
screening lengths. ~ Indeed, current evidence suggests
that long-range screening in the quark plasma is con-
trolled by hadronic modes, the longest range of which are
most likely high-temperature pionlike and o-like modes,
which are degenerate in the chiral limit ~ Screening in the
baryon channel is governed by rather short-range high-
temperature parity-doubled analogs of the nucleon. Thus
it is important to seek other explanations of the rise in the
baryon susceptibility. In this paper we suggest that the
phenomenon is a natural consequence of the restoration
of chiral symmetry and is brought about by a prolifera-
tion of field configurations with baryonic topology.

A classic example of symmetry restoration at finite
temperature is provided by the AP~ theory with a
symmetry-breaking potential V(P). The traditional anal-
ysis of symmetry restoration is based on perturbation
theory. From this point of view the phase transition
occurs because the entropy as a function of the mean
field S(P) of the nearly free gas of mesons has a maxi-
mum at zero mean field. Thus the mean-field free energy

F(P) = E(g) —TS(P) is minimum at P = 0 for suffi-

ciently high temperature T. At strong coupling, however,
the perturbative analysis breaks down qualitatively, since
other mechanisms for disorder predominate. In particu-
lar, the formation of domain walls or solitons becomes
energetically favorable at strong coupling. Such struc-

tures must be treated by nonperturbative methods.
There is strong evidence from numerical simulation

that the finite-temperature phase transition in /CD re-
stores the SU(N) xSU(N) xU(1) chiral symmetry. The
temperature of the phase transition is estimated to be
roughly in the range 100—200 MeV. s Since numerical sim-
ulations also give evidence for the presence of confined
hadronic modes in the high-temperature phase, at least
close to the phase transition, we believe it is plausible
to model the phase transition in terms of a chiral field
theory in which the elementary degrees of freedom are vr

mesons, both at low and high temperature. This model
is oAered as a rough description of the long-range behav-
ior of /CD, both below and above the phase transition.
The model is intended to provide insight into the mech-
anism of chiral-symmetry restoration in /CD. Insights
gained from such a model suggest interesting tests for
simulations based upon full @CD.

Although the o meson has never been firmly estab-
lished, as a representation of the nx S-wave enhance-
ment, it must have a mass of several hundred MeV. It is
apparent that a linear cr model for the x and u mesons
must be strongly coupled in order to produce such a
large mass. Since the cr mass is much larger than the
pion mass, the pion decay constant f, and the tem-
perature of the phase transition T„ it is plausible that
strong coupling is required at temperatures close to the
phase transition as well. Therefore a phenomenology of
chiral-symmetry restoration based solely on perturbation
theory, although perhaps tempting, is implausible. For
these reasons we choose to investigate the SU(2) xSU(2)
or O(4) nonlinear chiral model at finite temperature. The
fundamental field is a four-vector U(z) on the unit three-
sphere S .

At high temperature the lattice-Feynman-path integral
may be reduced to three dimensions. On each site r of a
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where Eo sets the energy scale. Here the notation (rs)
refers to unique nearest-neighbor pairs. A symmetry-

breaking term has been included. For lattice constant
a ~ 0 the Hamiltonian has the naive continuum limit

Hs/Eo =
4 f drTr~B~Up+ pea f dro —-'„Tr U).

Comparing this expression with the conventional contin-

uum limit,

suggests the identification

Eo/u = F'/4, Ps = I",'m'as/4Eo

The high-temperature partition function is given by

(4)

Z= dU r exp —qH,

where the temperature is given by

T = Eo/Pi.

Without a Skyrme term the continuum-nonlinear-
chiral model does not have a stable baryon (Skyrmion)
at zero temperature. Likewise, we have not encountered
stable baryonic configurations in the lattice version of the
model. If such stability were required, the obvious next
step would be to include a lattice version of the Skyrme
term. " 8 That is the goal of the second part of this study,
discussed in Secs. IV and V.

Is Skyrmion stability important for a finite-tempera-
ture study' Stability oft'ers advantages and disadvan-
tages. Thermal excitations with nonzero winding num-
ber occur whether or not stable zero-temperature struc-
tures exist. If these configurations do not persist indef-
initely in the simulation, it is possible to simulate the
grand-canonical ensemble in baryon number. However,
stability at low temperature is desirable in a more com-
pletely realistic theory. A stable low-temperature struc-
ture can be compared with a known hadron, making it
possible to assign physical values to the parameters of
the model. One may also want to look for a connection
between the spatial fluctuations in baryon number of the
high-temperature configurations and the spatial distribu-

three-dimensional periodic lattice, we introduce an O(4)
field in the form of an SU(2) matrix

U(r) = u4+io u

with Pauli matrices cr and ~u~ = 1. The Hamiltonian is

then

H/E, = ) (I ——,
' T [U(r) U'(s)])

(rs)

+Ps ) [1 —
~ Tr U(r)],

tion of baryon number in the low-temperature structures.
However, in the absence of Skyrmion stability, one may

still hope for a qualitative understanding of the topolog-
ical features of the phase transition. That is the goal of
the first part of this study, discussed in Secs. II and III.

