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Exact computation of the small-fluctuation determinant around a sphaleron
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We compute exactly, in the high-temperature limit, the determinant ~ of small fluctuations

around the sphaleron configuration of electroweak theory, exploiting the symmetry of the sphaleron

under spatial rotations combined with isospin and custodial SU{2j transformations. For the ratio

k/g of scalar four-point coupling A, to gauge coupling g near unity, we find that ~ is 0.03. For
k/g' large corresponding to a strongly coupled Higgs phase, or for X/g' very small tending to the
Coleman-Weinberg limit, we find that the determinant strongly suppresses the rate of baryon-

number-changing processes.

I. INTRODUCTION AND PRELIMINARIES

Since the pioneering work of 't Hooft, ' it has been
widely appreciated that, due to the axial U„( 1 ) anomaly,
baryon and lepton number are not conserved in the stan-
dard model, but are violated by calculable quantum
efFects. If Nf is the number of fermion left-isodoublet
generations, then the conservation equations are altered
to read

NfM= ', e'"(g'F„&p.+ 'f„,,fp. )

where g and g' are the SU(2)t and U(l)r gauge cou-
plings, respectively, and F„',, ( A) and f„,, (a) are their cor-
responding field strengths. This implies that over a time
interval from t, to t2 baryon and lepton number will be
violated by an amount given by

bB =bL =NI[Ncs(t~) —Ncs(t, )],
where Ncs(t) is the Chem-Simons number,

Ncs(t)= J d x Eo(t,x),

P'P
( 2Aag Aa p 3 abcAaAbAc

P tT 3 1' p 0

+g'a„B a ) .

For vacuum states described by

single instantons tunneling through the energy barrier
separating topologically distinct vacua. These occur with
a rate proportional to exp( —4tr/a tt, ) (where
a tt, =—g /4m ), corresponding to an energy barrier of
height -Mu, /au, . This rate is so small that it appeared
at the time that such anomaly induced ABWO processes
are completely negligible.

Recent developments suggest that this initial assess-
ment was overly pessimistic. One observation is that,
at finite temperature, the rate for transitions between
states separated by an energy barrier of height 5 V should
be governed by the Boltzmann factor exp( b, V/T). —
Thus, for electroweak theory at temperatures on the or-
der of T-M~/a~ —1 TeV, thermal fluctuations alone
will give particles sufficient energy to classically over-
come the energy barrier. Preliminary estimates ' have
shown that the rate per unit volume I /V of classical
thermal activation could be quite large, as much as 12 or-
ders of magnitude larger than the expansion rate of the
Universe. The implications of such a large rate have been
discussed elsewhere. ' One consequence is that any
B+L excess will be greatly modified. However, it is still
a matter of debate whether these processes could be in-

corporated in a natural scenario correctly predicting the
observed baryon asymmetry of the Universe. "'

This paper is concerned with refining the calculation of
the rate,

I /V=prefactorX exp( 2AM~ jau, T)—,

and

A„=—U B„U, lim U=1,
g

1
a = —,BO,P g' P

the Chem-Simons number is an integer given by the
winding of the gauge function U. Thus in vacuum-to-
vacuum transitions, baryon number is violated by an
amount proportional to the change in the gauge winding
number of the vacuum. In 't Hooft's original analysis, '
the simplest transitions with ANcs = 1 were mediated by

of baryon-violating processes at high temperature accord-
ing to the mechanism described above. Here 3 is a func-
tion of A, /g of order unity. While naive arguments
based simply on the Boltzmann factor suggest that I is
unsuppressed at temperatures T ~ 1 TeV, there is still the
uncertainty represented by the prefactor. Fortunately,
given a crucial assumption discussed below, it is possible
to calculate this prefactor in a reliable way if we work in
the temperature range

M~(T) && T &&M~(T)/a~,

where
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is the critical temperature for symmetry restoration (A. is
the scalar four-point coupling). The lower limit of Eq. (1)
ensures that high-temperature transition processes
proceed at a rate faster than the low-temperature
instanton-induced process. " The upper limit is
equivalent to the criteria that the magnetic screening
mass gap is large enough that infrared effects will not in-
validate the use of weak coupling expansions. ' '

The liinits of Eq. (1) also permit great simplification in
our task of calculating I . The condition T»Mi4(T) im-

plies that we may work in the high-temperature limit
where all fermions effectively decouple from the theory.
The remaining boson fields are described by the finite-
temperature action

S=I dt Jd x[ ,'F„'g,""+—(D4)(D4)

+A,(4 4 —v /2) ] (3)

[Here and for the remainder of the paper we study only
the pure SU(2) gauge theory, corresponding to elec-
troweak theory in the limit that the Weinberg angle van-
ishes. ] The application of the high-temperature limit to
(3) is more subtle, but results in the following
simplification ' we can take all fields to be static in
the Euclidean time t provided that we replace the Higgs
vacuum expectation value by its temperature-dependent
expression, v ~v ( T)=2M z ( T) lg, as given by Eq. (2).
Then, after rescaling coordinates and fields according to
the prescription

r~g/gv, A ~vA, 4~v+,
the effective high-temperature action becomes

S~S3= d —'F'," + D4 DN
1

2(T) 4

(4)

+, (4 4 —
—,
')'

where g3( T) is the eff'ective coupling constant

z g T
2M~( T)

The upper limit T «Mii, (T)/ai4, also simplifies the
task of calculating the rate per unit volume of baryon-
number-changing processes. As Mi4(T)lani gives the
approximate height of the energy barrier separating va-
cua of distinct Chem-Simons number, it is clear that in
temperature regime (1) the rate will be dominated by
thermal fluctuations which pass through or close to the
saddle points of the energy barrier. Since, up to an

Mi4, ( T)=Miv(0)(/ 1 —T /T,

is the temperature-dependent 8'-boson mass,
Mi4, (0)=gv/2 is the zero-temperature mass given in
terms of the vacuum expectation value U of the Higgs
field and the SU(2) weak coupling g, and

1/2
3 2

T;=U 1+ g
32k.

overall normalization, S3 is the energy functional of elec-
troweak theory, these saddle points will be given as its ex-
trema. By extending the ideas of Morse theory to the
infinite-dimensional configuration space of electroweak
theory, Manton has shown how to construct the saddle
point of interest. ' In terms of the fields rescaled accord-
ing to (4), it is the sphaleron configuration given by

AO=0,

A=2f & gX, ,

=&2 h ( g)g'Tu

where u, &i=(0, 1) and g=~g~=gvr On.e may verify
that (6) obeys the equations of motion derived from S3
provided the profile functions f (g) and h (g) satisfy the
coupled equations

+ f(1—f)—(1—2f) —
—,'h (1—f)=0,d f 2 2

df2 g2

+—h (1 f) + (h——1)h =0,d2h 2 dh 2

g'

subject to the boundary conditions

lim " = lim h(() =0,f(E')

(~0 g (~0
lim f(()= lim h(g)=1 .
g~ Oo g~ oo

The energy of the sphaleron is

E, = A (1,/g )2Mii, (T)/ai4, ,

where, for all values of k/g, A is a number of order 1.
One also finds the Chem-Simons number of the sphaleron
to be —,', in accordance with the notion that the sphaleron
sits midway on a one-parameter set of configurations in-

terpolating between vacuum states with Ncs equal to 0
and 1.

