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Using the Goldstein-Owens angular momentum constraints on forward amplitudes in elastic
three-body scattering and the Mueller theorem, we present an explicit form of constraints on the be-

havior of spin observables in inclusive measurements of p~+p~A+X with a polarized proton
beam. We examine how these constraints can be used to test the validity of the Mueller theorem at
small pr. In addition, we find that the condition ~D„~ & I on the element D„of the polarization
transfer tensor is an independent signature of violation of the Mueller theorem at any value of pT.
The proposed tests of the Mueller theorem will be possible at the Fermilab spin facility and in high-

precision experiments at high-intensity hadron facilities.

I. INTRODUCTION

Experiments with unpolarized beams and targets mea-
sure spin-independent observables which are always ex-
pressed in terms of certain sums and averages of explicit-
ly spin-dependent amplitudes, each of which carries its
own specific information on dynamics. Unpolarized ex-
periments provide useful information, e.g. , about large
structures in the amplitudes and their general behavior.
However, the averaging and summing over the spin
dependence of the amplitudes results in a loss of impor-
tant information. Many structures in the amplitudes are
not seen while some of the apparent structures in the un-
polarized observables are open to misinterpretation. In
the case of inclusive measurements, the unpolarized ex-
periments do not even measure the "spin average" of all
inclusive amplitudes. In contrast with exclusive reac-
tions, not all inclusive amplitudes contribute to the unpo-
larized inclusive cross sections. Information about a cer-
tain set of inclusive amplitudes is accessible only through
polarization experiments. ' '

Mueller's generalized optical theorem relates inclusive
amplitudes to forward amplitudes in three-body elastic
scattering. Unlike two-body forward amplitudes, the
three-body scattering amplitudes are not measurable.
The Mueller theorem thus cannot be subjected to a direct
experimental test. However, the fundamental features of
the three-body amplitudes must be shared by the observ-
ables in inclusive measurements with spin. This conse-
quence of the Mueller theorem affords useful tests of its
validity.

Goldstein and Owens sho~ed" that parity and angular
momentum conservation and rotational invariance im-

pose kinematic constraints on three-body amplitudes.
Via the Mueller theorem these constraints propagate also
to spin observables in single-particle inclusive measure-
ments a +b~c+X. As a result, certain spin observ-
ables are strongly suppressed over a sizable kinematic re-
gion when the particle c is produced either forward or
backward.

Kinematic suppression of spin observables is obviously

important for planning and interpretation of inclusive
measurements with polarized beams and targets. Usually
the detector system's trigger logic would be designed to
skip events in the suppressed region to increase the data
collection rate and to reduce the running time. However,
the suppressed spin observables may carry potentially
very important information: Any deviations from the ex-
pected suppression s would indicate violations of the
Mueller theorem and possibly signal a nonconservation of
parity I' or even nonconservation of kinematic angular
momentum in production processes.

There has been considerable experimental interest in
the polarization of inclusively produced hyperons. ' ' In
this work we will focus on measurements of
pt+p~A+X with a polarized beam. Such studies are
free from problems with an unpolarized background in
polarized targets and are now accessible at the polarized-
beam facility at Fermilab. ' ' Experiments dedicated to
the study of suppressed spin observables were proposed
previously. '

This paper is organized as follows. The basic notation,
the Mueller theorem, and Goldstein-Owens angular con-
straints are summarized in Sec. II. The spin observables
in the reaction p&+p~A+X and their expression in
terms of inclusive amplitudes are given in Sec. III. The
proposed tests of the Mueller theorem are described in
Sec. IV. In Sec. V we briefly comment on the possible
outcome of such tests.

II. INCLUSIVE AMPLITUDES, UNITARITY,
AND ANGULAR CONSTRAINTS

Consider the one-particle inclusive measurements
a +b~c+X. The exclusive subprocess a +b~c+Xk
is described by helicity amplitudes

where a, b, and c are helicities in the s-channel helicity
frames of particles a, b, and c, respectively. The symbol
b, denotes the set of individual helicities of particles in
Xk. In general the rnultiparticle system Xl, does not have
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a definite value of total spin and total helicity. In Eq. (1),
s =(p, +pb), t =(p, —p, ), and M =(p, +pb —p, ) and
we omit the additional kinematic variables. Following
Goldstein and Owens, " we define the inclusive ampli-
tudes

X

Q, .b, ,b, (s, t, M )= g g J dpkf &",'abf t,",'.*a b. ,
k=1

where N is the number of open channels at energy s and
the integration dpk is over the phase space of Xk. In our
normalization, "

At fixed pz, the region of x in which either sin —,0 or
cos —,0 is small will be increasing with s. Consequently,
spin observables which involve amplitudes with m &0
and/or n )0 will be suppressed over a considerable re-
gion of x increasing with s in the beam fragmentation re-
gion (small sin —,'0) or target-fragmentation region (small
cos—,'0), or both.