The remainder of the paper is organized as follows. In
Sec. II we discuss our discrete definition of the winding
number (baryon number). In Sec. III we present results
of the simulation with the basic Hamiltonian (2). We
find a large rise in the baryon susceptibility in the vicin-

ity of the phase transition. To compare this rise with the
@CD result requires a matching of lattice scales. How-

ever, without stable zero-temperature Skyrmions, there
is no obvious way to attempt a numerical comparison.
To make further progress we discuss the introduction of
a Skyrrne-stabilization term, in Sec. IV. With a suitable
choice of the weight for this term large, classically sta-
ble Skyrmion configurations (radius several lattice units
or more) such as the continuum Skyrmions can be ob-
tained. However, they are not robust with our choice of

lattice Hamiltonian. That is, at low, but finite tempera-

ture, such large Skyrmions are rarely found, presumably
because they are not sufIiciently stable. Fortunately, at
other choices of the weight of the stabilization term, small

Skyrmions (a couple of lattice units) can be made to live

sufFiciently long to permit a rough estimate of their size

and energy. To further elucidate the mechanical prop-
erties of the phase transition, lattice configurations were

subjected to a cooling treatment, with results described
in Sec. V. Finally, possible consequences for @CD and

for searches for quark matter are discussed in Sec. VI.

II. WINDING NUMBER ON THE LATTICE

For a continuous map U(z) of S into S, the baryon
number density is defined by

1
pB —— 2TrA AxA,

where A = UVU. The winding number is the integral
of this quantity over the spatial volume V. We equate
this number with the baryon number. Whether a soli-
ton with minding number B should be counted as having
baryon number B can be answered only after fermions
are included explicitly in the model. Studies of small
Skyrmions interacting with fermions have shown that the
integer baryon number can be regarded as being shared
between the soliton and the fermion, with the soliton's
share decreasing with soliton size. i Since the winding
number counts "small" and "large" solitons alike, and
we have not included fermions, our model is incomplete.
Therefore, we are assuming that the susceptibility de-
fined through the winding number gives a good approxi-
mation to the baryon susceptibility that would be found
in a theory with fermions present.

Suppose that the region V in coordinate space Rs is
mapped to the region B C Ss. Then the total baryon
number in V is just the oriented volume of B, with the
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convention that the total volume of Ss is 1. An infinites-
imal tetrahedron dV g Rs maps approximately into an
infinitesimal tetrahedron dB = U(dV) g S . If dV is
an infinitesimal tetrahedron with vertices a, b, c, d, which

map, respectively, to u„ug, u„ug, then the oriented vol-

ume dB is approximately

any round-oH' error is treated consistently between tetra-
hedra with shared facets. In this way there are no gaps
in the map V and round-off errors introduce no inessen-
tial ambiguities in the determination of the global lattice
winding number.

III. FINITE- TEMPERATURE
PHASE TRANSITION

On a lattice of finite spacing, a crude estimate of the
total baryon number can be obtained by dissecting the
lattice into elementary tetrahedra dV and forming the
sum of these approximants. Each unit cube in the lattice
can be dissected into five such tetrahedra. A possible im-
provement on this approximant would bound the facets
of the image tetrahedra dB = U(dV) by sections of great
spheres in S so that contiguous volumes dV would map
onto contiguous volumes dB = U(dV). In fact, rather
cumbersome exact integral expressions do exist for the
volume of such a bounded region. However, if only the
global winding number of the entire map is desired, then
there is a much more elegant procedure: count the num-
ber of times the map crosses a particular point u„(say,
the north pole) of Ss. Count plus one for a positive cross-
ing and minus one for a negative crossing (defined below).
The global winding number is then the algebraic sum of
these values. Specifically, we define the global winding
number

where

):mr(av),
4VEV

t +1 if uz g dB and p(dB) ) 0,
q~~ = J —1 if uz p dB and p(db) ( 0,

, 0 ifupgdB

Deciding whether uz is in dB involves an arbitrary choice
because of the discreteness of the lattice. A natural pro-
cedure is to make a smooth interpolation between the
vertices u„u~, u„ug of dB. Then if u„ is found in the re-
gion bounded by the interpolation, we say that uz g dB.
Mathematically, our test for inclusion involves construct-
ing four new tetrahedra from the vertices u„uy, u„ug by
replacing the vertices one by one with uJ, . Thus we form
&B& ——(&„,uy, u„ug}, dBy ——(u„u~, u„ug}, etc. Then
u„ is in dB if all of the volumes p(dB ), p(dBy), etc. ,

have the same sign as p(dB).
An ambiguity arises if any of the five volumes is zero.

