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Nonperturbative time-dependent classical string solutions for the closed, bosonic string
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We show that the conformal anomaly vanishes nonperturbatively in the o. model for the bosonic

string in a large class of time-dependent backgrounds.

Recently a large class of time-dependent classical
string solutions in the form of plane-fronted waves has
been found. ' These solutions satisfy the o-model P-
function equations to all orders in a', the inverse string
tension. In addition to being time dependent many of
these solutions have spacetime singularities. It has been
shown that for the special case of gravitational plane
waves the conformal anomaly also vanishes nonperturba-
tively in the 0. model. In this paper, we extend this to
the other massless fields of the bosonic string by showing
that the conformal anomaly vanishes nonperturbatively
in the presence of the axion and dilation as well. We also
discuss the implications for string propagation in singular
backgrounds.

We will first find the quantum-mechanical effective 0.

model action in the presence of the metric, axion, and di-
laton background. We will then calculate the conformal
anomaly and find the equation of motion which the back-
ground fields must satisfy in order for the anomaly to
vanish. This will coincide with the ordinary perturbative
P-function result. Finally, we will discuss the implica-
tions for string scattering in singular backgrounds.

Let us consider an exact plane wave with metric of the
form

ds = —d U d V+ dX'dX, + W,, ( U)X'X'd U' .

where X" are now fields on the two-dimensional world
sheet, h, b is the world-sheet metric, and R is the world-
sheet scalar curvature. Following Ref. 2 we now proceed
to calculate the generating functional

Z[J,h, t, ]=e

= J DX"exp iS (X",h, t, )

+i JvV+JUU+J X

xv'h d'cr

where the J's are current sources. Integration over V
yields a 5 functional:

5( —
—,'V U+Jv) .

We then integrate over U thereby obtaining the factor

det '(V-)

from the 5-function Jacobian. Finally, one can integrate
over X since the action is quadratic in those fields. This
yields for the partition function

We also include an axion field of the form

8„,= —
—,
'

A;J ( U)X'l („t)„)Xt,

where

(2)

Z[J]=(det 'V )[det ' (M; )]

X exp[i [ —,J M; 'J + ——,
'R 4( U)+ JU U]],

where

M, =5; V —W; (U)(VU) + ,'A, (Ut)V—,Ue' Vt,

(9)

(10)

av
is the null Killing field of the plane wave. Finally, we in-

clude a scalar dilaton that depends only on the coordi-
nate U:

4=4(U) . (4)

Here, we are restricting ourselves to fields that are
bounded and defined for all U. At the end of the paper
we will weaken this restriction and consider the case of
singular backgrounds of the type discussed in Ref. 4. The
two-dimensional action for the string reads

S= ——' f d o. &h [ —V, U V"V+ V,X'V'X,

+ W, X'Xt(VU)

——', W, ( U)X'V, UV'„X~~'

—
—,'R4( U)],

and U=2(V ) 'Jt. The next step is to calculate the
effective action I [X,~ ] by taking the Legendre transform
of W[J] where

5W
cl

In particular, one has U,~= U. Calculating the trans-
form, one finds

e' =(det 'V )[det ' (M )]e
iS(X 1) (12)

We thus see that the quantum-mechanical effective action
is the classical action along with corrections coming from
the two determinants.

Having obtained the effective action, we now proceed
to calculate the conformal anomaly 51 /5P where
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hah e Dab
4 (13)

5I 26
5$ 48m

(14)

There are four contributions to the anomaly. First, as a
result of going to the conformal gauge, one obtains the
standard contribution from the Faddeev-Popov deter-
minant: '

where 8 is the world-sheet scalar curvature. The restric-
tion that D =26 in flat space-time arises from this factor.
There are also the two contributions from the two deter-
rninants. Finally, since the dilaton term in the o. model is
not conformally invariant, it too will make a contribution
to the anomaly.

We now proceed to calculate the contribution from the
determinant of M in Eq. (12). To do this we will use the
Euclidean heat-kernel method. ' Let k„be the eigenval-
ues of M. Then one has

lndetM= ging, „=—g f t 'e "dt= —f t ' f (z~Tre ™~z)dz dt,
n n

where the trace is over the index i and where we have used the representation

lnx = —f t 'e '"dt+(an x-independent constant)+O(ex ) .

(15)

(16)

Here, e is playing the role of a cutoff. From the form of M in Eq. (10) one notes that it depends on the conformal factor
in the following way:

M =e ~X(P-independent piece) .

