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Eigenstates of the Schwinger-model Hamiltonian
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We solve the Schwinger model on the circle in the canonical Hamiltonian formalism without bo-

sonizing. Working in the 30=0 gauge, we explicitly construct the exact, physical states of the

theory in the fermionic Fock space using the Schrodinger-picture representation for the gauge field

degrees of freedom. The e vacuum is obtained naturally and its detailed structure is exhibited.

INTRODUCTION

Electrodynamics in two spacetime dimensions with
massless fermions was first solved by Julian Schwinger in
1962, and hence named the Schwinger model. ' He ob-
tained the exact Green's functions for the theory, and
since then other authors have obtained them in various
gauges. Path-integral solutions and operator solutions
have also since been given. A solution which gives all the
exact eigenstates of the Hamiltonian (on the circle) has
been obtained by Hetrick and Hosotani by bosonizing
the model. It would certainly be of interest to write this
solution down in its fermionic representation, and in fact
that is what we do here by solving the model directly.

The various solutions have allowed many properties,
often nonperturbative, to be elucidated. In particular,
the global chiral anomaly and the e angle have received
much attention. The e vacuum is usually obtained by
demonstrating that there is an infinite number of degen-
erate, lowest-energy states, related by large gauge trans-
formations, and these are summed to a single gauge-
invariant vacuum which gives the theory the cluster
property. This vacuum is here obtained quite naturally
as the lowest-energy state of a set of stationary states
which are obtained by a linear vector space transforma-
tion (the transformation matrix has entries which are
functionals of the gauge field) from a basis of states con-
structed in the usual manner with elementary fermionic
creation operators. The solution has the usual properties
of invariance under small and large gauge transforma-
tions, and variance of e under chiral transformations.

In 1985, Manton constructed explicitly (without boson-
izing) a set of approximate eigenstates for the Hamiltoni-
an in the B„A,=0 gauge. (Hence we follow quite close-
ly his lead and regulate the theory by taking space to be a
circle and working with the discrete momentum modes. )

He solved the eigenstate problem by neglecting the
Coulomb interaction to find a set of eigenstates without
ferrnionic excitations. What we will do here is find a
canonical transformation which yields a Hamiltonian for
which his states are exact. These correspond to the
zero-momentum scalars of the bosonized version of the
theory, and the rest of the states are then easily found
from these by using bosonic creation operators. Trans-

forming back gives a complete solution in terms of the
original fermionic variables. The canonical transforma-
tion is closely related to bosonization and was first
discovered by Mattis and Lieb to solve the Luttinger
model.

PURE ELECTRODYNAMICS ON THE CIRCLE

A, ~A„i (B„g)—g ', where g(x) =e' '"' . (2)

Demanding that g be single valued on the circle of length
2m forces,

A(2n ) =A(0)+2mm, (3)

where m is an integer which labels what we call the
homotopy class of A. When m =0 the transformation is
called a small gauge transformation, and when m@0 it is
called a large gauge transformation. Notice that the
zeroth Fourier component of A„may be brought to the
interval [0,1], with the end points identified, by a large
gauge transformation:

2m.

AD —— A dx~AD+rn .2' 0
(4)

The electric field is the canonically conjugate momen-
tum to A„

and the Hamiltonian is

H= I J E,dx .
0

We quantize this system in the field version of the
Schrodinger picture, obtaining a representation of the
commutator algebra

The Lagrangian density for two-dimensional QED
(QED2) without matter is

Z =-,'(a, A„—a„A, )' .

We choose the gauge A, =0 and are left with the residual
freedom of performing time-independent gauge transfor-
mations, which are of the form
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[ A„(x ),E„(y)]=i 5(x —y) (7) These are

by taking A to be the multiplication operator and F. to
be the derivative operator:

6 iE=—i + 8.
5A„2m.

6 is a real consant which will later be seen as the vacuum
angle. The solution of this system is easy and can be
found, for example, in Ref. 6.

THE SCHWINGER-MODEL HAMILTONIAN

Upon addition of the Dirac Lagrangian for matter, the
previous Lagrangian becomes that of the Schwinger mod-
el:

X
q„'(x)=exp —ice„x ie— A(x'}dx'

0

y„(x)=—g„'(x) .

Periodic boundary conditions imply that

co„=n +eA0,

where A0 is the previously defined zeroth Fourier com-
ponent of A (x). Notice that under the gauge transfor-
mation (2) the energy levels undergo an overall shift,
co„~co„+,by the integer m which labels the homotopy
class of the gauge transformation.