Although mathematically such an occurrence is a set of
measure zero, numerically, all too frequently in lattices
of the size used in this study, the volume measurement
is zero within the precision of 32-bit arithmetic. Thus
there is a potential for a miscalculation of the winding
number resulting from round-off errors. However, with
care this error can be rigorously avoided. The necessary
precautions involve arranging a systematic dissection of
the lattice cubes into tetrahedra so that adjacent cubes
share the same triangular facets, and arranging so that

The first goal of the simulation is to locate the finite-
temperature phase transition. The SU(2) chiral model
with Ps —0 has been studied extensively by Kogut
and co-workers, and it is well known that the chiral-
symrnetry-restoring phase transition is continuous. The
phase transition can be located by studying the behav-
ior of the order parameter rr = Tr U/2 as a function
of the coupling Pq. It can also be located by studying
the screening mass associated with the Goldstone boson.
This screening mass is defined from the correlation

(12)

where U denotes the three-vector component of U and
U(z) signifies averaging over a plane perpendicular to the
z axis at z. The screening mass is given by the asymptotic
form of this correlation:

S (z) a+ bexp( —p z). (13)

Similarly, one may define the screening mass p~ for the
o meson channel through the correlation

S (z) = (Tr U(0)TrU(z)). (14)
Neither of these correlations is chirally invariant, so it is
necessary to define them by first introducing an explicit
symmetry-breaking term [i.e., the term in Ps in Eq. (2)],
second, taking the infinite-volume limit, and finally, tak-
ing the limit of vanishing Ps. In practice this limit is
estimated by the less rigorous method of extrapolating
the finite-volume calculation to zero Ps.

Shown in Fig. 1 is rr vs Pq for four values of the
symmetry-breaking parameter Ps. The extrapolation of
cr to the chiral limit is shown in Fig. 2 for a few tempera-
tures. In mean-field theory, it is expected that the order
parameter vanishes as Ps in the symmetry restored phase
and Ps~ precisely at the phase transition. From these
results, it is plausible that the order parameter vanishes
in the chiral limit at inverse temperatures Pq ——0.80 and
0.90, and give a nonzero intercept at 0.95 and 1.00. Thus
the phase transition occurs in the region 0.90—0.95.

As a further check, we consider correlation lengths.
The pion screening mass is shown as a function of Pq in
Fig. 3 for various values of the synmnetry-breaking pa-
rameter, and in Fig. 4 for two values of the inverse tem-
perature near the phase transition. The extrapolation
to the chiral limit appears to be consistent with zero at
Pq ——0.95 and not zero at Pq

—0.90, in agreement with
the results for the order parameter. Our value on a 30s
lattice is to be compared with the estimate 0.81 for a 9
lattice.
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FIG. 1. The order parameter cr vs inverse temperature for
four values of the symmetry-breaking parameter Ps. Statisti-
cal errors are smaller than the plot symbols.

FIG. 3. Pion screening mass vs inverse temperature for
four values of the symmetry-breaking parameter Ps.

Shown in Table I are screening masses for both the
and o as a function of inverse temperature and

symmetry-breaking parameter. It is plausible from these
results that for Pq ) 0.95 the pion and o screening masses
are equal within errors in the chiral limit as expected
from a restoration of the SU(2)xSU(2) symmetry, and

they are not equal for P~ ( 0.95. At low temperature the
r meson mass is less well determined from the correla-
tion function. Fits to the correlation function starting at
zero separation give a much higher screening mass than
fits starting one or two lattice units away. This behavior
may reflect the eHects of the two-pion continuum. The

screening masses quoted in the table are taken from fits
starting at a separation of one or two lattice sites, and
so represent the lower mass portion of the spectrum.

We now turn to the susceptibility. Shown in Fig. 5 is

the variance of the total baryon number (82) as a func-

tion of inverse temperature pI. This quantity is related
to the susceptibility through

(15)

where V is the volume of the lattice and T is the tem-
perature. Since we are working in the grand-canonical
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FIG. 2. The order parameter cr vs the symmetry-breaking
parameter for four values of the inverse temperature.

FIG. 4. Pion screening mass vs the symmetry-breaking
parameter for two values of the inverse temperature near the
phase transition.
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FIG. 5. Susceptibility vs inverse temperature for a small
value of the symmetry-breaking parameter.

FIG. 6. Histogram of the total winding number 8 for a
30 lattice at Pq = 0.8 and Ps ——0.0025. The curve plots a
normal distribution with a variance set equal to the observed
value (B ).

ensemble at zero chemical potential, the mean baryon
number vanishes: (B) = 0. We see that at low temper-
ature the susceptibility is relatively small, and there is

a rapid rise in the vicinity of the phase transition. The
susceptibility continues to rise in the high-temperature
phase.

To explore this result further, we examine the distribu-
tion in baryon number for the simulation at P&

—0.8 and

Ps ——0.0025. Shown in Fig. 6 is the histogram for a 303

lattice and in Fig. 7 for a 20 lattice. These histograms
agree rather well with a random-walk formula

P = exp[—B /(2gg VT)],
/2xyrr VT

also plotted in the figure. (The three points around wind-

ing number 100 and —100 on the 30 lattice are excep-
tions to this statement. ) Thus the susceptibility is not
only an intensive quantity, as expected, but there is also
little evident interaction correlating clusters of baryons.
Thus 1/(2y~T) gives a measure of the average volume in
which a random fluctuation contributes +1 or —1 to the
total winding number translated into a spherical region;
this size corresponds to a sphere of radius determined by

That is r,g is in the range 2a to 3a in lattice units in the
vicinity of the phase transition.