One then obtains

= f f z' Tr e ™z' d z'dt= —f (z~Tr(Me ™)~z)dt
5$(z) e 5$(z)

=(z~Tre ™~z) ~,
"= —Tr Y(z,z;e), (18)

where

Y(z, w;t)=(z~e ™~w)
Bo =

—,
' V, A;", + W;) ( V U, i ) + —,

'
A;k A q, ,

(19)
where

(24)

is called the heat kernel of M. It satisfies the heat equa-
tion

~a &~ ~ha~ Uij T ij b cl (25)

BY( wz;t)

at

with initial condition

(20)
is the coefficient of the single derivative in the third term
of Eq. (10). Since A; is antisymmetric, the first term is

traceless, and we find

Y(z, w;0) =5(z, tU) . (21)
TrBO=( W + —,', A, A")(VU„) (26)

—M= —(V, +B,)&hh' (Vb+Bb)+Bo,
&h

(22)

where 8, and Bo can be any matrix-valued function of z,
then they found that

Durhuus, Oleson, and Petersen have obtained asymp-
totic expressions for Y for an arbitrary elliptic operator in
two dimensions. If M has the form

Thus, from Eqs. (18), (23), and (26) we obtain the contri-
bution of M to the conformal anomaly

sr
ln detM

5P 2 5P
= —

—,'Tr Y(z, z;e)

(D —2)&h + (D —2)R &h
8vre 48m

Y(z,z;t)= &h — R&h + Bo&h +O(t) .
4~t 24~ 4~

( W'+ —' A A ")(V U„) &h (27)

(23)

Rewriting M from Eq. (10) in the form of Eq. (22), we

find, for Bo,

The factor of D —2 comes from tracing over the D —2
transverse directions.

The third contribution to the conformal anomaly
comes from the other determinant
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det 'V =[det ' (V )] (28)

This is the same as the anomaly from two free scalars,
and hence we have

&h + R&h
8m@ 48m

(29)

Sd;)
&h V 4

8m

&h [V U, |4&'+ ( V Ud ) 4"], (31)

where V', is a world-sheet derivative. We now use the
equation of motion for U, ~

obtained by varying the
effective action with respect to V,~. However, since the
determinants are independent of V,~, the equation of
motion is just the classical equation of motion

V U,1=0 .

Using this in Eq. (31), we find that the conformal anoma-
ly will vanish if the background field satisfy the equation
of motion

W+ —,', A; A'J+P"=0 . (33)

The 1/e poles in Eqs. (27) and (29) can be canceled by
adding a local counterterm to the action in the form of a
cosmological constant. Combining the three contribu-
tions from Eqs. (14), (27), and (29) and rotating back to
Minkowski space, we find that the conformal anomaly
vanishes only if D =26 and the background fields satisfy

W,'+ —,', W,, a'~=0 . (30)

One may include the dilaton as well. The dilaton only
appears in the classical action. Hence, its contribution to
the anomaly is

This is the same equation of motion as was obtained from
the P functions in Ref. 3. Here, however, we have shown
that these backgrounds are also solutions nonperturba-
tively.

We now proceed to consider briefly the effects of the
nonperturbative corrections as they relate to the discus-
sion of string propagation in Ref. 4. In that treatment
the light-cone gauge was imposed. After doing this, aside
from zero-mode contributions coming from V, one is left
with the transverse X' as the only physical degrees of
freedom. The only change in the string action due to
nonperturbative effects is the contribution from the deter-
minants. However, because these depend only on U, the
equation of motion for X' is unchanged. Hence, the
propagation of a first-quantized string remains
unaffected. In the same paper solutions which became
singular at finite U were also considered. Does the con-
formal anomaly vanish nonperturbatively for these singu-
lar solutions as well? The only potential problem would
arise in the integration over U. Since the spacetime is
now only defined up to some finite U, one should restrict
the integration range. If U

~
takes on a value outside this

range at some point, the 5 functional will give zero and
the Legendre transformation will become singular. How-
ever, for U, ~

everywhere within the integration range,
that is, for U, ~

within the physical spacetime, the calcula-
tion of the conformal anomaly goes through unaltered.
Hence, the conformal anomaly vanishes for these singular
spacetimes as well. We thus conclude that a large class of
time-dependent backgrounds for the bosonic string are
nonperturbative classical string solutions.

It is a pleasure to thank Gary Horowitz for helpful dis-
cussions and for useful comments on the manuscript.
This work was supported by NSF Grant No. PHY85-
06686.

'R. Guven, Phys. Lett. B 191,275 (1987).
~D. Amati and C. Klimcik, Phys. Rev. D 219, 443 (1989).
G. Horowitz and A. Steif, Phys. Rev. Lett. 64, 260 (1990).

4G. Horowitz and A. Steif, this issue, Phys. Rev. D 42, 1950
(1990).

5A. M. Polyakov, Phys. Lett. 103B,207 (1982).

A. M. Polyakov, Gauge Fields and Strings (Harwood Academ-

ic, Chur, Switzerland, 1987).
7S. Hawking, Commun. Math. Phys. 55, 133 (1977).
8B. Durhuus, P. Oleson, and J. L. Petersen, Nucl. Phys. B198,

157 (1982).