The relations between spin observables in
a +b ~c +X measurements and the inclusive amplitudes
(2) arise as follows. Consider an exclusive subprocess
a+b~c+Xk. In this reaction the spin-density matrix
(SDM) of the particle c is given by

0X=—s
dt dM~

1 1

(2s, +1)(2sb+1) 32~ s

f (k) (k) 1 (k) i (k)e
Pcc' a

p g g g f d4kf bc, abPab, a'b'f ac', a'b'
327T S g'Q~ gb

(9)

Unitarity connects the inclusive amplitudes (2) with
forward-scattering amplitudes in the three-body process
a+b +c~a +b+c:

where p is the initial-state SDM of particles a and b, and

(k) 1 1 (k) (k)eg g J 4kfa. ..bft...b

t

2A
b b(s-, t, M ), (4)

(10)
where s is the invariant mass squared of the (ab) pair, t is
the spacelike invariant mass of the (ac) pair, and M is
the square of the total three-body energy in the center-
of-mass system (c.m. s.). The Mueller theorem is a gen-
eralization of the two-body optical theorem' to three-
body forward elastic scattering. For particles with spin
it reads

is the subprocess reaction cross section. Evidently

, tr'"' The . SDM of particle c in the inclusive
process a +b ~c+X is the weighted average

Af ~ f(k) (k)/yPcc' ~ Pcc'
k =1

From Eq. (9) we get finally
(5)Q, b.. .b, (s, t, M )=2Dtsc, A, ,b, ,b, (s, t, M ),

f, 1 IPcc'~ p X XPab, a'b'Qa'b'c', abc32~ s, b Qb

(12)

where the discontinuity is over M . In Eq. (5) the helici-
ties c =c and c '=c'.

Goldstein and Owens derived" important angular
momentum constraints on the three-body amplitudes:

The polarization of particle c along an axis k in the rest
frame of c is given by Pk =Tr(p Sk ) where Sk is the ap-
propriate spin operator. ' We note that c can be polar-
ized even when both a and b are unpolarized.

A, b .. .b, =(sin —,'0) (cos—,'0)"Ba b, ,b, ,

where

m = (a b —c)—(a—' b' c')~, — —

n = ~(a b+c)—(a'—b'+c ')~ . — (7)

pr
sin —,'0=+ — for x &0,

x&s

pT
cos —,'0= — — for x &0 .

x s

The angle 0 in Eq. (6) is the c.m. s. scattering angle. The
amplitudes B,.b, ,b, are regular at 0=0 and 0=m. The
unitary relation (5) implies angular constraints on in-
clusive amplitudes (2) similar to (6).

In the following pT and pL are the transverse and lon-
gitudinal components of momentum of particle c in the
c.m. s., and x =pL/pi is the Feynman variable. The

max

variables pT and x are related to t and M (e.g. , Ref. 14).
The scattering angle 0 is given by sin0=pT/~p, ~

where

p, is the c.m. s. momentum of c. For large s we have

III. INCLUSIVE MEASUREMENTS OF p ~ +p ~A+X
USING POLARIZED PROTON BEAMS

We first consider a correlated decay production of A in
an exclusive process a +b ~A+Xk where a and b can be
polarized or unpolarized. The decay A~p+m. is de-
scribed by polar and azimuthal angles 0 and P of the de-
cay proton momentum in the rest frame of A with the z
axis along the direction of A momentum. The decay an-
gular distribution u! '" (0, )t ) is then given by

w(k)(0 (t))tt(k) Tr( U (k)U+ )
1

7

d
(13)

where p' ' is the final-state SDM of A in the reaction
a +b ~A+Xk, U is the A decay matrix, and d is a A de-

cay normalization factor. ' We define the angular dis-
tribution of A in the inclusive measurement as the pro-
cess average

w(0, $)= g u)' '(0, )p)(T "'/X,
k=—1

where X is the number of open channels. As the result of
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linearity of the trace operator and the definition of p in

