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Models of the long-distance behavior of QCD can be used to make predictions for the twist-two
piece of the current correlation function appearing in deep-inelastic scattering. The connection be-
tween the model predictions, valid at a four-momentum transfer squared Q? of the order of 1
(GeV/c)?, and the data, collected at much higher Q2 is provided by perturbative QCD. We present
here the details of a method, previously used for spin-averaged lepton scattering, applied to the
spin-dependent case. We then use the method to make predictions for the spin structure functions

ngolon and grlleulmn.

I. INTRODUCTION

For some years now QCD has been the leading candi-
date for a theory of the strong interaction. Perturbative
QCD (PQCD) has provided us with a unifying framework
for studying all high-energy scattering phenomena in-
volving hadrons and, because of its property of asymptot-
ic freedom, has given us an a posteriori justification of the
popular parton model. '

At finite Q2 moreover PQCD predicts logarithmic de-
viations from exact scaling. These are usually derived us-
ing the renormalization group? which makes predictions
for the nth moment of the structure functions, or
equivalently (at least at leading order) the quark and
gluon distributions, of the form

q(n,0*)=4,C,(Q%/u’,g,)+higher twists , (1)
where
Cu(Q* /18 )=C, (L )exp |~ [P dg v,(g)/Blg) | . @

Here A, is a matrix element which is dependent on the
quark distribution under consideration and the C,’s are
coefficient functions which give rise to the Q2 dependence
of the moments g (n,Q?). g is the running coupling con-
stant while g, is the coupling constant at the reference
scale u. v, and (3 are the usual anomalous dimensions
and the Callan-Symanzik functions, respectively. !

In perturbation theory one typically expands C,, v,,,
and B up to some power of the coupling constant and
evaluates them to this order. This was done for the unpo-
larized case by Gross and Wilczek, Politzer, and others
up to first order®* and later up to second order by Flora-
tos, Ross, and Sachrajda, and others.>~’

For polarized scattering the calculations to leading or-
der have been done by Ahmed and Ross and by Ito and
Sasaki.® At next-to-leading order the coefficients C, as
well as y, have been calculated by Kodaira et al.® For
general n, the anomalous dimensions have not been cal-
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culated beyond leading order.

The works mentioned above give direct predictions
only for the moments of the distribution functions. This
is somewhat unfortunate as the experimentally measured
quantities are the actual distributions themselves which
typically vary in accuracy as a function of x and are only
measured down to some finite small x, with a subsequent
extrapolation to x =0.'%!! Hence the extraction of the
moments is subject to some uncertainty and there may be
considerable correlation between the errors on different
moments. Moreover, in the case of polarized scattering a
great deal of attention has recently been given to the
QCD evolution of the first moment of the spin structure
function of the proton,!? while relatively little attention
has been paid to the consistent evolution of the other mo-
ments.'® As we have previously pointed out,'* considera-
tion of the latter in fact makes it unlikely that the small
value of f(l)g’]’(x,Q2= 10 GeV?)dx measured by the Euro-
pean Muon Collaboration (EMC) can be reconciled with
the picture that at low energies the proton consists ex-
clusively of three nonstrange valence quarks. '°

In the case of unpolarized scattering, the evolution of
the relevant distributions has been calculated in a variety
of ways. Originally, at first order, Gross and others'®
reconstructed the nonsinglet quark distribution using
asymptotic expansions of the anomalous dimensions and
the inverse Mellin transform technique. Other methods
have relied on parametrizations of the structure functions
which have then been evolved by numerically solving'’
the integrodifferential Altarelli-Parisi'® equations, by us-
ing the method of Laguerre polynomials'® or by using
particular parametrizations of the quark and glue distri-
butions.? In this paper we shall use the method of
Gonzales-Arroyo et al., the details of which can be
found in a series of papers, starting with the second-order
evolution of the unpolarized nonsinglet® and leading to
the more complicated case of the singlet.’

In Sec. IT we present their method applied to the polar-
ized case. Because the anomalous dimensions for the po-
larized singlet have not been calculated at second order
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we restrict ourselves to leading order only. As is the case
in Refs. 6 and 7, we expect the generalization to second
order to be straightforward. Higher-order effects may be
important, because of both the considerable distance be-
tween the model scale and the experimental momentum
transfers, and because the model scale is rather close to
the confinement scale Agcp. For these reasons our re-
sults should be viewed as indicators of general trends
which may be subject to some higher-order modifications.