We are now in a position to state the crucial assump-
tion alluded to above: namely, that the sphaleron
configuration is the saddle point of minimal energy and
hence dominates the transition rate in the temperature
range (1). This must be honestly stated, since Manton's
application of Morse theory to S3 only proves the ex-
istence of at least one saddle point. Indeed, for A, /g ~ 18,
the existence of deformed sphaleron solutions of lower
energy has recently been established. ' As we work in
the range of couplings 0. 1 ~ k/g 10, this last result will
not be an issue for us. However, even for range con-
sidered, it not known whether other saddle points exist or
whether they have lower energy.

Having clearly given the setting of our computation we
may now construct the expression for the rate per unit
volume I /V, and isolate the quantity ~ which will be the
focus of our calculations in the following sections. With
the assumption of sphaleron dominance of the transition
rate we may now use the techniques of nonequilibrium
statistical mechanics developed by Langer, AfBeck and
Linde' ' ' to compute the rate. Let co denote the
rate of decay in small Auctuations around the sphaleron.
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Then the formula for the rate of decay is I I I I IIII( I I I I IIII( I I I I Ilail

3
CO cxwT

I /V= JV„(JVV)„„
—6

—E, /T
a3 'e

CO
I"= ImF,

mT

where F is the free energy of the system evaluated in the
saddle-point approximation around the sphaleron
configuration. To quadratic order in thermal fluctuations
the imaginary part of the free energy is found to be

1.50—

1.25—
oJ

l

3
1.00—

0.75—

0.50—
102 10O 101

where aw=g /4m= —,', is the weak fine-structure con-
stant. With the exception of the Boltzmann factor—E,. /T
e '" and the quantity K, the additional factors that ap-
pear in this formula are due to contributions from the
sphaleron zero modes. The quantities JV„and JV„„are
certain normalization integrals relating the "natural"
coordinates describing the translations and rotations of
the sphaleron to the "canonical" coordinates of these
zero modes as they appear in the Euclidean path integral.
These dimensionless functionals of the profile functions
f (g) and h (g) are constructed in full detail in a previous
paper, and are displayed in Fig. 1. In Fig. 2 we also
present a plot of the negative-mode frequency co as a
function of A. /g . The volume of the rotation group V„,
is Str . Finally, up to an overall scale factor of (gv) ab-
sorbed by the translation volume V, there is a factor of
1/g3 for each of the six zero modes:

T 3
QwT

(g, } '=(gv) ' a, '.
4m

In this equation, Sf is the gauge-fixed version of S3 EFp
is the associated Faddeev-Popov determinant, and

16 $ I I I I IIII( I I I I IIII( I I I I I I I lg

14

12

10

Here a3=g3/4m.
The remaining contribution to the prefactor is the

quantity K, defined as

det(5 Sgf /5(( ')I ~=q &ppl q=~
K= Im

det'(5'Ssr/54')
I y=y ~ppl y=y

g2

FIG. 2. The negative-mode frequency co-' [in units of (gv }']
as a function of A, //g'

generically represents the scalar and vector fields of elec-
troweak theory. P, and P„, denote the fields of the
sphaleron, given by (6), and the perturbative vacuum, re-
spectively. The prime on the determinant of
5 Ss&/5$'l& &

denotes that the zero-frequency modes of

the sphaleron are to be deleted from its evaluation. It is
this quantity K which is the object of the computations
presented in this paper.

The quantity K has a physical interpretation that makes
it evident why it is of importance to evaluate. From the
general expression F =E —To. relating the free energy F
to the internal energy E and entropy o., we see that K-e
measures the number of non-zero-frequency modes avail-
able in the vicinity of the sphaleron relative to that of the
perturbative vacuum. It is reasonable that the rate
should be enhanced or suppressed depending on whether
this quantity is large or small.

In the work of Arnold and McLerran, the quantity K,

since it is a dimensionless function of A. /g was taken to
be unity. While this is a resonable estimate for A, /g —1,
a may be a singular function of A, /g and thus could
diverge strongly for extrem. e values of this ratio. This ex-
pectation was borne out in the approximate calculation of
Carson and McLerran, which suggested that K, while of
order unity for A, /g —1, is strongly suppressed in the
large A, /g limit, corresponding to a strongly coupled
Higgs sector, and in the Coleman-Weinberg limit of A, /g
very small. However, in the range 10 ~A, /g ~10 this
suppression resulted in a total rate per unit volume that is
still some 9—10 orders of magnitude larger than expan-
sion rate of the Universe.

While suggestive, the calculation of K by Carson and
McLerran may be criticized on at least two counts, both
due to the method of approximation used. The method,
developed by Diakonov, Petrov, and Yung (DPY), uti-
lizes the Schwinger proper-time representation of the ra-
tio:

10-2 10-'

g2

100 101 deK dt= exp —Tr —(e ' —e '"
)

der@ o t

FIG. 1. The zero-mode normalization factors AI, and A'„„I as
a function of A, /g'.

where Tr denotes a functional trace. Here At may
represent an operator such as the Auctuation operator
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Moreover, the sphaleron transforms simply under spatial
inversion. Consequently, the determinants appearing in ~
may be decomposed into products of determinants of
one-dimensional operators labeled by partial-wave j and
parity m:

de~(g)= g
j =0 n=+

(9)

A method of computation then suggests itself. Truncat-
ing (9) at some j,„and numerically evaluating the
simpler partial-wave determinants for j =0, . . . ,j,„,the
behavior of the full determinant on j,„may be evaluated
and the limit j,„~tx) numerically extracted. Actually,
this procedure is too simple minded, since it overlooks a
linear divergence present in lnx. However, this problem
is surmountable, as will be shown in more detail below.

In the next section we perform the decomposition of
the operators defined in (7) with respect to partial wave j
and parity ~ In this endea. vor we shall utilize the SO(4)

5 Ssf/5$ ~& &
introduced in the definition of v above,

NP

while AL is the same operator evaluated in the perturba-
tive vacuum. The DPY approximation, as applied to (8),
consists of expanding the integrand to finite order in the
proper time t, evaluating the integral with an upper (in-
frared) cutoff 5, and then minimizing with respect to this
cutoft. This method has the advantage of producing an
approximation for In(detJR/debts ) expressed in terms of
gauge-invariant functionals of the background fields, and
the minimization with respect to 5 is relatively easy to
implement. However, the small-t expansion, since it
neglects infrared e6'ects, is destined to fail in the
Coleman-Weinberg limit (A. /g «1) when the Compton
wavelength of the Higgs field becomes large. Also, since
representation (8) is well defined only when both JK and

have the same number of eigenvalues, the presubtrac-
tion of zero-frequency modes from JR=5 ,S r/5$
as required by the definition of K, necessitated the sub-
traction of an equal number of modes from A, . If the ei-
genvalue of the modes subtracted from A, is t. , then this
subtraction introduced an (almost) arbitrary parameter in
the evaluation of the determinant.

Therefore, in view of these shortcomings of the DPY
method, it is desirable to have a definitive and exact eval-
uation of ~. At first glance, such a calculation appears
prohibitively difficult, since the operators involved in (7)
are (ultimately) defined in terms of the profile functions

f (g) and h (g), which are numerically determined.
Hence the evaluation of ~ is equivalent to the solution of
the Schrodinger equation in a potential which is known
only in numerical form. However, as the next sections
will demonstrate, such a calculation is indeed feasible due
to the symmetry of the sphaleron configuration (6) under
spatial rotations combined with isospin and custodial
SU(2} transformations. If L+S, I, and K denote the cor-
responding generators (L and S are the orbital and spin
pieces of the spatial angular momentum operator), then
the sphaleron is invariant under transformations generat-
ed by

J=L+S+I+K .

representation of scalar fields in which the isospin and
custodial transformations take a particularly convenient
form. Expanding the fluctuation gauge potentials a in
tensor spherical harmonics, and the complex scalar field

g in scalar and vector spherical harmonics, the partial-
wave operators A are constructed. In Sec. III we dis-
cuss how to isolate the linear divergence in ln~ and sub-
tract it out. In Sec. IV we conclude with a presentation
of our final, exact results for 1n~. An appendix gives de-
tails of our operator construction of vector and tensor
spherical harmonics.