Eq. (12) we get

w(8, $)X=—Tr(UpfU ) .
1

d
(14)

4 2

2dQ dx dp2

where the normalized distribution is given' by

1W=
2

[I+aP~sin8sing
16m

+P,„(aD„sin8 cosP+ aD„cos8)

+P, (aD sin8 sing+ A )

+P„(aD,„sin8 cosP+D„cos8)] .

(15)

(16)

In Eq. (16) the constant a is the weak decay parameter,
P~ is the polarization of A, A is the polarized proton
beam asymmetry, and D„„,D„, . . . , D„are the com-
ponents of the depolarization tensor. These observables
are related to the inclusive amplitudes (2) as follows:"

Q+++'++ + + Q+ —+'+ —+

+Q++ —'++ —+Q+ ——'+ —— ~

Dzz~ =Q+++ +++ +Q+ —+ + —+

Q++ —'++ — Q+ ——'+ —— ~

D-&=Q+++ -+-+Q+-+---
+Q++ —' —+++Q+ ——' ——+ ~

(17a)

We can thus express the measured distribution w (8,$) in
terms of spin observables for the inclusive process using a
spin formalism analogous to exclusive processes.

Consider now the inclusive reaction p&+p~A+X.
Let P, =(P,„,P, ,P„) be the vector of the incident-
proton-beam polarization. The measured decay proton
angular distribution is

elusive cross section X enter only into one spin variable
D„X.

The four-complex double-flip helicity amplitudes enter
only into the other two diagonal components of the po-
larization tensor: D X and D X. The amplitudes must
conspire to produce the real-valued spin observables D
and Dyy.

There are two pairs of complex single-flip helicity am-
plitudes, with one pair contributing only to spin observ-
ables P~X and D, X, and the other pair appearing only in
spin observables A X and D,X.

In exclusive reactions the same set of complex helicity
amplitudes determines the cross section and spin observ-
ables. We see that this is not the case in inclusive mea-
surements where experiments with spin reach specific in-
clusive amplitudes which contribute only to a few spin
observables.

The experiment with the polarized proton beam deter-
mines eight observables in terms of four real and eight
complex inclusive amplitudes. More inclusive amplitudes
are measured in experiments with the beam and target
both polarized. Such experiments are required for a com-
plete measurement and determination of the 32 real-
valued amplitudes describing ' the inclusive measure-
ments with spin in p +p ~A+X.

In practice, the spin observables will be determined
from the experimental angular distribution W(8, $) in
small bins of (x,pT ) using the methods of maximum like-
lihood. The optimization process has to take into ac-
count the positivity of the spin-density matrix of A, and
certain nonlinear constraints on the inclusive amplitudes
of La France —Winternitz type. Imposing inequality
and nonlinear constraints during optimization involves
methods of nonlinear programming which requires spe-
cial optimization programs, such as MINos 5.0 developed
at Stanford, or others, as well as a special treatment of
the error matrix. The last point reflects the fact that
constraints carry and provide independent information.
As well, the sensitivity of the solution point on the uncer-
tainties in the acceptance of the apparatus should be ex-
amined.

Dyy~ =Q+++' —+ —+Q+ —+' ———

Q++ —' —++ Q+ ——' ——+

(17b)
IV. TESTS OF THE MUELLER THEOREM

PAX= +2 Im(Q+++ +~ +Q+ —+'+ ——)

DzxX=+ e(Q+++ ++ Q+ —+'+ )

AX= —2Im(Q+++ +++Q+ + + ),
D„,X=+2 Re(Q ++++++Q+ + + ) .

(17c)

(17d)

First we notice that the cross section X and the spin ob-
servables are expressed linearly in terms of inclusive am-
plitudes rather than as bilinear terms. Considering that
the amplitudes Q are discontinuities of forward three-
body scattering amplitudes, this linearity is similar to the
linearity in the usual two-body optical theorem.