TABLE I. Pion and cr screening masses in the SU(2)xSU(2) chiral model with symmetry-
breaking parameter P3 as a function of inverse temperature Pq.

0.60
0.60
0.80
0.80
0.90
0.90
0.95
0.95
1.00
1.00
1.05
1.05
1.10
1.10
1.20
1.20

m(J

0.0025

0.92(13)
1.34(4)
o.s7(2)
0.574(15)
0.231(8)
0.209(15)
0.090(13)
O.26(2)
0.090(14)
O.34(3)
0.072(15)
0.20(5)
0.064(14)
0.26(3)
0.06(2)
0.24(3)

0.02

1.6(4)
1.18(4)
O.62(4)
O.49(4)
0.284(15)
O.44(2)
0.259(13)
o.ss(2)
0.216(10)
0.66(2)
0.158(13)
0.59(9)
0.183(9)
0.46(8)
0.169(13)
0.40(7)

0.05

0.85(13)
1.28(4)
o.s4(4)
0.64(2)
o.3s(2)
O.49(6)
O.37(2)
O.77(2)
0.320(15)
o.ss(7)
0.28(2)
0.59(7)
o.3os(1s)
0.99(4)
0.31(2)
1.09(3)

0.1

1.1(2)
1.16(4)
0.50(5)
O.76(3)
0.5S(4)
0.5(2)
O. 36(3)
0.61(14)
0.42(4)
0.96(5)
0.4O(3)
0.75(15)
O.36(3)
1.29(6)
0.39(3)
1.28(6)
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FIG. 7. Same as Fig. 6, but for a 20 lattice.

IV. SKYRME STABILIZATION

With a Skyrme term included, the continuum-O(4)-
nonlinear chiral model in three dimensions has stable
zero-temperature Skyrmion configurations. In an effort
to enhance stability, we add the term

&~.b/E= —-'~z ). T(U(t)'[U(t) —U(r)]
(rstu)

which is a crude discrete version of a continuum Skyrme
term, based on nearest-neighbor derivatives. Our dis-

crete Skyrme action is similar to one proposed a few

years ago by Saly. s However, we prefer to use the con-
ventional sign for the Skyrme coupling. The sum over

(rstu) refers to sites distributed around a unique pla-
quette, with the sites listed in cyclic order around the
plaquette, i.e., t refers to the diagonal next neighbor
to r and s is similarly related to u. After obvious al-

gebraic simplification this particular lattice form of the
Skyrme term was chosen for economy in the numerical
algorithm. [Having U(r) appear only once in this expres-
sion improves somewhat the eKciency of an otherwise
rather time-consuming Metropolis update. ]

The naive continuum limit of this term is then

H, &,b = — dr Tr[UtcI„V, Vta„U],
328

suggesting the identification

Pg ——I/(8aEpe ).

Saly studied the phase structure of the Ps —0 ver-

sion of a similar model in two and four dimensions as
a function of Pi and Pq for negative values of P2. His

goal was to identify a nontrivial fixed point permitting

a proper continuum limit of the theory. None was evi-
dent. However, the region P2 & 0 remains to be explored.
Since the limit P2 —+ oo corresponds to an infinitely large
Skyrmion, it is quite possible that the desired fixed point
is reached there. Our purpose here is to study finite-
temperature symmetry restoration, treating the model,
where necessary, as a discrete approximation to the con-
tinuum version, regardless of whether a nontrivial fixed
point exists.

%e find that with the Skyrme term present, and with
our stochastic relaxation algorithm, large, classically sta-
ble Skyrmions can be constructed for P2 & 7 at zero tem-
perature, but not for smaller values of Pq. Because we are
working on a three-dimensional lattice, these configura-
tions correspond to classical solutions of the field equa-
tions. To produce such configurations, the lattice was

initialized to a field configuration approximating closely
the known continuum classical Skyrmion. i~ The config-
uration was then relaxed using the same Metropolis al-

gorithm as in the thermal simulations, except that only
small random steps were taken, and only steps reducing
the energy were accepted. A stable local minimum of the
energy was found. As expected from the known contin-
uum configuration and the correspondence between lat-
tice and continuum parameters, these large Skyrmions
have rms radii in excess of 5a. Similar discrete approxi-
mations to the continuum solution have been obtained by
Jackson and Verbaarschott. Thus, in principle, by mak-

ing the lattices sufFiciently large, we might hope to ob-
tain the ideal model with nearly stable zero-temperature
baryons. However, these large Skyrmions are not robust,
since we were not able to produce them either by relaxing
from a starting configuration with the correct topological
properties, but a somewhat different radial wave func-
tion, or from rapidly cooled thermally excited configura-
tions. Instead the configurations relaxed to the conven-
tional symmetry-broken vacuum. Evidently, our lattice
Hamiltonian does not assign a large enough penalty to
configurations with sharp bends, making it too easy for
a large Skyrmion to unwind.