II. SPHERICAL HARMONIC DECOMPOSITION

In this section we first construct the gauge-fixed fluc-
tuation action 5Ssf for the fields of electroweak theory in
the background of the sphaleron configuration (6). Then
we explicitly display the invariance of the sphaleron un-
der SU(2) transforinations generated by the operator J
representing spatial rotations combined with isospin and
custodial SU(2} transformations. Exploiting this symme-
try we decompose the fluctuation fields in spherical har-
monics defined with respect to J and parity m. . For a fixed
partial wave j, this reduces the fluctuation operator
r'.efining 5S r to a 13-channel operator, whose form we

present. We make comments regarding the isolation of
negative mode from the j =0, n. =+operator and the
zero modes from the j =1, m. =+ operators. Finally we
also perform the partial-wave decomposition of the
Faddeev-Popov operator.

A. The action of the small fluctuations

We begin with the SU(2) Yang-Mills-Higgs action S3
in three dimensions defined by Eq. (5), corresponding to
the high-temperature limit of electroweak theory with
vanishing Weinberg angle (equi =0). Explicitly separat-
ing the terms involving the field A o, we obtain

S3=
2 fd'j —,

' Ao[ D, (A)D, (A)+——,'4 4]AO
g3 T

+ f d ( ,'F;JF;J+(D;4) —(D;4&)
g', (T)

+ (44——')

Here D, (A)=B, iA, '7', —i =1,2, 3, is the covariant
derivative in the appropriate representation of the gen-
erator 5'. For example, when acting on the isovector
Ao, V' assumes the form V'Ao=(b, ') 'Ao where

( ga)bc ~abc (10)

In the case of the isospinor N, T' is given by ~' which are
the Pauli matrices divided by 2:

7 =—0
2

We expand this action in the small fluctuations around
a general background configuration by replacing
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~o Ao+g3(T)ao

A~ A+g3( T)a,

N~4+g3( T)g,
where ao, a, and g denote the fluctuation fields. Gauge
degrees of freedom are eliminated by imposing the back-
ground R&, gauge condition,

Dk( A)ak+i(4 re ri —rC))=0 .

The Faddeev-Popov determinant corresponding to this
gauge is

b,„p=det[ D—(A) + —,'4 4] .

Since we shall be working with background fields with
A p

=0, we immediately infer from the formula for S3
above that its dependence on ap is quadratic. Further-
more, functional integration over the ap fields yields a
factor ( b, „p )

' which partially cancels with the
Faddeev-Popo v determinant to produce the factor
(b,Fp)+'~ in the expression (7) for a.

The gauge-fixed action of small fluctuations to quadra-
tic order in the remaining fields a and g is

5S „=f d g —,'(D;a )'(D;a )'+e'"'F,', a; a'+ (4 4a a +2i[ri a; rD, 4 —(D, C)) a, re]

+(D;q) (D;ri)+ ~
(4 4& ,')q g—+—)qre@—4+ ——(4 g+ri 4&) (12)

For notational convenience we shall denote the quadratic
operator defined here by JR, where

$2+

5(t
'

' —Re(t),
'

Img(

Regz

Im(t,

(13)

and P is a generic symbol for the fluctuation fields a and

l7 0

B. Symmetries of the fluctuation operator

where (t)) and (I)2 are the complex components of 4 in the
ordinary isospinor representation of this field:

Before giving decomposition of the fluctuation fields
a, g, and g' in spherical harmonic components, we first

give the form of all symmetries present in S3. Here we
introduce an SO(4) notation that will prove useful later.
By studying the effect of these symmetries on the sphale-
ron background fields, it is then easy to identify the in-
variance group of this configuration, according to which
we may classify the fluctuation fields.

One symmetry of the full action S3 is an SO(3) group of
rotational symmetries generated by L+S, where L and S
denote the orbital and spin pieces of the angular momen-
tum operator. Under this group, the fields transform as

Then under the indicated SO(4) symmetry, the field 4
transforms as a four-vector according to representation
(13). Before we give its explicit form, let us also state
how the gauge potential transforms under this same sym-
metry group. Here we recall the well-known isomor-
phism

SO(4)- SU(2);„,p,„ SU(2),.„„,d;„,
which is generated by abstract operators I and K, respec-
tively. Then the isospin transformations are

4(g)~e"' + '4(g)=C)(R(e)g),

pa(g)~eiE (L+s)g a(g) —(cia 5) pa(R(&)g)

ie.tq& (
ie T)

I ij j
e &&'t A&=(e i&'~)&b Ab

Here b, is the spin-1 matrix operator defined by (10) while

e (f V)X

Note that the forrnal operator S annihilates 4 while the
gauge potential A transforms as a spin-1 object. Since it
will not cause confusion below, we shall not distinguish
between the formal operator L and its representation as
—if X V~.

The action S3 also possesses an SO(4) invariance. To
display it we introduce the four-component notation

where again lL is the spin-1 matrix given by (10) while the
4 X4 matrices T, are given by

Tl %~2 & l

T2 =
2
0'2O 3

~3= 2~o~2 ~

Here ao is the unit 2X2 matrix. These latter matrices
are simply derived by recasting the transformation law of
the field 4 in isospinor form
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=le'T

to the SO(4) vector representation (13):

5@=is T4 .

Under the custodial SU(2)-symmetry group, the field 4
in isospinor form transforms as

while the gauge potential A' remains unchanged. In the
SO(4) form, these transformation laws read

~cia K@ —(cia T )'
I 0

A' —+e" A'= A'

where the matrices T are given by

T] = —o')o'p,

Note that the three components of ( are arranged in nat-
ural order as the first three components of this four-
vector. On the other hand, the set of matrices T+T' has
the simple form

0T+T'=
0 0

where the spin-1 matrix 6 appears in the upper left 3 X3
corner. This implies that, at least for the 4 field, a spa-
tial rotation of the sphaleron background can be compen-
sated by SO(4) transformation. In particular, it is the
transformation generated by I+K. The same trick
works for the gauge potential, although in this case a spa-
tial rotation (generated by L+S) is compensated by a
pure isospin transformation. We can state both of these
invariances in compact form by noting that the spin an-
gular momentum operator S annihilates 4 while K an-
nihilates the gauge potential A'. We therefore have

q)(g) cia (L+S+?+K)(y(g) (cia (T+T')
) q)(g (~g )

T2 = —
—,
'o.z(3) o o

T =
—,'o3(3)o.2 .

g a(p) —e(E (L+S+I+K)g a(X)
I

(cia a) (cia i), )abg b(g (~)g)IJ J

(14)

One may verify that our representation for T; and T,
'

satisfy the SO(4) commutation relations. In particular,

[T;,T']=0 .

We have thus identified the full symmetry group of S3
to be

9=SO(3)L+sSO(4)t K .