We now note that the four real and positive helicity-
nonflip amplitudes which enter into the unpolarized in-

We propose a systematic experimental determination
of spin observables in pt+p~A +X in the kinematic
regions where the suppression of spin observables is ex-
pected to occur. To achieve high statistics in small bins
of (x,pT ) as pT~O, such experiments may require a kine-
matic trigger bias.

The measurement of p&+p~A+X does not deter-
mine the individual amplitudes. But it does determine
spin observables each of which is expressed in terms of
amplitudes that satisfy the same angular constraints of
Goldstein and Owens. We will use this fact to establish
the signatures of violation of the Mueller theorem. There
is also an additional signature independent of the angular
constraints themselves.

We start by factoring out the angular constraints in the
observables (17) which we rewrite as
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X=K, A, +K',B, ,

DzzX=K~ A
& KiBi

Dxx X—K2 A2+K2B2

Dyy~ K2 A 2 K2B2

PAX=K3A3, D, X=K383,

A X =K4 A4, D, X =K484 .

(18a)

(18b)

(18c)

(18d)

The angular factors K, ,K,i=1, . . . , 4 have a generic
form:

K; =(sin —,'8) '(cos —,'8)

K =(sin —,'8) '(cos —,'8)
(19)

Unitarity and angular momentum conservation require
that all conditions (20) and (21) become satisfied, namely,
that

but rather powers p, (x,s), p,'(x, s), v;(x, s), and v,'(x, s),
i =1, . . . , 4, some or all of which may be different from
the values given in Eq. (20). Assuming the limits (21)
exist, the differences (for i = 1, . . . , 4)

e;(x,s) =p, ;(x,s) —m, ,

e,'(x, s) =p,'(x, s) —m,',
5;(x,s) =v;(x, s) —n;,
5,'(x, s) =v,'(x, s) n—

(22a)

(22b)

become important observables. For negative values, the
deviations (22) from the unitary powers (20) measure the
violation of the Mueller theorem. Note that in general,
the deviations (22) need not be all negative in the same
(x,s) bin.

Double-Aip amplitudes offer another test of unitarity.
Assuming the angular constraints (20b}, we can write
(18b) as

m2=0, m2=2, n2=2, m2=0,

(20a)

(20b)

D„„X=(cos—,'8) Az+(sin —,'0) B2,

D~~X=(cos—,'8) A2 —(sin —,'8) B2
(23)

Im3m3n3n31
Unitarity requires A 2 =—A 2 and B2 =B2. This implies

i I
m =m =n =n =1

4 4 4 4

and that the limits of reduced spin observables

(20d) D, =+D for 8—+0,

D Dyy for 0~7T

(24a)

(24b)
lim A, = A;, lim B, =B, ,
6)~0 0~0

lim A, = A;, lim B;=B;,
8~m 0~ n.

(21a)

(21b)

exist and are finite or zero for i = 1, . . . , 4 and at all
values of (x,s).

In practice we can assume the constraints (20), com-
pute A;, B;, i=1, . . . , 4 and extrapolate this data to

pT —+0 for fixed (x,s). There are two possible signatures
of violation of the Mueller theorem in these reduced spin
observables. %e may find in some region or regions of
(x,s) (a) either a divergence of one or more of the limits

(21), or (b) a nonexistence of one or more of the limits (21)
due to a chaotic behavior of the observable as a function
ofpT.

Notice that the cases i = 1, . . . , 4 are separate because
they involve different amplitudes. The measured spin ob-
servables can approach zero as 0~0 or O~m. faster than
the unitarity limit (20). It is when some of the spin ob-
servables approach zero at a slower rate than is
prescribed by the unitarity limit (20) that the correspond-
ing reduced spin observable will diverge as pT~O. The
divergence can be removed only by reducing some of the
powers in (19) to positive values below the unitarity limit
(20). Since we do not expect the measured spin observ-
ables to diverge as pT~O, the violation of the Mueller
theorem in A

&
and B, which involve nonAip amplitudes

can be manifested only through their chaotic behavior.
In an actual fitting the expressions (18) and (19) to mea-

sure data in any (x,s) bin, the powers in Eq. (19) can be
left as free parameters. In general, the fits then may not
provide the powers m;, m, n;, n,

' expected from Eq. (20}

Let us now consider the observables X and D„X which
involve the nonflip amplitudes, and write (18a) as

X= A)+B),
D„X=A

&

—B) = A j
—B)+6

(25)