Clearly to make further progress, one should explore
other choices for the Hamiltonian. However, it turns out
that there is another remedy available within the parame-
ter space of the present Hamiltonian that brings us closer
to our desired goal of a robust zero-temperature baryon:
namely, at negative values of the lattice Skyrme coef-
ficient Pq there is a narrow range over which baryonic
structures appear with an rms radius of approximately
two lattice units and a lifetime of a few tens of lattice
sweeps at low temperatures. Kith this choice of parame-
ters, we obtain a model with reasonably persistent, small

baryons at low temperature and chiral properties virtu-
ally the same as with the unstabilized model. For the
moment, this small-Skyrmion model is the best we have

to offer. Of course, with negative values of Pq, one cannot
use Eq. (20).

It is in the nature of our discrete approximation to
the lattice derivative that the kinetic energy of very
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small Skyrmion configurations decreases as the Skyrmion
shrinks. This behavior is contrary to what is found in the
continuum limit, where the kinetic energy scales inversely
with Skyrmion size. Thus, it should not be surprising
that stability is improved by introducing a term in the
Hamiltonian that discourages the development of a con-
stant field configuration, and encourages a curvature that
is typical of the Skyrme configuration. That is the reason
a small negative value of Pq works.

As Saly pointed out, in choosing negative Pz, one must
avoid encountering a transition to an unphysical puck-
ered phase. Shown in Fig. 8 is the value of Hs«b, aver-
aged over the lattice volume, as a function of Pq. The
starting configuration wss the puckered lattice. While
Pi was fixed at a very low temperature (Pi —50), the
value of Pz was increased in two runs, one with a higher
rate of increase than the other, and decreased in a third
run. The third run was not carried to a full transition
to the puckered phase. Evidently there is very strong
hysteresis, indicating the presence of a strong first-order
phase transition to the puckered phase at approximately
Pz ———0.35. We chose Pq

———0.30, comfortably away
from the phase transition.

To illustrate how the choice of Pq affects Skyrmion sta-
bility, we show in Fig. 9 the total baryon number com-
puted with the estimate (9) as a function of a Monte
Carlo sweep at Pi ——50, starting from a single-Skyrmion-
like lattice configuration. This starting configuration
filled the lattice with a spherically symmetric Skyrmion
with a radial wave function that varied linearly with ra-
dius. The estimated baryon number was initially close
to one, and then decreased as the Skyrmion relaxed to
a smaller size. Since the smaller Skyrmions have larger
curvature, the approximant (9) underestimates the true

I I I I I I I I I I

Stabilization term vs Pz1.5—
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p2 = —0.4
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FIG. 9. Decay of a large Skyrmion configuration for var-

ious choices of the stabilization coe%cient. The approximate
baryon number is shown as a function of cooling sweep at
Pi = 50. The circle indicates the point at which the winding
number changes from one to zero. At Pq = —0.4 the winding
number remains at one.

value. Also indicated in the plot is the point where the
winding number switched from 1 to 0. We see that as Pq
increases in magnitude, the "lifetime" of the Skyrmion
increases. Indeed for Pq

———0.4 the small Skyrmion ap-
pears to be very stable, but at this parameter value the
lattice is unstable against decay to the puckered phase.
(Because of the metastability of the normal phase at this
value of Pq this run remained normal. ) Also evident
in these plots is that the approximate baryon number
appears to reach a region of slow decay for a duration
of about 50 sweeps at a baryon number of 0.4 before
abruptly decaying. Qf course, it is not possible to fix
precisely the static properties of these classically unsta-
ble lumps. However, we believe an approximate determi-
nation can be made over the region of slow decay.

The spatial distribution of the Skyrmion can be vi-
sualized in a "snapshot" of baryon-number density ver-
sus lattice coordinate. Consider the configuration with

Pi ———0.3 at sweep 120 in Fig. 9. Shown in Fig. 10 is
such a plot, in fiat perspective. A point is plotted for each
lattice cube with approximate baryon-number density (9)
greater than 0.00375/as in absolute value. Although it
is not evident in this rendition, the central points have

1.0— Rapi

0.0—
—0.6

I I I l I I I

—0.4

FIG. 8. Hysteresis at the phase transition to the puckered
phase. Mean value of the stabilization energy as a function of
the stabilization weight Pq for three runs, two increasing P2
and one decreasing Pq. In all runs Pq ——50.

FIG. 10. A single small Skyrmion for Pz ———0.3. Lattice
in flat projection showing the location of points with approxi-
mate baryon density exceeding 0.00375/s in absolute value.
Also indicated by a circle enclosing a plus sign is the point
contributing +1 to the winding number.
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FIG. 11. Baryon density vs radius for the small Skyrmion
of Fig. 10.

higher baryon number. Also indicated with a circled plus

sign is the cell that contributes 1 to the winding number

in Eq. (10). Shown in Fig. 11 is the baryon density for
this configuration versus radius from the center of the
distribution. We see that the baryon number density is

indeed higher at the center. The rms size of this baryon
is 1.9a. The total energy of this structure is estimated
to be 38Eu after subtracting a constant thermal back-

ground contribution. The radius and energy are both de-

creasing functions of sweep number as cooling progresses,
and 40 sweeps later this structure relaxes abruptly to the

symmetry-broken vacuum as indicated in Fig. 9. These
configurations appear to be relatively robust in the sense

that they are readily produced when cooling thermally
excited configurations. These studies of Skyrmion-like

FIG. 13. Same as Fig. 5, but with P2 = —0.3 and includ-

ing measurements made after 5 and 10 cooling sweeps.

configurations give us confidence that small negative val-

ues of Pz have the desired effect of improving stability
without evident adverse side effects.