Because of its speed the method described in Sec. II is
particularly useful for comparing model predictions of
structure functions, which apply typically at some low
scale Q2=p?, to data at higher Q2 (in our case Q?=10
GeV?). This is because the model-dependent scale y is a
priori unknown and has to be obtained by fitting some
characteristic prediction of the model to data. In Ref. 21,
for example, the scale of a model where the quarks carry
all the momentum of the proton is extracted from the
known momentum fraction that they carry at Q?=10
GeV2. In Sec. III we shall present the results for a partic-
ular model where we use the shape of the spin-
independent valence distribution to determine pu, enabling
us to make predictions for g,(x,Q?) of the proton and
neutron.

II. THE RECONSTRUCTION VIA THE BERNSTEIN
POLYNOMIALS

We describe here the method of Refs. 6 and 7, applied
to the spin-dependent quark and glue distributions. To
illustrate the method we take the case of the spin-
dependent nonsinglet (which, because of parity invari-
ance, is identical to that of the spin-independent nonsing-
let) and then give the straightforward generalization to
the singlet. The main result of this paper is the calcula-
tion of sets of coefficients, given in Eq. (23) and in the Ap-
pendix. The reader familiar with the method may want
to proceed directly to these results.

We suppose that we have a nonsinglet quark distribu-
tion
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whose nth moment
Agns(n, Q%)= folx" ~1Agns(x, 0 2)dx @)
obeys the evolution equation (1). To first order this yields
( 2y 7 Agg(m/128y)
Agns(n, Q%)= 1_1(_Q2_) Ags(n,u?) . (5)
a(p”)

Here gs''(x,Q?) is the distribution of quarks with heli-
city equal (opposite) to that of the parent hadron, a(Q?)
is the strong coupling constant at the scale Q2, Age(n) is
the (lowest-order) anomalous dimension arising from the
polarized quark-quark splitting function and f, is the
lowest-order coefficient in the expansion of the Callan-
Symanzik function and is given by, for SU(3) color,

_33—-2f

Bo 5

(6)

where f is the number of flavors. In order to reconstruct
the distribution Agys(x,Q?) from Agyg(n, Q%) we write

Agns(x,01)= [ 'Ay —x)Aqns(3,0P)dy ™
where A(y —x) must have the property
feo= [ A =x)f (p)dy . (8)

A sufficient, but not necessary, choice for A(y —x) is the
Dirac 8 function. We however use functions related to
the Bernstein polynomials

o NI, v
—_ — P Sl A, 1_._ 4
Ay =)= tm o o 1Y)
k/N —x
N+ VSR (—1)ykt!
= .
Wk 2w —k—n @
k/N-—x

By integrating over y with a test function y€, or other-
wise, 22 it can readily be shown that A(y —x) exhibits the
behavior of a § function in the range 0 <y =<1 (it need not
be symmetric in x and y for our purposes, nor does it
have to behave like a & function for y outside this inter-

Agns(x, 0 =qlis(x,0%)—qs(x,0%) (3)  val). Using Egs. (9) and (5) in (7), we obtain
]
L ~ Atk +1)/(2B,)
s (NHINNZE (=1 1 ks | a(Q?) “ 5
= S ) 10
AqNS(x’Q ) 1’:/,/1/;152@ k! ,20 INN —k =) foy a(#2) AqNS(yuu' )dy (10)

As has been pointed out in Refs. 6 and 7, it is dangerous to sum Eq. (10) numerically because of the oscillatory nature
due to the appearance of the (—1)’. Because of the form of Ag (I +k +1) it is not possible to do the sum in Eq. (10)

analytically. However, if one uses the expansion

c(i,j)

— A, () /(2Bg) _
r = - .
0 (p+n) *Pllna(n +p))

(11

it is in fact possible to perform the sum analytically for each individual term in Eq. (11). In Eq. (11), r =[a(Q?)/a(u?)],
and a, p, and p are arbitrary constants; later on we shall use @ =e© ~3/% and p=2, where C is Euler’s constant. pis
dependent on the particular expansion and is a function of . We then find that