The Fourier expansion for the field operator

(19)
X =

—,
' (8, A„—B„A, ) +i gy "(8„+ieA „)g, (9)

where g=P y y =cr' y'= iver y—=y y'=o —the
o's being the Pauli matrices. Standard manipulations
yield the A, =0 gauge Hamiltonian H2=+co (a' a' —a a ), (20)

allows the fermion kinetic energy part of the Hamiltonian
to be written as

H= f ( ,'E„+i—ghg)dx (10)
with the anticommutators

with the first-class constraint known as Gauss's law:

h=o i —eA3

Bx
(12)

is the single-particle Dirac Hamiltonian.
To quantize this system we impose the canonical an-

ticommutator

[Q (x), gp(y)I =5(x —y)5 p (13)

and the canonical commutator (7). The Hamiltonian be-
comes the operator

2

H=f" 1 5 i8+ +if hg dx
2 5A(x) 2m

=—H)+H2,
and Gauss's law is imposed as a constraint which defines
physical states:

(15)

B„E„=egP .

Upon integration over the circle this constraint implies
that the total electric charge must be zero. Here

[a„',a~ I=[a„',aj I=0,
(21)

a„'l0) =0 for co„~O,

a„' l0) =0 for co„(0,
a„ lO) =0 for ~„(0,
a„ l0) =0 for co ~ 0 .

Then applying these operators appropriately to l0) gives,
for fixed A (x), a basis of states which we call l lF ) I, in
which each energy level is specified as either empty or
filled; and in which all but a finite number of negative-
energy levels are filled, and only a finite number of
positive-energy levels are filled.

A solution for the fully interacting system can be writ-
ten

[a„',a'
I =5,,5 „.

Thus a ' is the creation operator for a positive-chirality
particle of energy co, which we ca11 left handed, and a

P
~ 2f

is the creation operator for a negative-chirality particle of
energy —co, which we call right handed. We use these
operators to define the fermionic Fock space as follows:
The vacuum of H2 is defined by the conditions

1
0'n

h
9'n

1
9'n

~n
9'n

(16)

where A (x) —= A„(x}. These operators will be properly
defined, i.e., regulated, in momentum space shortly.

We will expand g in the eigenmodes of the single-
particle Dirac Hamiltonian which solve the eigenvalue
equation

(23)

A(x)= g A„e (24)

and by solving the system we mean finding all yF[A]
such that lP) is an eigenstate of H and obeys the con-
straint. Since we wish to work with the discrete momen-
tum modes of the theory, we Fourier analyze Gauss's
law. Use of
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aG(n)—:n —e gak al', „=0 .
n k, i

(25)

and the chain rule for differentiation yields the momen-
turn space form for Gauss's law:

For n&0, p;(n) is a finite operator; but for n =0 this is
not so and it is necessary to regulate the ultraviolet
infinity. We do so with the following gauge-invariant
(called heat-kernel) regularization, which exponentially
damps the high-rnomenturn modes:

It is shown in the Appendix that the basis states ~F ) obey
Gauss's law. Hence Gauss's law G(n)~f) =0, where ~g)
is the state (23), implies

p, (0)=g a' a 'e

(33)

g ~F)n gz[A(x)]=0,
F n

(26)

(27)

Thus we define the momentum-space chiral charge densi-
ties as

p (p)= J P P (x)e'~'dx, (28)

which by the completeness of I~F) I implies

B„yz[A] =0 for n %0 Thi.s is just a statement of invari-

ance under small gauge transformations: gz[ A (x)]
=y~( Ao). It is also shown in the Appendix that
a„~F)=0.

The standard vector j"=py "g and axial-vector
j", =gy"y g currents with our choice of gamma matrices
have the components

pz(0}=g a a~e

PP(0) =M+eA0+ —,',
pq'&(0) = —N —e A0+ —,

'
(34)

Demanding that the total electric charge be zero forces
N=M+1; and hence, the absolute regularized axial
charge is