Shown in Fig. 12 is the order parameter as a function of
Pi for Pz ———0.3, Extrapolation to the chiral limit, places
the phase transition between 0.95 and 1.00. A plot of
(Bz) vs Pi for the smallest values of Ps is given in Fig. 13.
Please refer for the moment to the points at zero cooling
sweeps. Comparing with the Pz

——0 calculation (Figs. 1

and 5), we see that in the present case the susceptibility is

slightly lower and the phase transition occurs at a slightly
lower temperature. Otherwise, the thermal behavior of
the two models is quite similar.

I I I I I I I I I I I I I

v vs 1/T for Pz
———0.30.6—

x 0,0025
+ 0.02

04 —&& 005
o

o

0.0

+ X

1.0
I I I I I

FIG. 12. Same as Fig. 1, but with Pq ———0.3.

V. COOLED CONFIGURATIONS

In order to gain more insight into the mechanical fea-
tures of symmetry restoration, a small sample of the lat-
tices obtained in the simulation was subjected to rapid
cooling, and a visual display of the resulting baryon den-

sity was made. The cooling process consisted of abruptly
setting the inverse temperature Pi to a large value, i.e.,

50, and carrying out a few dozen Monte Carlo sweeps
with Metropolis parameters set so that the acceptance
rate was approximately 50%. This technique is intended
to "smooth" out short-wavelength fluctuations with the
hope of identifying long-wavelength structures. i~ The
smoothing treatment is also suggestive of a dynamical
process of rapid cooling, but no eRort has been made here
to develop a realistic simulation of a physical cooling pro-
cess. Shown in Fig. 14 is a typical cooling sequence. Here
the starting configuration is a representative of the ther-
mal ensemble at Pi ——1.05, a temperature near, but be-
low the phase transition. As in Fig. 10 the plotted points
in each frame represent cells in which the absolute value
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TABLE II. Inventory of Skyrmions from Fig. 14(b).
Listed is the coordinate x, y, z of the center of the lump, the
winding number B, the approximate total baryon number
b~ ~, the background-subtracted total energy E q;, and the
baryon-weighted rms radius r,

(c)

, ~

~ ~ ~

(b)

(d)
X r

x, y, z

5, 24, 14
11, 22, 8
1, 14, 21
11, 24, 11
17, 6, 10
27, 8, 21
4, 15, 28
9, 24, 28

27, 26, 18
29, 18, 18
12, 30, 20
20, 3, 16
9, 29, 25
25, 20, 2

3, 20, 14

—1
—1

1

1
—1
—1
—1
—1

1
—1
—1

1
1
1
1

—0.25
—0.22

0.24
0.34

—0.40
—0.38
—0.39
—0.38

0.35
—0.43
—0.44

0.42
0.44
0.43
0.48

E a)

38
30
26
32
30
19
57
32
19
24
36
25
18
12
46

~rms

1.26
1.43
1.51
1.75
1.76
1.79
1.83
1.84
1.86
1.87
1.91
1.93
1.95
1.99
2.21

FIG. 14. Cooling sequence for a sample configuration
thermalized just below the phase transition: (a) starting con-
figuration, (b) after 10 sweeps, (c) after 20 sweeps, (d) after
50 sweeps. Points are plotted as in Fig. 10. Open circles
represent points contributing —1 to the winding number.

of the estimated baryon density exceeds 0.003 75/as. We
see that after a treatment of 2{) sweeps, isolated struc-
tures resembling the Skyrmion of Fig. 10 become clearly
identifiable, and some eventually decay.

To confirm that these structures resemble the
Skyrmion, the baryon lumps in the configurations in the
sample cooling sequence of Fig. 14 were studied individ-
ually to determine their baryon density, energy density,
and rms size. The centroid of each lump was found by
scanning for the center of the baryon distribution. The
distribution in baryon number was measured out to a
radius at which either the sign of the baryon density
changed or the baryon density began to increase (usu-
ally because of a neighboring baryon). Almost all lumps
had winding number +1. Occasionally a lump was found
with winding number 2. Table II shows such an inventory
at cooling sweep 10. The mean adjusted lump energy is
(30+ 3)Eo and the mean estimated baryon number is

(0.37 + 0.02)a. All but one of these lumps survived 40
more cooling sweeps, after which the run was stopped.