However, the sphaleron configuration (6) is not invariant
under each of these symmetries separately but breaks the
full symmetry group 9 down to a residual symmetry
group %. To identify %, note that, for the sphaleron, the
field 4 is proportional ~ gu (&z, which may be expressed
in SO(4) vector form as

Consequently the residual symmetry group & is an SU(2)
symmetry generated by

J=L+S+I+K .

Furthermore, for background fields obeying (14) we have
the following condition for the fluctuation operator Af
defined above:

[J,Af]=0 . .

We also conclude that the classical sphaleron lies in the
lowest possible representation of the group generator J,
namely, j =0.

0
1

C. The spherical harmonic decomposition of a' and g

Inserting the sphaleron background field (6) into the
expression for the gauge-fixed fluctuation action (12) we
obtain (rescaling g~q/&2)

5Ssf f dQ& f ( dP —
—,
' ak, (Dv )ob~bk 2 9o (Ds )ab 9b 2 94(Ds )4494 9 ( s )a494

I.

+

(Eked

fik ) kk(a p
~ ~ ~lb~me

2f' 4f (1 f) k(m ab~

+ (h —1)g~+ ——h (g g) + —h (akak+g. rl+q4)
2g
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where f and h are the profile functions of g defining the
sphaleron configuration (6), and

J 2 2a'"= g g g g a. . . (g) YJ',", (0),
J =Om = —Js =Os = —s2 1 2a, a

V ah 2

4 2

+ h,b.L+

D) 1 a a
sob 2&&4

+ 4f, T.„L

L2 4f 2

6,b
g2 g2

2f2
6,b

where the YJ',", (s2=2, 1,0; s, = —s2, . . . , s2} are

eigenfunctions of (L+b, +b'), L3+b,3+6,3, L, and
(b, +6'}:

( L+6+5 ) b 1,.1 Y&. ,
:j(j + 1 ) Y&

( L, +5,+6, ),b I,.I Y. . . =m YJ'.

L Y'", , =(j+s, )(j+s, +1)Y,'.
(b+b, '),b I, Y,', =s2(s2+1)Y',

are the covariant derivatives acting on the a' and g,
fields, respectively. Note that we have separated the
four-vector g into two pieces, namely g„a = 1, 2, 3, and

g4. The reason we do this is that, as was pointed out
above, the action of the operator I+K on g decomposes
this field into a triplet and singlet, where the triplet lies
precisely in the first three components of g.

We are now ready to perform the spherical harmonic
decomposition. First we note that the J acting on the
field g4 reduces simply to the orbital angular momentum
operator L. Consequently we will expand this field as

J =0m = —j
(g) Y, ,„(Q),

where Yj are the usual spherical harmonic functions,
defined as eigenfunctions of the angular momentum
operator L, viz. ,

L Y =j(j+1)Y, L& Y =m Y

(L3+b&),b Y, =m Y',

L'Y;, =(j+s)(j+s+1)Y,
(16)

Note that due to the condition that the orbital angular
momentum be non-negative, e.g. , I =j +s ~ 0, only the
modes with s equal to 0 and 1 are defined when j =0.

Finally, the operator J acts on the gauge Auctuation
field a' as L6,b6I,I+6,bh, l,(+5,,'b6I,.I, which we see acts
in the direct product space of a spin-1 vector with a
spin-1 isovector. (For clarity we have placed a prime on
the isospin contribution although the reader should real-
ize that b, and b, ' are numerically identical. ) Therefore,
we must expand a' in tensor spherical harmonics as

Next we recall that J acting on the three-component g,
field has the form L5,b+b, b, since it is a triplet under
the action of I+K. Thus, in this case, it is appropriate to
expand ri, in vector spherical harmonics Y', (s =0,+1)
as

1

(g)Y", ,„(Q) .
J=Om = JS= 1

Here the vector spherical harmonics are defined as eigen-
functions of (L+b ), L, + b, 3, and L:

(L+h, ),b Y", =j(j+1)Y',

Once again the condition that I=j+s& 0 means that
only the modes with s

&

~ 0 are defined for j =0 and

s, —1 for j = 1. We should also comment that the ten-
sor harmonic functions that we have defined here incorp-
orate all components s2=0, 1, and 2 in a single set of
functions. It is more conventional to define them with
s2=2 only, but since the fluctuation operator defined in
(15) couples all these components of a'" together, we
have found our particular definitions to be more con-
venient.

The spherical harmonic functions YJ,„, YJ', m, and
Y', , may be constructed using the standard

Clebsch-Gordan methodology. An alternative method,
defining the vector and tensor harmonics in terms of
operators acting on Y,„,is given in an appendix.

Because J commutes with the fluctuation operator A, ,
the nonzero matrix elements of AL are m independent and
are block diagonal in the quantum number j. Therefore,
for a given j, the fiuctuation operator is reduced to a 13-
channel matrix of one-dimensional operators with degen-
eracy (2j+1). This matrix is further split into two
decoupled blocks of size 7 X 7 and 6 X 6 due to parity con-
servation. Because of this decoupling due to parity we
shall arrange the expansion coefficients of the Auctuations
fields into the following seven- and six-dimensional
column matrices, +', m=+, corresponding to sectors
with parity (

—1) and (
—1)J+', respectively:

gp(+ )

j, m

&),o, 2, (k)

&,;-2,2, (k)

aJo, (g)

&,, o, o (k)

n, , o, (4)

(g)

qy(
—)

j,m

&,, i 2, (4)

&,, -i,2, (4)

a), , (g}

aJ, , (g)

(()

Note that the symbol ~ does not represent the parity
quantum directly, but it is related to it by the assignment

vr = + for parity = (
—1)J,

sr= — for parity=( —1)J+'

The corresponding matrix elements of the Auctuation
operator are
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d2
(~J =+) p= — g+ (j +j )(j+j +1)+ h—+, (h —1)P„5&+ C(&""

d(2 2(2 8 2g2 T) 0 (2 P

C(+)(2) + f C(+)(3) f f C( —)(4) +
z ~P

g
~P ~z ~P 8 ap aP

+ h' —h (1 f )
—

C(+)(7)
a(8 (17)

where P„ is the projection operator to the g-field sub-

space, j is an integer relating the total angular momen-

tum j with orbital angular momentum l of a given chan-
nel a via I =j +j, while C' &"" ' are certain sym-
metric coefficient matrices resulting from the integration
over angular coordinates g. The indices a and P label
channels and run over the sets of the quantum numbers
labeling the modes of fluctuation, e.g. , (j,m), (j,s, m), and

(j„s,,sz, m). However, in our discussion below, the sub-

space (j,m) we work in shall always be clear from context
and it suffices to associate each channel a with the quan-
tum numbers —,s or (s„s~), where —denotes the mode

Qj, m'
In Tables I—VI we present our results for all coefficient

matrices defined by (17). First, we list all integers j and

the diagonal elements of C' &"" ' in Tables I(a) and I(b).
Next we give the nonzero, off-diagonal matrix elements of
C'&"" and C,'&" ' ' in Tables II, III(a), and III(b), re-

spectively. Here, to save space, we note that all
coefficient matrices are symmetric, and so we need only
list elements from the upper-right triangle. The matrix
C'&" ' has nonzero elements only in the m= —sector;
these are given in Table IV. Finally, C' &" ' and C' &" '

have nonzero elements only off the diagonal; they are
given in Tables V and VI, respectively.

D. The negative and zero modes of the Auctuation operator

Because of the constraints j+s 0 and j +s
&

0
occurring in the spherical harmonic decomposition of g'

TABLE I. (a) The integers j and the diagonal elements of C'&"",i =1,2, 3, and 4. (b) The integers j and the diagonal elements
of C'&"",i =1,2, 3, and 4.