-1 i+p—1
m NFDGE (=) yrt ey x|y | (12)
Nk o kt S NN —k =Dl (p+k+1)*? Tl+ply |y x ’
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and
lim (N+1) N—k (""l)l yk+l
1‘:',/15\,_.01 k! Zo IMN—=k—=D! (p+k+1)*P[lna(p +k+DY
‘ i=1,=s lIn2
oy—x) [x "' [ y] " e TS
=—_—"" (= In= d 13
Ti+py |y 5 J, s T(i+p+s) (13
Hence we obtain
1
Agys(x,0D)= [ i’yibqq(x/y,r)AqNS(y,uz), (14)
X
with
=1y =s [1n L
(p—1) (i+p—1) . .. §° a In
| x y C4q(i,0) Cq(J) o
b /y,r)=|— In= —_ 15
ag (X /921) ly\ 2 |l Ti+p) 2 T() J, T +p+s) (13

By direct reevaluation of the moments of Eq. (14) it is
easy to check that Eq. (5) is indeed satisfied. For the par-
ticular case of the nonsinglet shown here, the expression
simplifies considerably because the coefficients c,, (i, j) are
0 for j#0. The details of the QCD evolution are con-
tained in the b coefficients and are independent of the in-
put distributions Agyg(y,u?). This makes the method
fast as one only needs to evaluate the b’s once for a suit-
able set of x /y and r values [this is of particular use for
the singlet where the coefficients cqq(i,j) are not O for
Jj#0].

In the case of the singlet distributions the differential
equation governing the evolution of its moments is given
by

t_(n)

f

Here Ag(n,Q?) are the moments of the glue distributions
analogous to Egs. (3) and (4). The A’s are proportional to
the anomalous dimensions and for three flavors are given
by

d |AZ(n,0%)
d1nQ? |Ag(n,Q%)
_ alQ?) Ag(n) Ag(n) A3(n,Q0%) ”
T T2r [Agn) A |agimr ] 1
J
2 ty(n) 2 t_(n)
AZ,00)= w,(n) [BLL N 4y (n) | 22D
alp®) alp”)
2 ty(n) 2
+ | —w;(n) a(Qz) +w;(n) a(Qz)
alp) a(p”)
( 2) t, (n) ( 2)
Ag, (0= | —w,(n) | 2L +uw,(n) [ B
alu”) a(p”)
@y | 0y |
+ 2(”) aQZ wl(n) a—i—
alu) alu”)
where
1|, A_(n) _
wm(n)—g Rin) ,w3(n)—AAgg(n)/R(n),

wy(n)=AAg(n)/R(n), ti(n)=4[—A,(n)ER(n)]

4|3 1 |
A =—|= —-——=2 -1,
aq(n) 3 (2 n(n+1) n Elj]
n—1
Age(n)= nn+1) |’
(17)
4 n+2
A = —
za(m) 3 nn+1) |’
3,2 4 (|
A =3 |=+=- — —
g(n) >t T a jgl-]]
Equation (16) has the solution
A3, (u?)
t_(n)
\ Ag,(u?),
(18)
3, (p?)
(n)
] (1)
(19)
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and
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AL ()=AA,(n)EAA,(n), R(n)=V A% (n)+4A A, (n)AAy,(n) .

Finally, for the singlets we obtain the following expressions analogous to (14):

AZ(x,0%)= fxl-%}i[bqq(x/y,r)AE(y,u2)+bqg(x/y,r)Ag (y,u))]

and

Ag(x,0%)= fxlgyl[bgq(x/y,r)AE(y,uZ)—}—bgg(x/y,r)Ag(y,,uz)] ,

where b, (x /y,r), bg,(x /y,r), and by, (x /y,r) are equivalent to b,,(x /y,r) given in Eq. (15) with ¢

21

(22)

q4gk (1, J) Teplaced by

Cagk (B3 J); Coqr(i,]), and cggy (4, j), respectively. Here k =+ distinguishes the two sets of expansions necessary for each
series of coefficients corresponding to the two distinct powers ¢ and ¢ _ appearing in Eq. (18).