Unitarity requires that A, = A
&

0 and B, =B', ~ 0, i.e.,
b =0. Assuming b, @0we get

X=—,'( I+D„)X=A, + —,'6,
Y= —,'(1 D„)X=B,——

—,'b, .
(26)

For as long as X~O and Y~O, the measurement of X
and D„X wi11 not detect violation of unitarity. However,
where 2

&
or B, is sufficiently small and/or b, is large, we

may see L & 0 or Y & 0. The equivalent signature is

(27)

—a' —b' —c ', —a —b —c a'b'c ', abc

where the helicity factor

g=(a —a') —(b b) (c c—') . — —

(28)

(29)

for some values of (pT, x, s). Notice that this test does not
require the limit pT~O and is thus accessible to current
measurements of p&+p~A+L at the Fermilab spin fa-
cility. ' ' The proper use of the maximum-likelihood
function, optimization procedures, and statistical hy-
potheses testing will be crucial for this test.

The parity P conservation in three-body elastic scatter-
ing leads to parity relations for amplitudes (4) which read
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The Mueller theorem (5) implies similar parity relations
for the inclusive amplitudes (2). These relations were
used in the derivation of Eqs. (17) and (18). Conditions
(24) and (27) subject to a simple test this aspect of the
Mueller theorem.

V. DISCUSSION

The first tests of the Goldstein-Owens angular con-
straints (6} in p +p —+A+I were done for A polarization
PA, and appear to be well satisfied with P~ showing a
linear dependence' ' on pT for pr 1 GeV/c. If the
same conclusions can be reached for the remaining spin
observables, then the use of the Mueller theorem in
theoretical studies of hadron production based, e.g. , on
Regge-type models, ' ' will receive new experimental
justification. Moreover, the inclusive measurements with
spin can then be viewed as an indirect method to measure
the forward amplitudes in three-body scattering. Devel-
opment of relativistic kinetics of high-density hadron
matter at high temperatures may require such informa-
tion. While two-body forward amplitudes are related,
e.g. , to the refractive index of a medium, higher virial
coefficients in the equation of state and transport equa-
tions require three-body scattering. Spin experiments
could be thus useful for studies of inaccessible states of
hadron matter of interest to cosmology.

Let us now consider the possibility that some violations
of the Mueller theorem are found. At small pT they will

show up either as a divergence of some limits in (21), or
as a chaotic behavior of some spin observables leading to
the nonexistence of corresponding limits in (21}, or as a
violation of conditions (24). At small and larger pr, an
independent signature of the Mueller theorem violation
will be the nonphysical values (27), for the element D„of
the polarization transfer tensor.

Since the Goldstein-Owens angular constraints (6) are
based on accepted assumptions of conservation of angu-
lar momentum and parity P in three-body elastic scatter-
ing, any possible violations of these constraints must be

traced to the assumptions involved in the derivation of
the Mueller theorem for particles with spin. A detailed
discussion of these questions will be presented elsewhere.

A question arises how seriously one should consider
the possibility of chaotic behavior in some spin observ-
ables. Recently intermittent behavior was observed in
nucleus-nucleus, hadron-nucleus, and to a larger degree
in m+p and K+p multiparticle production. ' The Auctua-
tions in factorial moments of multiparticle distributions
have been found largest in e+e hadron production, in-

dicating that the origin of possible chaos is in the dynam-
ics of hadronization and not in the reaction dynamics.
The spin dependence of the hadronization processes
is not yet fully understood. Helicity transfer in quark
hadronization was recently studied for processes with po-
larized heavy-quark production and subsequent jet forma-
tion. In the context of semiclassical models for spin
observables in inclusive production of hyperons based on
the precession of quark spins ' ' in confining color fields,
the interaction of slow sea quarks with fast valence
quarks via coupled precessions could lead to a chaotic
component in the quark recombination dynamics. Ob-
servable effects of such chaos could be detected in sensi-
tive observables in high-statistics experiments with spin.
Previous models ignored the precession of fast valence
quarks entirely.

To conclude, we suggest that the Mueller theorem
should be tested in inclusive measurements with spin,
such as p&+p~A +X discussed in this paper. The ex-

periments will be feasible at the Fermilab spin facility'
and, at lower energies but with a higher precision, at the
proposed high-intensity hadron facilities.
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