Since the cooling process is stochastic, it is useful to re-
peat the cooling scenario with a diferent random-number
seed to see whether the same pattern of lumps is recov-
ered. It was not. Although the numbers of Skyrmions
and anti-Skrymions obtained was found to be similar, the
lump distribution obtained was quite diHerent. Thus the
pattern of lumps is not attributable to the original con-
figuration even if the rough multiplicity of lumps can be
so ascribed.

From these and other visual studies, one may surmise
that typical configurations close to the phase transition,

800 I I I I I I I I I I I

(B ) vs cooling sweep
High-temperature phase

600—

400—A

CQ
V

200—

Q

0 10 20
sweep

FIG. 15. Cooling history, showing the mean variance in
baryon number, starting from con%i.gurations thermalized at
Pi = 0.80 (high-temperature phase).

but in the syrnrnetry-broken phase, do not have clearly
distinguishable baryons. The typical "baryon density, "
i.e. , curvature of the map (9) in the high-temperature
configuration, is not very high, being only somewhat
smaller in magnitude than the curvature within a sin-

gle low-temperature Skyrmion. However, the sign of the
baryon density fluctuates strongly, leading by random
walk to the development of a nonzero winding number.
Despite the apparent randomness of these fluctuations,
the correlation length, determined from the pion screen-
ing mass, is quite large below the phase transition, falling
sharply only above. A visual examination of the configu-
rations during the cooling process reveals that regions
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(B ) vs cooling sweep

Low-temperature phase
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100—
V

50—
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10
sweep
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FIG. 16. Same as Fig. 15, but for Pi = 1.05.

VI. CONCLUSIONS AND DISCUSSION

We have shown that as the temperature increases past
the chiral phase transition, the lattice chiral model shows

an increase in topological susceptibility, as measured by
the winding number. How realistic is this susceptibility.
Because the lattice action we use permits strong curva-

ture in the field configuration, one might argue that the
topological susceptibility has been exaggerated over what
would be expected from the continuum model. In some-

what similar studies of lattice gauge theories, it has been

popular to take the residue of lumps in a given configu-
ration that survive a cooling treatment as a more appro-
priate measure of the topological susceptibility. %'ith
such an interpretation the curve for ten cooling sweeps
in Fig. 13 would be supposed to be more representative of

with a definite sign for the baryon density appear to
gradually grow, then condense to small, isolated distin-
guishable Skyrmions. In the process of smoothing, the
lattice cells contributing plus or minus one to the wind-

ing number are rapidly thinned out, leaving a residue in
more-or-less one-to-one correspondence with the emerg-

ing Skyrmions.
To study the effect of cooling further, a large sample

of configurations in an equilibrium thermal run was sub-

jected to the same cooling treatment. The mean square
of the winding number of this sample over the cooling
history is plotted both above and below the phase transi-
tion in Figs. 15 and 16. It is evident that the value decays
sharply in the first few sweeps, followed by a rather slow

decay characteristic of the small Skyrmions. In Fig. 13
is shown the value obtained after 0, 5, and 10 cooling
sweeps as a function of Pi. The relative stability of the
"frozen" structures noted in the sample sequence after 10
cooling sweeps is evidently typical of the population.

X~qcD 0.22/a . (21)

Setting the lattice scale from the temperature to 1/4a
=125 MeV (Ref. 5) gives a value yBqcD 0.055 GeV
just above the phase transition. The present chiral model

gives

x~ = (B')/&T (22)

For the choice (Bz) = 500 and with the values a 0.4 F
and T 30 MeV we obtain y~ 0.08 GeVz. How-

ever, in view of the unphysically small value of T in
the model one might hope to claim only an order-of-
magnitude agreement.

In view of the large Boltzmann suppression factor, how
could baryons with their huge mass-to-temperature ra-
tios possibly have any eA'ect on the phase transition?
(In the present example the mass-to-temperature ratio
is approximately 30 at the phase transition. ) The an-
swer evidently lies in the large entropy associated with
fiuctuations in the baryon number. These excitations cor-
respond to coherent fiuctuations in the pion field. One
might be tempted to associate them with highly excited
baryons or isobars, but because in the present model con-
figurations close to the phase transition do not reveal any
readily identifiable isolated lumps, one must regard these
configurations as a complicated ensemble of interacting
mesonic and baryonic degrees of freedom.

This study supports suggestions made by several au-
thors concerning a possible signal for quark-plasma
formation. In this "Kibble" mechanism, the chiral order
parameter finds itself randomly oriented as the plasma
cools, leading naturally to the formation of baryons and
antibaryons. Because the susceptibility is found to be

the susceptibility. Even this measure of the susceptibil-
ity shows a substantial rise as the temperature increases
through the phase transition. To resolve these questions
requires further study with more curvature-resistant lat-
tice actions and, perhaps, also with the explicit introduc-
tion of fermions to give an independent measure of the
fermion susceptibility.