Choosing p=2, and using

1 1

—=C+¥n)=C+lnn ———
j§1 27’1 12”2
one arrives at the expansions
~ A/ _(ieusr | _ Bu | =T6u 32u? 1o
’ (az) 9 81 81 |2 0
wl(n)rt+(n):(az)4u/3 1 - __9__5_ +O((z,lnaz)_3) ,
(Inaz)* | 25z
wl(n)rt’(n)=((.zz)”"‘/27 ! 3 —27 +0((z,lnaz) %) | ,
(Inaz)® | 25z
ty(n) 4u/3 2u —37u 2 1 1 4u 1 9 -3
= 11—+ +2u? | = - +0((z,1 :
walnr (az) l z 9 “ 122 Tnaz 1527 (Inaz)? 2522 ((zInaz) =)
O, 6wy 8u —76u | 32u? |1 1 4u 1 9 ;5
= 1—-——+ —— - +0((z,1 , (23)
walmr - =az) { o7 |81 81 |27 Tnaz 152 (az? 2522 O o)
t, (n)__ 4u/3 1 9 Su 1 27 +0 —3
- 1. | Al 5 | ( )] ’
w;(n)r (az) Inaz 10z 75,2 (Inaz)? 2027 ((z,lnaz)™"°)
1_(n) 1 9 4u 1 27 _
ws(n)r ~ =(az)'®/? —_— +0((z,Inaz) %) | ,
3 Inaz 10z 522 (Inaz)? 2022
e a3 1 2 —6 , 4u |1 1 3 3
= — —+— |= —— | +0((z,1 ,
wy(n)r (az) [ naz | | 52 5 5 |52 (naz)? P ((z,Inaz) ")
) _ o 16u /27 1 2 |6 16w | 1 1 3 +0((z.1 -3
wy(n)r (az) Inaz 5, 5 45 |52 (Inaz)? 5,2 ((z,Inaz)™°) ¢ .

Here a =e“ 7 ** z=n+2, u=Inr =In[a(Q?)/a(u?)],
and O((z,lnaz)?) imply that terms of order (Inaz)™*
have been omitted. Any such terms are also at least of
order z 3. Terms of higher order are listed in the Ap-
pendix. The rate of convergence of Eq. (23) is a function
of Inr; more terms need to be kept if the evolution is over
a greater range of Q2. For the value of r considered in
the next section terms up to order (z, Inaz) " ° are more
than sufficient. Because the expansions (11) are in powers
of 1/(n +p) and 1/In(n +p) the accuracy of the series
(23) increases rapidly as n increases. Hence the method is

most accurate at large x, and indeed the number of terms

that are to be kept is primarily determined by the pre-
cision that is required as x approaches 0.

Finally, for the polarized singlet only, it turns out that
the expansions do not converge for n=1. There are
several ways to overcome this. Because all higher mo-
ments converge arbitrarily well one might choose to just
add a & function at x =0, this being the only function that
influences the first moment exclusively. Alternatively,
and this is the course taken by us, one may add to the ex-
pansions (23) a term such as z ™ ¢, with ¢ being some large
number. Again only the first moment is affected
significantly. Because of the arbitrariness in the choice of
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¢ this should be seen purely as a check that the distribu-
tions for nonzero x are not sensitive to the problem with
the singlet’s first moment, i.e., that the higher moments
are not affected by this additional term. No significance
should be attached to the predictions in the region that is
affected by the term z ~% We will examine the effect of
this term in the next section, after briefly outlining a
model that we shall use to illustrate the method that has

been developed in this section.

III. RESULTS

We now wish to apply the procedure developed in the
previous section to a realistic problem. We shall start
with a model prediction for the proton and neutron spin-
dependent quark distributions at some, in principle un-

J

Agp(x,u)=2M 3 [ :

Here [p=0) is the Peierls-Yoccoz projected wave
function of the nucleon at rest while {p,| is the wave
function of the two-quark intermediate state with
momentum p,. The destruction operator for a quark of
flavor f and total angular momentum m is b,, , and ¥,
refers to the corresponding spinor. The plus indicates the
projection onto the “good” components and 1! refer to
the two helicity projections: i.e.,

q,;"1+zj%?i1_l;ﬁq,m _

(Note that while ¥,, is an eigenstate of the total angular
momentum operator, ‘I/,T,,1+ are not.) Further details of
the model can be found in Ref. 25.