(a)

22

0,2

2 f2

0, 1

0,0
0

Ja C(+ )(1)
aa

—(j+3)

J 2

1

2

C(+ )(2)
aa

j+2
2J +3

9+4j(j+1)
6(2j —1)(2j + 3)

j —1

2j —1

C(+ )(3)
aa

2(j +2)
2j+3

9+4j(j +1)
3(2j —1)(2j +3)

2(j —1 )

2j —1

C(+ )(4)
aa

1

2J +3
2(9—4j(j+1))
3(2j —1)(2j +3)

1

2j —1

1,2

—1,2

Ja C( —)(1)
aa

——'(j +4)

—,'(j —3)

——'(j +2)

—,'(j —1)

—
—,'(j+2)

—,'(j —1)

C( —)(2)
aa

j+2
2(2j + 1)

j —1

2(2j + 1)

J
2(2j + 1)

j+1
2(2j+1)

1

C( —)(3)
aa

J +2
2j+1
j —1

2j+1
J

2j+1
j+1
2j+1

C( —)(4)
aa

j—1

2j+1
J+2
2j+1
j+1
2j+1

J
2j+1
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~0, 2, 2,0(()
=00= 0000(k ~

'—00=(+) ( —
)

no, o(k)

~0, &, &,O(k)

Uo, i,o(k)

and a', respectively, the number of channels for j =0
and j =1 are correspondingly reduced. For j =0, the
m =+ sectors are described by the three- and two-channel
vectors 0, 1

0,2

0,0

0, 1

C(+ )(1)
aP

', J(j-+&))'"

—
—,'&J (j+1)

—'[ —,'(2j —1)(2j+3)]'~'

C( —)(1)
aP

TABLE II. Nonzero, off-diagonal elements of C'+p"".

while for j =1, ~=+ we have the six- and five-channel
vectors

1,2
—1,2

2&j(j+2)
—2'&(j —1)(j+1)

TABLE III. (a) Nonzero, off-diagonal elements of C'
p

"', C' p"", and C' p"'. (b) Nonzero, off-diagonal elements of C' p" ',

22

22

22

0,2

0, 1

0,0

(a)

C(+ )(2)
aP

j(2j —1)(j+2)
6(2j + 1)(2j +3)

J(j+2)
2(2j +1)(2j +3)

(j+1)(j+2)
3(2j +1)(2j+3)

1/2

1/2

C(+ )(3) —C(+ )(4)
aP aP

j(2j —1)(j+2)
6(2j + 1)(2j + 3)2

(j+1)(j+2)
3(2j +1)(2j+3)

' 1/2

' 1/2

0,2

0,2

27 2

0, 1

1/2
(j —1)(j+1)(2j+3)

6(2j + 1)(2j —1)2
T 1/2

1 3

2 (2j —1)(2j+3)

' 1/2

(j —1)(j+1)(2j+3)
6(2J + ] )(2J 1 )

0,2

272

272

0,0

0, 1

0,0

1 2j(j+1)
3 (2j —1)(2j+3)

(J 1)(J +1)
2(2j + 1)(2j —1)

j(j—1)
3(2j + 1)(2j +3)

1/2

1/2

1/2

1 2j(j+1)
3 (2j —1)(2j+3)

j(j —1)
3(2j +1)(2j+3)

' 1/2

' 1/2

(b)

C( —)(2)
aP C( —)(3) —C( —)(4)

aP aP

1,2

1,2

1,2

—1,2

—1,2

—1,2 (J —1)(j+2)
(2j+1)2

1 J(j+2)
2 (2j+1)

1 (j+1)(j+2)
2 (2j+1)

1 j(j —1)
2 (2j+1)

1 (j —1)(j+1)
2 (2j+1)

1/2

1/2

1/2

1/2

1/2

(j —1)(j+2)
(2j+1)

' 1/2

1 j(j+1)
(2j+1)

1/2 j(j+1)
(2j+1)

' 1/2
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C( —)(5)
aP

j+1
2j+1

j
2j+1

' 1/2
j(j+1)
2j+1

TABLE IV. Nonzero elements of C'
&
"". where the functions B((), C(() and H(g) satisfy an ei-

genvalue equation of the form (for details see Ref. 22)

B B
C = —co C

d' 2d
dg

+V[f((),h(g)]
H

It has been shown that in the sphaleron background this
is the unique negative mode for A, /g ~18 (Ref. 18). In
the partial-wave formulation, this negative mode occurs
in the three-channel sector with j =0 and ~=+. The
correspondence is given by

ai, z, z,

ai, o, z, m(P

ioi m(k)

ai oom(k)

ni, o, (n)

ai, i, 2, m(k)

ai, i, &, m(k)
(
—)

, e,:,,„= a. . . (g)

8'
a0, 2, 2, 0

4m.

0,0,0,0 3

oo v 4irH

' 1/2

1/2

(C B),—

(C +2B),

where m =0,+1. After performing the channel reduc-
tions indicated above, the corresponding fluctuation
operators JK o + and JK&, + are obtained from the gen-
eral expression (17) above for A z by taking j~0 and

j~ 1, respectively.
This explicit display of the j =0 and j =1 channels is

opportune, as it facilitates our current task of isolating
the negative and zero modes of the fluctuation operator
JM, . This is required since, as we recall from our discus-
sion in Sec. I, ~ is proportional to Im(det'JK) ', where
the prime denotes deletion of the zero modes of the
sphaleron. With the partial-wave decomposition in hand,
we may now perform this subtraction rather easily and
furthermore evaluate the imaginary part of the deter-
minant by explicitly removing the negative mode eigen-
value, —m [in units of (gu) ].

The channel in which the negative mode occurs has
been identified by Akiba, Kikuchi, and Yanagida. It is
given by the ansatz

One nontrivial check on our calculations was to verify
that the operator AL0+ acting on this three-vector gave
the same eigenvalue equations as produced by Carson
and McLerran.

The zero modes of the sphaleron come in two varieties,
translational and rotational, and occur in the partia1
waves with j = 1 and positive and negative parity, respec-
tively. The translational zero mode fluctuations, which
are induced by translations g~g+e of the background
field, take the form

where the canonical transformation has been supplement-
ed by a gauge transformation in order to preserve the

R& ] gauge condition. Under the spherical wave decom-
position, this expression is recast as

&'4m

a'=(~;. —A. »(4)+ k;k. C(k»

i)~=H ((), &'8m.
e, U; i), , (g) Y;, ,„(0),

(18)

0, 1

0,0

TABLE V. Nonzero elements of C'
&
"".

C(+ )(e)
af3

1

v'2

v'3

2

C( —)(e)
aP

1

v'2
1

v'2

where U, is the unitary matrix relating the Cartesian in-
dices i (i =1,2, 3) to the spherical indices m

(m = —1,0, 1),

1 1

&2 &2
0

&

v'2 v'20

0 1 0

while the functions a. . . (g) and i), ,(g) are related to

the sphaleron profile functions f (g) and h (() as
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TABLE VI. Nonzero elements of C'
&
"".

