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Anyonic superconductivity
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The renormalized Chem-Simons term at finite density is shown to vanish when the renormal-
ized coeScient at zero density takes values Ne /2n. Thus in the Chem-Simons description a sys-
tem of anyons at zero temperature is a superfluid. This result is shown to hold to all orders in

perturbation theory by generalizing a nonrenormalization theorem of the zero-density case. We
also discuss the finite-temperature case, where a perturbative Chem-Simons mass appears.

It was first suggested by Laughlin' that anyons' (par-
ticles with fractional statistics in two spatial dimensions)
may exhibit superconductivity. In particular, the work of
Fetter, Hanna, and Laughlin, which was expanded upon
by Chen, Halperin, Wilczek, and Witten, ' showed that in
the random-phase approximation a free gas of anyons
with the statistics parameter y =tr(1 —1/N), where N is a
large integer, has a massless pole in the current-current
correlation at zero temperature and thus exhibits super-
fluidity. This then implies that a charged gas of anyons
would be superconducting at zero temperature. The main
limitation of these results is that it was not known to what
extent the random-phase approximation is valid and, in
particular, whether these results would survive improve-
ments in this approximation. It was also not known how a
nonzero temperature affects the results.

Banks and Lykkens studied a field-theoretic realization
of an anyonic system in which charged ferinions in 2+1
dimensions were coupled to ordinary photons plus an ad-
ditional "statistics" gauge field possessing a Chern-
Simons (CS) term. They argued that superconductivity
(at zero temperature) occurs if and only if the renormal-
ized CS term vanishes —i.e., if the quantum corrections to
the bare CS term precisely cancel it.

In this Rapid Communication we follow the approach
of Ref. 6 and calculate the renormalized CS coefficient.
The system we analyze is with a nonzero anyon density.

We present the results of a detailed calculation show-
ing that the renormalized Chem-Simons term at finite
density vanishes if and only if the zero-density renormal-
ized Chem-Simons coefficient 2 8 tr/e ttis a positive in-
teger N. This establishes that this system of anyons is a
superfluid at zero temperature.

We then show that, at zero temperature, this result ex-
tends to all orders in perturbation theory and thus does
not depend on the mean-field approximation, nor on the
large-5 limit. We do this by showing that the nonrenor-
malization theorem of Coleman and Hill can be extended
to the Chem-Simons theory at finite density.

We also show that at finite temperature the Chern-
Simons term does not cancel, at least perturbatively. This
gives an infrared effective theory consisting of a real mas-
sive scalar which, since it is massive, cannot be associated
with the phase of a local order parameter. If this pertur-
bative result holds it would imply thermally activated dis-
sipation in the Chem-Simons superfluid, rather than the
Kosterlitz-Thouless behavior observed in other descrip-
tions of the anyon gas. 'o

We consider a single two-component massive fermion
field coupled to a fictitious ("statistics") U(1) gauge field

A„, which has a Chem-Simons term but no Maxwell term.
(In such a pure Chem-Simons theory, a Maxwell term is,
in fact, generated at one loop. This implies that the re-
sults of our calculation should hold even if a bare Maxwell
term is present. We believe that our calculation can be
extended to this case. ) The relationship of the Chern-
Simons Lagrangian to anyons has been studied by many
authors. " '5 The Euclidean path-integral expression for
the T 0 partition function of the Chem-Simons theory
at finite chemical potential p is given by

with

Z - nilrnttt2)A„exp( —SE)

S~ - 1'x t71(lit m) tlr+i e—""'A„B.Ag—stir iir—

(3)

This leads to the following effective four-Fermi theory:

(2)
We shall work throughout with a non-negative chemical
potential p. We choose to work in the Coulomb gauge
(8;A' 0). We proceed by integrating out the Ao field,
which simply gives the Gauss-law constraint b{8—(e/
8)ytttr). This b function now allows us to do the integra-
tion over A ~ and A2 by setting
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Sy 2)@exp — d x pS —m —p y )y — (yy'y) ' (gyp')