The N-A mass splitting is incorporated into the model
by adjusting the diquark mass appearing in Eq. (24)
[through p;” =(p3+m?3)!/*+p,], depending on whether
the state is in the mixed symmetric or mixed antisym-
metric part of the spin-flavor wave function.?® We em-
phasize that the model is not entirely satisfactory as the
Peierls-Yoccoz procedure does not produce an energy
eigenstate, nor does it eliminate the center-of-mass
momentum variable from the internal wave function of
the nucleon. Furthermore, it has been pointed out that
connected contributions to the twist-two piece of the
scattering process also arise from four-quark intermedi-
ate states,” which are not considered in Eq. (24). As a
consequence of these deficiencies the first moment of the
spin-independent quark distributions (summed over
flavors) is not guaranteed to be precisely three, nor is the
Bjorken sum rule satisfied. We shall overcome these
problems phenomenologically by simply adding in a term
of the form x ~!'/%(1—x)’ to the quark distributions in or-
der to mimic the four-quark term. We note that this does
not affect g4 and g} above x=0.3. Note however that the
vanishing of the support above x=1 is guaranteed be-
cause of the 8 function in Eq. (24) which ensures energy-
momentum conservation explicitly. For a bag of radius
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known, scale u?. This scale is determined, within the
model, by evolving the model prediction for the twist-two
piece of the nonsinglet spin-independent valence distribu-
tion xgq,(x,u?)=xu,(x,u*)+xd,(x,u?), and comparing
the resultant xg,(x,Q?) with parametrizations of the data
at 0?2=10 GeV2.2 This enables us to make predictions
for g8(x,0?=10 GeV?) and g7(x,Q0?=10 GeV?).

The model we use should describe the low-energy
properties of the nucleons, such as g ,, the magnetic mo-
ment, the N-A mass splitting, etc. For this reason we
shall use MIT bag wave functions for the nucleons, with
the center-of-mass momentum projected out through the
use of the Peierls-Yoccoz procedure.?* We shall assume
that As (x,u?)=Ag (x,u?)=0.

Au (x,u?) and Ad (x,u?) are given by

d3p
2#)23 8(M —xM —p; )((p,lb, ¥} (0)p=0)1>—|(p,|b,, ¥} +(0)p=0)[?). (24)

[

R=0.8 fm the model predicts the following normaliza-
tions at the scale u:

folur(x,,uz)dx =1.53,
foiu 1(x,y,z)a'x =0.47 ,

(25)
Jd'xutiax =037,

Ja*x.udx =0.63

giving the value of g, corresponding to the Peierls-
Yoccoz projected MIT bag model

g4= [ Ags(x,phidx =1.32 (26)

1.2

N

FIG. 1. xu,(x,Q0%)+xd,(x,Q?) at the model scale Q>=p’
and at 0?=10 GeV? (solid lines). The dashed and dotted lines
correspond to the Duke-Owens and Martin-Roberts-Stirling pa-
rametrizations of xu,(x,0?=10 GeV?)+xd,(x,0?=10 GeV?),
respectively (Figs. I.1b and 1.2b of Ref. 23).
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(a)

xA}Z(x,QZ)

1.0

0.15 —\

xAg (x,Q?)

0.8 1.0

FIG. 2. The quark singlet (a) and polarized glue (b) distribu-
tions at Q?=p’ and Q*=10 GeV? [note that Ag (x,u?)=0]. The
solid and dashed lines correspond to the addition of terms pro-
portional to z ' and z 7'°, respectively, to ensure the conver-
gence of the first moment as described in the text. The dotted-
dashed line does not have this term added in.

and, for the first moments of the nucleon structure func-
tions

fg‘”'”(xu dx—f[*leqg,x,uHh Ag(x,u?)
+SAZ( x,u?)]dx
=0.22(0.00) . (27)

These are the same values as those expected with wave
functions that are completely SU(6) symmetric. Clearly
this is only an approximation to reality. For example, we
have shown previously that a pion cloud reduces the in-
tegral of gf(x,Q?%) by about 15%.2" It should be noted
however that the distributions themselves are different

TABLE I. Moments of quark nonsinglet, singlet, and glue
distributions. All moments are in percent of expected ones.
The singlet moments correspond to those obtained from Eq. (23)
with the first moment readjusted by a term z ~'° (see text). The
numbers in parentheses do not have this additional term.

Moment Agns(n,Q?) AZ(n,Q?) Ag(n,Q?)
1 0.93 1.00 (0.99) 1.00 (0.40)
2 0.99 0.99 (1.00) 1.00 (0.84)
3 1.00 1.00 (1.00) 0.99 (0.95)
4 1.00 1.00 (1.00) 0.99 (0.98)
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0.15—
QZ =}J.2
o ofo
e
%
. 2 - 2
as Q?=10GeV
x 0.05
0 3 1 1
0.01 £ 005 0.1 0.5 1.0
X
FIG. 3. The proton spin structure function g£(x,Q?) at both

the model scale Q2=p? and Q=10 GeV?2. The data were taken
from Ref. 10.

from the SU(6)-symmetric ones, in particular the neutron
structure function is not zero everywhere. For the pur-
pose of this paper we shall assume that

R =0.8 fm, mscalarivector) =750 (950) MeV

and M=938 MeV. The difference between the two di-
quark masses is fixed because of the N-A mass difference?®
while their absolute value has been treated as an adjust-
able parameter.