C(+ )(7)
a/3

I /2

C( —)(7)
aP

' I/2

2,2

2,2

0,2

0,2

1 j(j+2)
2 (2j +1)(2j +3)

1 (j+1)(j+2)
2 (2j+1)(2j+3)

1 3

2 2(2j —1)(2j +3)

1 2j(j+1)
2 3(2j —1)(2j +3)

I /2

I /2

I /2

1,2

1,2

1 ) 2

1 j(j+2)
2(2j + 1)2

I /2
1 (j+1)(j+2)
2 2(2j + 1)'

I /2
1 j(j —1)
2 2(2j+1)

I /2
(j+1)(j—1)

2(2j + 1)2

27 2

272

0, 1

1 (j —1)(j+1)
2 (2j —1)(2j+1)

2 (2j —1)(2j+1)

1

2&2

I /2

I /2

j'2

2 2(2j+1)

1 j(j+1)
2(2j + 1)2

1 j(j+1)
2(2j + 1)2

I /2

I /2

I /2

0,0
1

2&3

' I/2
1 (j+1)
2 2(2j + 1)2

ai
&
&=2&3 — f'+ f—(1 f)——1, 2

ai, i, i
=2 f' , f(1—f—)——1, 2

where P(g) and Q(g) satisfy a certain set of linear, cou-
pled, inhomogeneous equations which have been given
elsewhere. We may transcribe (19) to a decomposition
with respect to j = 1, m = + spherical harmonics using
(18), together with a similar expansion for q4.

ai i i=4&2 f + f(1 f)1, 1
e; U; g, (g)Y, (0) .

&s~

g, , =&2 h' ——(1—f)h
1

,
=h'+ —(1—f)h .

2

Again, it proved a valuable check on our formulas to ver-

ify that the operator AI annihilated this set of modes.
The same checks may be performed on the operator

AL, + with the rotational zero modes, given by

After pages of algebra, one Ands

a& z, = f'+2P' —2Q' — f (1 f)— —2&30. . . 2

——(1 f)P+ —(1—f—)Q
4 4

a, 0, = 3f '+6P'+4Q' — f(1 f)— —2&5 . . . 6

ak=a;e; „g F I,. +e;(DI, A;)',

—=e; e; „g D„@+ie, A, 4 .v'2

(19) ——(1 6f)P+ —(1+4f)Q—2 2

Here one has the additional complication that, in order
to restore the R &, gauge condition, the transformation
law of the background fields Ai', and 4 under g~eXg
must be supplemented by a residual gauge transformation
A, solving the inhomogeneous equation

[ D( A ) + —,
' 4 4]A, —= e,jk F ~ . —

In the sphaleron background (6) the function A, is

parametrized by the ansatz

A;=4(5;, g;f, )P(g)+4(;g—,Q(g),

ai o i
=2&3 f +2P + f(1 f)

+ —(1 2f )P ——Q—2 2

a =4 —Q'+ P ——(1—2f)Q—2 2
1,0, 0

g, o=&6[2Ph —(1—f)h),
g, = —2&3Qh .
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E. The Faddeev-Popov determinant

Finally, we must perform the partial-wave decomposi-
tion of the Faddeev-Popov operator defined by (11). In
this case, the invariance group is given by I.+I, where I
is the isospin operator, realized in the isovector represen-
tation. Thus the Faddeev-Popov operator

D(—A) +4 4/2

acts on isovector functions f, (f) which we expand in
vector spherical harmonics:

f, = g g g f) (()Y'~ (0) .
j=Om = —ja= —

1

Evaluating matrix elements of the Faddeev-Popov opera-
tor with respect to Y', we reduce it, for fixed j, to a
3 X 3 matrix of one-dimensional operators with degenera-
cy (2j+1):

(PJ) p= —JdQ Y; [ D(A) —+ —,'4 4],(, Y,"p

1 d (j+a)(j+a+1)
2' dg'

TABLE VII. Matrix elements D'" and D
&

defining the
Faddeev-Popov operator ( 7, ) & [cf. Eq. (20)].

D(1)
a

—j —2

D(2)

j+1
2j+1

1

i+ 2j+1
0

&i~j+&~
2j+1

III. RENORMALIZATION

Using the machinery devised in the last section we
have reduced the task of evaluating ln~ to a sum of re-
duced determinants each labeled by the partial-wave
quantum numbers j and m. If we let

2 2 2fD(() g + f D(2( (2p)a af3
~2 aP

The nonzero elements of D"' and D'
p are given in Table

VII.

.(1(I, (f—~l,h~i)

denote the partial-wave fluctuation operator evaluated in
the perturbative vacuum, then we have

Ina = —Into —
—,
' ln det'Ate + —

—,
' ln detAto ——,'ln det'Att+ ——,', ln det'A,

(

(2j+1)lndetA& + —,
' g g (2j+1)lndetJKJ„+ —,

' g (2j+1)(lndetP —Indet9~) .
J =2 77=+ j=0 m=k j=O

(21)

j,„~oo, Qg'~p, (22)

such that j „hg is hela constant. In our case, however,
this procedure produces a sequence of values for ln~ that
diverges linearly with j,„(or 1/b, ().

The presence of this linear divergence could have been
anticipated from the form of the effective three-
dimensional action S3 [Eq. (5)]. By power counting, one
finds that the only primitive divergence in the theory is

The primes on the determinants of JNu+, A, , +, and
indicate the removal of the lowest eigenvalue from

the determinant of each of these operators, since the cor-
responding eigenvectors are the negative, rotation-zero,
and translation-zero modes of the sphaleron, respectively.

In practical calculation, the sums over j appearing in
(21) are truncated to some maximum partial-wave j,„
and the operators defining the partial-wave determinants
are formulated on a discrete grid with lattice spacing 6(,
producing the intermediate quantity Ina(j,„,b g). The
final result is then obtained by extrapolating this function
to the limit

the tadpole diagram in the scalar field 4, and its diver-
gence is linear.

Presumably, if one returns to the original four-
dimensional finite-temperature theory and renormalizes
fields, coupling s, and masses according to standard
prescriptions in the zero-temperature limit, then a finite
theory would result which would be valid at all tempera-
tures. In particular, one should be able to take the high-
temperature limit of any gauge-invariant quantities in the
renormalized theory and obtain finite results. This expec-
tation is only partially correct, for it does not allow for
the fact that quantities may also diverge as T~ ~. The
tadpole diagram, contributing to the self-mass of the sca-
lar field, is such a quantity, resulting in a term in the log-
arithm of the partition function that diverges linearly
with T: 1nZ =PF-PT + . = T+ . . The resolution
of this difficulty is well known. ' ' The bare vacuum ex-
pectation value U of the scalar field is readjusted to absorb
the zero-temperature (quadratic) divergence while the T
dependence is incorporated by replacing u by u (T) as de-
scribed in the Introduction. One implication of these ad-
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justments for the effective, high-temperature, three-
dimensional field theory is that in the loop expansion of
lnZ all tadpole (sub)diagrams may be dropped provided
the replacement v~v(T) is made holding the tempera
ture dependence of v(T) ftxed.