We use the y matrices y~ =o~, yq oi, and yp =op, where
o; are the Pauli spin matrices. Notice that the effect of
the chemical potential is simply to replace Bp by 8p —p.
We thus define 8„ to be equal to 8, unless v =0, in which
case Bp Bp

—p.
We begin by studying the fermion propagator S(x,y)

for this theory. The bare fermion propagator Sp(x,y) is
simply I/(8' —m). When including perturbative correc-
tions to this propagator we notice that there are tadpole
contributions to S. These are shown diagrammatically in

Fig. 1. These tadpoles are nonvanishing since (Jp) pp is
nonzero when p is nonzero. Our first key observation is
that we can compute the entire contribution of these tad-
poles as a function of the mean density pp. Each tadpole
contributes an amount

2 j
y ei~ q pp

V

to the fermion propagator. This can be written as icy~A;
where

8 j

Notice that A; is precisely the gauge potential one would
obtain from a constant fictitious magnetic field

(e/8)pp. The full tadpole contribution is found by sum-

- [y"(8„i—eA„) —m —py ] (7)

where Ap 0. Thus the tadpole-corrected propagator ST
is the Green's function for a free fermion in a constant
magnetic field 9 (e/8)pp and with chemical potential p.

The next step is to find the fermion propagator ST un-
der this circumstance. We have done this by two meth-
ods: using the Euclidean version of Schwinger's proper-
time method's and by directly solving the Green's-
function equation. In this Rapid Communication we con-
centrate on the latter method. We choose an asymmetric
gauge in which A» 9x, A„O, Ap 0 which is con-
sistent with the Coulomb gauge. To find SF we want to
invert the operator P —m where D„8„ieA—„No. te
that

(8' —m) ' -(&+m) [(&—m)(&+m)]

-(P+m)(D' —m '+eo39)
We thus first invert the operator (D —m +eo39) by
finding its eigenvalues and eigenfunctions. The result is
given by

I

ming the geometric series of Fig. 1 which results in the ex-
pression

ST (Sp ' ie—y'A;)

1

D —m +erring

dro dPy 1 1 1 1 1

n p4 2n 4 2n 2 d&+~ d& 2 d&+~

1

d„

I

Xq e9 " eS
where 9'„ is the nth normalized eigenfunction of a harmonic oscillator with frequency e9 and where —d„and —d„+~
are the eigenvalues given by d„(co ip) z+—2ne9+m i.

Now that we have the fermion propagator, we calculate pp as a function of p and 9. We will argue below that the
lowest-order calculation presented here is in fact an exact result:

pp -&yt(x) y(x)& - —Tr[ypST(x, x)]

1 1 . 1+ +im
+I n n+I

OO

(ro —ip)
2n ~-p4 2n d„

1

dn

[8(p —(2ne9+m )' )+8(p —[2(n+1)eS+m ]' )] — 6(~m~ —p)4n, -p 4n fmf
(10)

Int " +—e(p —(m() —' e((m) —p),
2z 2e9 2 4z /mf

where Int stands for the integer part of its argument and p and 8 are taken to be positive. Notice that when
(p —p )/2e9 is itself an integer, the value of the density pp is ambiguous. Notice also that the density pp is nonzero at
p -0. This is due to the spectral asymmetry of our parity-noninvariant Hamiltonian and to our definition of pp as (yty).
One thus has to define the physical density

e9 P Nl
pph =p(p) —p(p -0) = Int

2Ã 28'%
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ST

FIG. 1. Tadpole contributions to the fermion propagator.
The bold line indicates a tadpole-corrected fermion line. S rep-
resents the full fermion propagator.

for p & m &0. The final result for pph when p & m &0 is
drawn in Fig. 2. We now see the correspondence of pph to
the density of fermions in Landau levels. Notice that the
filled Landau levels are described by the horizontal sec-
tions (constant pph) in Fig. 2. These occur when 2xpph/
e9 is an integer N. This implies that 2npo/eS=N ——,

'

(for m &0). Using the definition of 9, i.e., 9 (e/8)po
we see that a filled Landau level occurs when
8/2a N ——,

' with a e /4x. This is precisely the condi-
tion that the renormalized Chem-Simons coefficient 8R at
zero density is 2a times an integer. (See Ref. 6.) (We
shall see below that this is the case for the regularization
scheme which we chose. The point is that the zero-density
one-loop corrections to the Chem-Simons coefficient are
regularization dependent as is shown in Ref. 11. It is only
the renormalized 8 which is related to the statistics pa-
rameter of the anyons. )

Furthermore an unfilled level corresponds to the verti-
cal parts of Fig. 2 for which (p —m )/2e9 is an integer.