For small values of the Skyrme-stabilization coefficient
in our model, the low-temperature structures are rel-

atively small configurations (2) with nonzero winding
number. If we suppose that these structures are nu-

cleons, we may estimate the physical size of the lattice
and compare the measured susceptibility with that of full

@CD. Comparing the known charge radius and mass of
the nucleon with the observed parameters of these low-

temperature structures, we should then estimate that
a 0.4 F and Fo 30 MeV. Since the phase transition
occurs at a value of Pi 1, we must then conclude from

(7) that the temperature of the phase transition in this
model is approximately 30 MeV. Since @CD estimates
of the temperature of the phase transition are typically
four times higher or more, we conclude that this model
cannot be compared reliably with @CD.

The lattice @CD value for the susceptibility just above
the phase transition is approximately
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numerically rather large, it is expected that antiproton
production in heavy-ion collisions resulting in plasma for-
mation vrould be copious, perhaps more than is expected
from simple high-energy pair production or through ran-
dom recombination from antiquarks. ~s Calculations with
models inspired by these lattice studies are needed to
estimate how many antibaryons survive final-state anni-
hilation.

It should be emphasized that the mechanism of chiral-
symmetry restoration proposed here permits a natural
connection between high-temperature and high-density
syrrunetry restoration. At high baryon number density,
chiral symmetry should be restored as a result of the
chaotic rearrangement of the order parameter, brought
about by the proliferation of baryons (with little or no an-
tibaryonic involvement). Thus one should expect a con-
tinuous phase boundary connecting these two regimes.
Classical studies of high-density symmetry restoration
have been carried out on a "crystalline" field configu-
ration by Jackson and Verbaarschott. ~s In the context of

the lattice model there seem to be no serious technical
obstacles to including a baryonic chemical potential in
the action and exploring the complete phase boundary.

ACKNOWLEDGMENTS

I thank Osamu Miyamura for discussions that stimu-
lated my interest in this problem and Yong-shi Wu and Al
Mueller for helpful suggestions. This work was supported
in part by the National Science Foundation under Grant
No. NSF-PHY8706501. Computations were carried out
on a Cray X-MP/48 at the San Diego Supercomputer
Center and on an IBM 3090/600S at the Utah Super-
computer Institute. I thank both supercomputer centers
for generous support. Help from the University of Utah
Research Committee is also gratefully appreciated. It is
a pleasure to acknowledge the hospitality of the Research
Institute for Fundamental Physics at Kyoto University,
where this work began.

S. Gottlieb, VV. Liu, D. Toussaint, R. Renkin, and R. Sugar,
Phys. Rev. Lett. 59, 2247 (1987).
C. E. DeTar and J. B.Kogut, Phys. Rev. D 36, 2828 (1987);
Phys. Rev Lett, . 59., 399 (1987); S. Gottheb, W. Liu, D
Toussaint, R. L. Renkin, and R. L. Sugar, ibid. 59, 1881
(1987); A. Gocksch, P. Rossi, and U. Heller, Phys. Lett. B
205, 334 (1988).
L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974); S.
Weinberg, ibid. 9, 3357 (1974).
J. B. Kogut and D. K. Sinclair, Nucl. Phys. B280, 625
(1987), and references therein.
S. Gottlieb, W. Liu, D. Toussaint, R. L. Renkin, and R. L.
Sugar, Phys. Rev. Lett. 59, 1513 (1987).
H. Goldberg, Phys. Lett. 131B,133 (1983).
T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
R. Saly, Phys. Rev. D 31, 2652 (1985).
E. Witten, Nucl. Phys. B223, 433 (1983).
J. Goldstone and R. L. Jafte, Phys. Rev. Lett. 51, 1518
(1983); S. Kahana and G. Ripka, Nucl. Phys. A429, 462
(1984).' J. Kogut, M. Snow, and M. Stone, Nucl. Phys. 8200, 211

(1981);J. Kogut, M. Stone, H. W. Wyld, S. H. Shenker, J.
Shigemitsu, and D. K. Sinclair, ibid. B225, 326 (1983).' G. Adkins, C. Nappi, and E. Kitten, Nucl. Phys. B228,
552 (1983).
A. D. Jackson and J. J. M. Verbaarschott, Nucl. Phys.
A494, 419 (1988).

' M. Teper, Phys. Lett. 162B, 357 (1985); Phys. Lett. B
1Tl, 81 (1986); 1T1, 86 (1986).' T. W. B.Kibble, J. Phys. A 9, 1387 (1976);T. A. DeGrand,
Phys. Rev. D 30, 2001 (1984); J. Ellis and H. Kowal-
ski, Phys. Lett. B 214, 161 (1988); Nucl. Phys. B327, 32
(1989); A.H. Mueller, in Quark Matter '88, proceedings of
the Seventh International Conference on Ultrarelativistic
Nucleus-Nucleus Collisions, Lenox, Massachusetts, 1988,
edited by G. Baym, P. Braun-Munzinger, and S. Nagamiya
[Nucl. Phys. A498 (1989)].
U. Heinz, P. R. Subramanian, and W. Greiner, Z. Phys. A
318, 247 (1984); J. Phys. G 12, 1237 (1986); P. Koch, B.
Muller, H. Stocker, and W. Greiner, Mod. Phys. Lett. A 3,
737 (1988).