Therefore our task of renormalizing ln~ in one-loop or-
der is equivalent to isolating and subtracting the tadpole
contribution to the quantity

dells( A, 4 )
ln

pdetAv

where Af is an operator of the form

JM(A, 4)= —D(A) + V(A, 4)
and JR is the same operator evaluated in the vacuum:

(23)

(24)

1
A 04 —u = —8+V1/2 (25)

In (24), A,' is the background gauge field,

D; ( A ) =8; i T'A —is the covariant derivative in some
representation R of SU(2), and Vis a potential function of
the background fields transforming under SU(2) accord-
ing to some linear combination of the singlet and RR
representations. One can show that lna is precisely
composed of terms of the form (23)—(25). For example,
in the case of the Faddeev-Popov determinant (11), R is
the adjoint representation with (T')b, = i ,e—„bhwile V
is the pure singlet field, 4 4/2. One property shared by
all the potentials Ventering in the expression for ~ is

tr V( A, 4)=tr V(0,4) . (26)

We can isolate the tadpole contribution to (23) quite
easily if we retain Cartesian components of all tensor
quantities (as opposed to the spherical harmonic expan-
sions employed in the previous section) and utilize the
Schwinger proper time representation

der% f " dt
(

—r.n

detAlp

where Tr denotes a functional trace. The functional trace
can be resolved over a complete set of plane-wave states
plus a residual trace (tr) over group and spinor indices.
We obtain

detJK
ln

demP

=f "dt fd x tr[ V( A, 4)—V ]+O(t)
(4rrt)'"

(28)

Cutting off the lower (ultraviolet) limit of the t integral at
1/A we obtain a contribution to ln (detJK/dele, ) from
the first term of the right-hand side of

detAt(0, 4)
1

det[(G ) '+ V(0, 4)]
ln =ln

detA det[(G ) '+V ]

1+G V(0,4)=Trln
1+GPVP

=Tr G [V(0,4&) —V ]+

3 z f d x tr[V(A, 4)—V ],4~'"
which diverges as A~00. It is simple to show that
higher-order terms in (28) are finite in the same limit. We
have thus isolated the linear divergence.

In performing the expansions of e ™and e ' in
the calculation above, it is important to note that due to

2
the exponential factor e ~, the momentum p is implicit-
ly of order t '~ . Thus the operators tD(A) and (t /2!)
[2ip D ( A )] encountered in the steps leading from (27) to
(28), are of the same order in t. In fact, after performing
the p integrations, one finds that these two terms cancel,
leaving in lowest order only the term involving
tr[V(A, 4) —V ].

This last observation, combined with the trace proper-
ty (26), permits the following simplification in isolating
the linear divergence: By setting the 3 dependence of
At( A, 4) in (27) to zero, one can obtain the entire contri-
bution to the linear divergence by expanding e ' '" and—fLBe ' " to first (naive) order in t

To formalize this procedure in a manner that will be
helpful to us later, let us define the inverse propagator

(G') -' = —a'+ A',

with an arbitrary mass term A . Then, after setting A to
zero in (23), one has

detAf f dt fd3 f d p, p

detAi' o t (2~)'
—f KIHoXtr(e ™—e ™) X 1,

where

(27)

Expanding the functional trace over a complete set of
plane waves, this first term is manifestly linearly diver-
gent:

d3fd'gtr[V(o, e) —V'] f
52M(p, x) = —2ip D( A) D( A) + V( A, N)—,

i'll, (p, x)= 2ip. d —8 + V—

f 2

Keeping the factor of e '~ intact, the factors of e—f6 Ro
and e ' "'" are expanded in powers of t and the resulting
expression is integrated over momenta p. To lowest or-
der in t, one finds

Alternatively we could have obtained this expression
from Eq. (27) had we first performed the t integration,
taking care to retain terms of equal order in p by not-
ing that implicitly t -p

To renormalize one must regulate. We shall employ
Pauli-Villars, which in the full one-loop expression (23)
corresponds to the replacement
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detAt detAtdet(Jki +A )
ln

deal, detail, det(JK+ A )

From our discussion above, it is evident that if we sub-
tract from this regulated expression the quantity

1 d L—a'= —— g+
g2 g2

reduces in the subspace of orbital angular momentum I to
give the following expression for the inverse propagator:

Tr[(6 —6 )[V(0,4) —V ]]

containing the (regulated) linear divergence, then the
remaining terms will be finite as A~oo. The value of
this regulated, subtracted result in the limit A~ ~ is the
desired contribution to ln~.

The entire procedure outlined above can be adopted to
the partial-wave expansion with only a few modifications.
The three-dimensional Laplacian

(6 )
'= —— (+ +A

dg2 g2

Let us also relabel the orbital angular momentum quan-
tum number l by j+j where j is the integer relating I
of a particular channel a to the total angular momentum
j. (These integers are listed in Table I for the operators
JN, while for the Faddeev-Popov operators O'J one sim-

ply has j =a.) Then the Pauli-Villars-regulated, sub-

tracted expression we wish to evaluate is

deuN, ( A, 4)det[JK, „+A ]
(2j + 1)ln

j =0m=+ detail, J~ det[JK ( A, 4)+A2]

—g g (2j+1)g f "egg'[6J'+, (g, g) 6,'+, —(g, g)][v,„(o,c) V,'„],—.
j=On=k a

(29)

As mentioned above, we shall cutoff' the sum over j atj,„and discretize the radial coordinate g with lattice
spacing hg. However, with expression (29) we may now
safely extrapolate to the continuum limit (22). In this
way we extract the (finite) contribution in~ of interest, up
to power-law corrections in I /A. These corrections are
finally eliminated by taking A to infinity.

It is not hard to convince oneself from expressions
(17) and (20) for JN, and '7, that the quantities

[&& (0,+)—
VJ, ] entering in Eq. (29) are proportional

to h (g) —1, where h(g) is the profile function defining
the scalar field in the sphaleron background [cf. Eq. (6)]:

tions 6,"+, (g, g). These are all problems that may be
treated by standard methods of numerical analysis; we
shall not give any details here save to mention that by
representing the interval (K[0,~] by a discrete mesh,
g„=n Ag, n=0, . . . , N, one has introduced two addi-
tional parameters, the lattice spacing hg and size
:"=Nb,g, into the calculation. Thus one has a set of reg-
ularized quantities lna„(:-,bg,j,„,A), which must be
extrapolated to the physical limit =~ oo, 5(~0,j,„~~, and A~ Do. These limits are not independent,
but are constrained by the relation

[V) (0,4)—V ]:—V [h (g) —1] .

For the Faddeev-Popov determinant (11), the constant of
proportionality V is —„independent of j, ~, and chan-

nel number a. In the case of fluctuation operators Jk1,

the constants Vj depend on all these quantum numbers.
However, for the integrals defined in (29), it is clear we
only require V summed over parity and channels n
with fixed j . The relevant sums in this case are given in
Table VIII.

We have found that the extrapolations may be reliably

TABLE VIII. Sums of coefficients V, required for the sub-

traction of the linear divergence from detAf /deaf . The prime
on the channel sum denotes summation only over channels a
such that j„is fixed.

j=0

IV. RESULTS

The partial-wave expansion (21) of in~, together with
expressions (17) and (20) for A, and 7 and the regulari-
zation scheme summarized by Eq. (29), constitute the
final, analytical results of this paper. To proceed further
with the evaluation of ln~ entails a number of tasks, in-
cluding the computation of the sphaleron profile func-
tions f (g) and h (g), the negative-mode frequency co

the partial-wave determinants detJR, detJK, det9',
and det9, and the diagonal elements of Green's func-

1
3 2+g2 4

1—+-
g 2

7 A, 7+
3 g2 12

5

4

2+3g 12

3 j+1 1 1—+—+ 2———
g 4 2j+1 g 4

5
2—+-

g2 4

3 j k 1—+ —+ 2———
g2 4 2j+1 g2 4

1

4
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TABLE IX. Calculated values for ln~.

det'A
deaf

~FP
{b) ln

~FP
(a)+(b)

Approx.

(Ref. 22)

0.1

0.3
1.0

10.0

—10.5
—38
—4.0

—12.6

2.6
1.6
0.4
0.1

—7.9
—2.2
—3.6

—12.5

—09
0.6
0.3

—5.7

performed from a three-parameter set of points given by

-=46 8

j,„=25, 50, 100,200,

and

A=1, 3, 5 .