We proceed now to evaluate the one-loop contribution
to the CS term in the effective action, which is given by
the parity-odd part IIodd(k 0) of the vacuum polariza-

eB2 2'9

eB
2'9

4eB SeB NeB

p -rn2 2

FIG. 2. The fermion density as a function of the chemical po-
tential p and the magnetic 6eld 9.

tion

11„,(k) -II„'„(k')+ e„„,k'~d(k '), (12)

where II' is symmetric under interchange of p and v.
Note that gauge invariance requires the odd part to have
the above form even at finite density where Lorentz in-
variance is lost. The one-loop expression for II„„is given
by

II„,(x,y) —e Tr[y„ST(x,y) y&T(y, x)] . (13)

To evaluate IIodd we extract the term in Eq. (13) which is
proportional to e;,ko. The expression for II~d(0) using
both Schwinger's method and the method presented
above is

2e9 ~ 'dai —m +2. (ro ip)[(—ai ip)2+m—2]
d e X~ + 2ie

0 2& dndn+ i d„d„2+ i

(14)

We now compare this expression for ~d to the previous expression for po. The term proportional to m is identical to the
similar term in po (divided by 9/e). The second term in the integrand can be rewritten as

r

to tp —I + 1

(2e9) d„+ ~ d„
2n N —lP

2e9 [(ro —ip) +M (n)]
(15)

where M (n) m +2en% The first te. rm Eq. (15) is
identical to the remaining term in po. For the second term
of Eq. (15) we perform the ro integration which results in
an expression which is proportional to b(p —M(n) ). This
term vanishes whenever (p —m )/2eSeinteger. There-
fore, for any p such that (p —m )/2e9einteger, we get
the following relation between ~d(0) and po.

2

IIodd(k =0) = =8,
e po (16)e9

where we have used the tadpole relation between po and
We see that the one-loop correction to the Chern-

Simons term precisely cancels the bare Chem-Simons
term provided (p —m )/2eS is not an integer. As dis-
cussed previously and as is seen from Fig. 1, this occurs
precisely when we have any number N of filled Landau
levels, in which case 8/2a=N —

2 (for m &0). If we

now apply the above equation and Eq. (10) to the case
p 0 we see that ~d(k 0,p 0) = —a. This renor-
malizes the zero-density Chem-Simons term from 8 to
Og 8 —a. Thus at nonzero p the condition for having N
filled Landau levels becomes 8g/2a N. We thus con-
clude that to first order in the tadpole-corrected perturba-
tion calculation a CS coe%cient whose renormalized value
at zero density is Ne /2n is, at any finite density, renor-
malized to zero. Note that this value of Og corresponds
precisely to anyons with a statistics parameter y=x(1
—1/N ).

The above result for ~d could have been anticipated
without an explicit calculation once the result for po was
calculated. The reason for this is that at any order, there
is a general relation between those diagrams which con-
tribute to ~d(k-0) and those which contribute to p.
Here +d (0) is defined by summing one-particle-
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irreducible diagrams to any order in tadpole-corrected
perturbation theory. To see this imagine taking b/b9 (for
fixed p) of any diagram which contributes to p. This has
the effect of removing a tadpole insertion and replacing it
by (1/e) e"y, 8;/V . One easily sees that the resulting dia-
gram is one-particle irreducible (in terms of tadpole-
corrected lines) and contributes precisely to the odd part
of the Ii(0)/e, i.e., ~d(0). We obtain the general rela-
tion

, ~d(0) .
Be „e2 (i7)

Thus, having calculated po we can simply differentiate
with respect to 9 at fixed p. From Fig. 2 we see that for
filled Landau levels po is simply proportional to 9 and
thus ~d(0) is simply equal to epo/9 which agrees with
our previous result.