We now turn to the QCD evolution of the above mod-
el. In Fig. 1 we show the evolved function xg,(x,Q?) and
compare it with parametrized data at 10 GeV2.? As r
decreases, i.€., as QZ/,u2 increases, the momentum carried
by the initial valence quarks is decreased and generates
the rise of the quark and gluon sea contributions at low x.
A value of r=0.3 (corresponding to u~=0.5 GeV and
a,/27=0.13 if Aqcp=0.2 GeV) gives a reasonable ap-
proximation to the data. We emphasize that using a
different low-energy model, in particular one including a
pion cloud, will change this value of r (in fact, because
the pions tend to carry some of the proton’s momentum,
the distributions will be peaked at smaller x and so the
fitted value of r should increase).

Before we turn to the predictions this enables us to
make for the spin-dependent structure functions we need
to make a comment about the effect of the anomaly.

0.03 -
2
Q= }J.Z
0.02
-
O.
>
= 0.01F
c. Q%= 10GeV?
o
x
0 %—4/ |
-0.01 1 1 1
0.01 0.05 0.1 0.5 1.0

FIG. 4. The predicted neutron spin structure function

g'(x,0?) at both the model scale Q>=p? and Q2=10 GeV>.
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Given the scale u obtained above, one finds that the first
moment of the glue distribution at Q=10 GeV? is about
0.8. It has been proposed that the anomaly produces an
additional contribution to the first moment of the singlet
of the form'%!3

_ falQ?) 1 2
Sy Ag (n=1,0?%).

With the above value of Ag (n =1,0Q?) it only gives a
contribution of order 0.01 to the sum rule. Furthermore,
it has been shown'? to depend on the regularization. We
shall therefore neglect it.

In Fig. 2 we show the evolved quark singlet and glue
distributions at Q2= 10 GeV?, as well as the variation ex-
pected at low x due to the arbitrariness of the term insert-
ed to reproduce the first moment. The region x =0.1 is
essentially unaffected by this term and hence reliable.
This is also evident from the moments of the distribu-
tions, shown in Table 1.

In Fig. 3 we show xg%(x,Q2=10 GeV?) corresponding
to the quark distribution in Fig. 2, as well as the EMC
data for xg4(x,Q%=10 GeV?). It is immediately evident
that although the shape of the prediction for xg#(x,Q?)
matches the data, the first moment is not reproduced for
the ratio of coupling constants considered here. A reduc-
tion of this ratio, translating into a smaller scale ,uz, de-
creases the first moment (if one includes the proposed
effect of the anomaly).

Finally we turn to the prediction for xg7(x,Q?) (Fig.
4). The nonzero value of this structure function has two
origins: the glue splitting breaks the SU(6) symmetry of
the wave function and the singlet and nonsinglet parts of
the structure function evolve differently, giving rise to a
nonzero neutron structure function at all p’#Q?, ir-
respective of whether the original wave function was
SU(6) symmetric.

IV. CONCLUSIONS

We have presented a useful scheme for implementing
the QCD evolution of spin-dependent quark and glue dis-
tributions. The method is computationally fast because
the details of the QCD evolution are independent of the
distribution. It is therefore particularly useful in fitting
model predictions to data. We have applied the pro-
cedure to a model of the nucleon that includes the one
gluon exchange responsible for the N-A mass splitting in
a phenomenological way. This, as well as the QCD evo-
lution itself, induces a nonzero neutron structure function
g"(x,02).
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APPENDIX

We list below the higher-order coefficients occurring in
Eq. (23). The asymptotic expansions given here have

A. W. SCHREIBER, A. W. THOMAS, AND J. T. LONDERGAN 42

been generated using the algebraic manipulations rou-
tines in Ref. 28. Terms up to order (z Inaz)~° may be ob-
tained from the authors [the factor (n +p)~ 7 in Eq. (11)
is included in the coefficients listed here]:

8u
cns[0,0]=1, cNS[1,0]=——-9— >
T6u | 32u’
CNS[Z»O]Z"~ 8_1 +_81 s
40u . 608u? —256u’
3,0]=— + ,
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