For k/g =0.1, the set of:" points were replaced by 8,
12, and 16 to accommodate the larger Compton wave-
length of the Higgs field.

The results of these computations for four values of
A, /g (0.1, 0.3, 1.0, and 10.0) are presented in Table IX,
each value representing over 35 CPU hours of vectorized
computation on a Cray 2 supercomputer. In this table
we display the contribution to ln~ due to the ratio of
determinants of the fiuctuation tnatrices JNand JN , given
by the first seven terms of (21) and the remaining contri-
bution due to the ratio of Faddeev-Popov determinants
App/happ. These are summed in the third column to give
the final results for ln~ of this paper.

One immediate conclusion that we can draw from
these results is that, in confirmation of the work in Ref.
22, the rate for baryon-number-changing processes is
suppressed by the ~ factor for large and small values of
A, /g . To take an extreme example we see that the esti-
mate ~-1 would have been in error by nearly 6 orders of
magnitude for A, /g =10. It is therefore crucial to take
entropy suppression into account when estimating the
rate of thermally activated b,BWO transitions

It is also interesting to compare our results with the
approximate calculation of lna by Carson and McLer-
ran. Besides listing the actual values of this calculation
in Table IX we also present a plot of their calculation in

Fig. 3. We see that, while the qualitative dependence on
A, /g has been reproduced, our calculations give an addi-
tional overall suppression by some 2 —3 orders of magni-
tude. We do not have any deep understanding of this
discrepancy, save the remarks we have already made in
the Introduction.

One check on our computations is provided by the per-
turbative limit when A, «g «1. In this regime, the
effective potential at finite temperature can be reliably
evaluated as a perturbative series in A. and g . To next-
to-leading order in the temperature T, it is given by"

3 2

V(p)= —ku'p +kg +AT' 1+
32

3 3T)3+
3277

We recognize the third term in this series to be
ku ( T/T, ) P, where T, is the critical temperature for
symmetry restoration. It was precisely this term that was
absorbed in the redefinition U~v(T) of vacuum expecta-
tion value of the Higgs field (t. The fourth term linear in
T gives a temperature-independent contribution to the
logarithm of the partition function, a contribution that
should match our exact calculation in the limit that
A, «g «1. Evaluating this contribution to ln~ in the
sphaleron background (6) we obtain

This (implicit) function of A, /g is also plotted in Fig. 3.
We see that our results are at least consistent with this
calculation in the perturbative regime, k/g « 1 al-

I I I I I I I I
l

I I I I Illll I I I I ill lj

-10

-h5

-20
102

I I I I I I I

100

g2

I I iiiil
)01

FIG. 3. A plot of ln~, where ~ is the determinant of small

fluctuations around the sphaleron solution with zero modes re-

moved [Eqs. (7) and (21)], as a function of A, /g'. The solid curve

shows the result of approximate calculations of Ref. 22 using
the method of Diakonov, Petrov, and Yung (Ref. 23). The four
crosses are the result of the exact computations performed in

this paper. These four points are interpolated by a third-order

polynomial in ink. /g- (dot-dash curve). The dashed line is the
result of a perturbative calculation (Ref. 11) to next-to-leading-
order in the temperature T, valid for small A, /g'-.
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though at /(, /g =0. 1 the two still differ by 2 orders of
magnitude. As expected, the perturbative calculation
completely fails for A, /g ~ l.

0u N-,

TABLE X. Table of vector spherical harmonics Y.'. .„.
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APPENDIX

In this appendix we show how one may construct vec-
tor and tensor spherical harmonic eigenfunctions in
terms of vector and tensor operators acting on the ordi-
nary spherical harmonic functions Y . The basic vector
operators we require are

Oo=i L,
O, =g(L+1)+i(XL,
0 )=(L —i(XL,

where

L= igXV—

eigenstate of L, a condition we shall maintain
throughout the discussion below. Since the operators 0,
defined above satisfy the commutation relations

[L,0, ]=21s+s( s + I),
we can use 0, or 0, as raising or lowering operators to
change the orbital angular momentum quantum number
of an eigenstate from 1 to (l + 1 ) or ( I —1). Similarly, the
action of the operator Oo will not change l. Our assertion
then is that we may define the vector spherical harmonic
functions satisfying the defining relations (16) as

(Al)

where the normalization constants N, are determined by
the orthonormality condition

f dQ Y, ; Y, , =5,,'5„5

We list 0; and the constants ¹,in Table X. The parity
of the Y;, „, is (

—1)'+'.
To prove (Al) we note that by construction the func-

tions Y', „, are eigenfunctions of L with eigenvalue
l =j+s. Thus we need only show that they are also
eigenfunctions of J and J, with eigenvalues j and m, re-
spectively. Here we recall the total angular momentum
operator is the vector sum J=L+ h, , where 5b, = —i E',b, .
The proof is most easily executed by using the definitions
of L and 0, above to show that

is the orbital angular momentum operator and

L=(L + —')'

This last operator is well defined if it always acts on an

[ga Ob] —&&abcpc

LXO, =iO, [sl+ —,'s(s+1)+1] .

It is then a simple matter to derive the equalities

(A2)

S}

TABLE XI. Table of tensor spherical harmonics Y, '.

0a!
sl s2 Ng, s, s1' 2

0 Iu0l I

1 1

g,'ag/ f +gulag/

gdQg/ f + / ga/O2

glagk/ +g)u g/ t

0 10 '1

ul d~d

E'undo d
n

al d0d--1

(2j +1)(j +1)(j +2)(2j +3)

2j (j +1)(j +2)(2j +1)
—„' j (j +1)(2j+3)(2j —1)

2j(j —1)(2j +1)(j+1)
(2j+1)j(2j—1)(j—1)

2(2j + 1)(j + 1)

2j(j+1)
2j(2j+1)
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(J, )b, g,'=(L, +b,, )b, g; =0,L, ,

2 gc (I +g)2 gc gbL2

which completes the proof.
The same procedure may be used to define the tensor

spherical harmonic functions. We take

lar momentum operator is now J=L+h, +b'. Here 6
and 5, ' are spin-1 vector matrices which act separately on
the indices a and k of I',", . From (A2) and the form

of the 0,', , one may show that

ak —1/2 ak
JSI,S2, Pl J S S SIS2 J t7l (A3}

J2 gcl (L+g+pi)2 gcl Obk L2
2

where the operators 0, , are constructed in terms of
some combinations of the 0, while ¹,, are normaliza-J~S

1 ~Sp

tion constants determined by the condition

The operators 0,', and constants N, , are given in
I 2 Jj S

] ~ $2

Table XI. The parity of the I';, , is (
—1)

Once again, the defining equations for 0, as well as the
relations (A2) can be used to show that the tensor spheri-
cal harmonics given by (A3) are eigenfunctions of L (by
construction), J, J3, and (lL+b, '},where the total angu-

which immediately proves that the Y,', , are eigen-

functions of J and J3 with the appropriate eigenvalues.
The remaining operator (6+5') has eigenvalues
s2 =0, 1,2 which specify the usual index symmetry of the
tensor operators 0': for sz =2, 0' is symmetric under
the interchange of a and k and is traceless, for s2 =1 it is
antisymmetric and for s2=0 it is proportional to 5' .
From Table XI and the properties

Oi =0
i =00'0+i =0+ j 00=0

it is clear that the tensor harmonics Y', , have the in-

dicated s2 eigenvalues.
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