We will now show that p, ~d(0), and thus Eq. (16),
are unaffected by higher-order radiative corrections in
tadpole-corrected perturbation theory. The nonrenormal-
ization theorem can be proven either by a topological ar-
gument, ' or by a direct extension of the Coleman-Hill
theorem9 to the finite-density case. Here we will present
the latter approach (for more details, see Ref. 7).

Consider the Euclidean n-photon eff'ective vertex, at
finite density, given by summing all graphs consisting of a
single tadpole-corrected fermion loop with n external pho-
tons attached. We denote this by

I-&;i. .„.(k, (is)

All diagrams in tadpole-corrected perturbation theory
which contribute to p or Iiodd(0) can be constructed from
the I " 's, by sewing together photon lines. To prove our
nonrenormalization theorem for p and ~d(0), it suffices
to show that, for k~, kq 0,

r!".!(k, ) O(k, ), n&1,
(19)

r!".!(kl,k2, ) O(k k ), n&2.
By gauge invariance and the argument of Ref. 6, these re-
lations are true provided that k 0 is in the region of
analyticity of the I ~"i.

We prove the nonrenormalization theorem, therefore,
by demonstrating the analyticity of I "i as k 0 in the
Euclidean region. This is obvious for the zero-density sys-
tem, since the physical (Minkowski) threshold for
fermion-antifermion pairs begins at k2 4m 2. At finite
density, however, one must also worry about the produc-
tion of fermion-hole pairs. In our case, since I " are

I

defined in tadpole-corrected perturbation theory, this cor-
responds to a (Minkowski) photon being absorbed by a
fermion in a Landau level, causing a transition to an unoc-
cupied state. The Landau levels allow continuous values
of momentum but are discretely spaced in energy, with
spacing eS/m. Therefore, when we have N completely
filled Landau levels, physical singularities are absent for
(Minkowski) ko & eS/m. Thus as we approach k 0
from the Euclidean region the I ~"i are analytic, and the
nonrenormalization theorem holds precisely for 8

Ne /2z.
Next we analyze the finite-temperature behavior of the

anyonic system, namely, that of the partition function
given in Eq. (2). The evaluation of the fermion propaga-
tor follows the same lines as for the zero-temperature case
apart from replacing the integral over ro with the sum over
discrete Matsubara frequencies col (2x/P)(l+ 2 ). In-
serting the resulting propagator into (10) and using stan-
dard contour integrals to replace the summations we get
the following expression for the density at finite tempera-
ture:

po- g tanh ~[@+M(n))
4m' n p 2

+tanh ~[p —M(n))
2

+ tanh ~(p —Iml)l~l 2
(2o)

In the limit p ~ this expression reduces to the one
given in Eq. (10).

We now compute the renormalized CS term at finite
temperature. The simplest way to do this is to use Eq.
(17) which is valid at finite temperature. We see immedi-
ately that p is no longer proportional to 9 and, in fact,
p/9 is a monotonic function of 9. Equation (16) is thus
never valid, and the renormalized CS term is nonzero for
any finite temperature. Instead, for fully filled levels,
the renormalized CS term is given by 8R(p, T)

—end(p/9)/d9. Alternately we could repeat the
steps that led to Eq. (14). We now get the same expres-
sion with the sum over roi replacing integration over co.

Recall that the cancellation of the bare and one-loop CS
term was a result of the vanishing of the second term in

Eq. (15) for the filled Landau levels —i.e., (p —m )/
2eS&integer. At finite temperature this term does not
vanish.

Using either of the above methods we find

8~(&,T) — p g "
tanh ~[@+M(n)] —tanh [p —~(n)1

2 .-0 m(n) 2
(2i)

For small temperature and large mass pm »1, lp —m l «m this reduces to

le(p, T) l 2aeSP g e (22).-o m(n)
In this limit the only significant terms are those with 2ne9 lp.

—m l
-«m so that 8+(p, T)-ap[(p —m )/m]

x(e ~ ' +e ~ ' ~ ' ), where b' (p —m )/2eS —Int((p —m )/2e%). Note that 8& vanishes exponentially
at T 0.
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