These operators are gauge invariant under both large and
small gauge transformations, because when m ~co +

then also a ~a„+ . Acting on a basis state ~F ) the reg-
ularized chiral charge is the same as when it acts on a
basis state without fermionic excitations but the same
numbers of left- and right-handed particles (see Ref. 6).
This associated state is denoted ~M, N ) to indicate that
the left-handed particles fill the levels M, and the
right-handed particles fill the levels ~N. In the limit
A, ~O, after a subtraction of 1/A, , the chiral charges are

which upon substitution of the expansion (19) for f be-
come

Qp=2M+2eA0+1 . (35)

p.(p) =X a~'ak+,
k

Alas we may write Gauss's law as

(29)
The fermion kinetic term of the Hamiltonian is also

infinite; and when regularized in the same manner as
above, acting in the space [ ~F ) I (in the limit A, ~O, after
a I/A, subtraction) it is equal to its Sugawara form

G(n)=n —ej ( n)=0 .—
BA„

(30) Hz =
—,
' g p&(n)p&(

—n)+p~( —n )pq(n) (36)

We also Fourier transform H, and use this equation to
substitute for 8/BA„when n %0, obtaining

SOLUTION OF THE EIGENSTATE PROBLEM

H =
]

We proceed to find the eigenstates for the complete,
physical Hamiltonian:

2

+iB + g j ( n)j (n). —a
4m BAD 4m „~o Pg

(31)

[pi( —p»pi(e)]=p~, ,
[p2( p»p~(e)] = —pfi, ,,
[pi(p»p~(e)] =o .

(32)

Since we have used Gauss's law, the Hamiltonian is now
restricted to act on physical states only. The first term of
H, represents the energy in the electric field, and the
second term is the Coulomb energy. When 6=0 and Ao
is identified with Manton s A„, we obtain the Hamiltoni-
an he wrote down.

We will rewrite the fermion kinetic term H2 in terms
of currents using the Sugawara formula; hence we pause
to examine the chiral charge density operators. Acting
on I ~F ) I these have the bosonic commutation relations

H=Ho+H

where
2

H0= +iB + —,'[p",' (0)] +[pq' (0)]
0

p, (p)p, (
—p)+p, (

—p )p, (p)
p~0

2

+ [pi(p)+pe(p)][pi( p)+ps( —p)]
27Tp

(37)

iSH —iS (38)

Here S is the Hermitian operator

First we look for a canonical transformation which
eliminates the off-diagonal terms p,p2..
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[iS,p, (p)] =(t'(p)pz(p),

[iS,pz(p)] =/(p)p)(p),
(40)

S=i g p, (p)p, (
—p),(p)

p&0

where p(p) is a real, even function of p to be determined,
with $(0}defined to be 0. From the charge-density com-
mutators (32) we have that

with boundary conditions

XM(1) =yM+, (0),

~~ XM(1) ~.& XM+)(0} '

(48)

The first boundary condition states that lM & when
Ao=1 is the same state as lM+1& when AD=0. The
second says the two should join smoothly, due to the an-
gular nature of 2~ A p ~ Then upon the definition

which in turn, upon use of the operator expansion yM( Ao) =y(M+ A() ) =y( A ), (49)

e "Be "=8+[ A, B]+—[ A [ A 8]]+ (41)
1 the system of equations reduces to an eigenvalue equation

for a wave function over the real line:

gives us

e'sp)(p)e ' =p)(p)cosh(()(p)+pzpsinhg(p),

e'spz(p)e 's=pz(p)cosh/(p)+p, (p)sinhg(p) .
(42)

r 2
2

+ie +( A + —,
'

) y( A )=Ey( A ) .
4n. (50)

As observed by Manton, this is essentially the harmonic-
oscillator problem, and has the solutions

It is now easy to apply the canonical transformation to
H. Clearly Ho transforms to itself; and we find that
choosing P(p), for pWO, to satisfy

+n( A )
—~ ( A + ) )e( —) IP)( &+) Iz) —i8( A+)Iz)

n 2

E„=(n+—,')p,
(51)

coth[2$(p) ]= — 1+ 27Tp

e2

results in HI being transformed to

(43) where &„ is the nth Hermite polynomial.
We denote by l P„& the nth eigenstate:

le„&=y lM&q" (A, ) . (52)

2+ 2

Hi X [p)(p)p(( p }+pz( p }pz(p}l
p 0 p

(44)

lq & =AIM &X ( Ao) (45)

and using the expression (37) for Ho, along with the re-
sult (34) for p;(0), yields

where p =e /v n. .
We now exhibit the eigenstates of Ho in the subspace

spanned by basis states without fermionic excitations, i.e.,
basis states of form lM, M+1&, denoted by lM &. The
important observation to make here is that these states
are annihilated by p)( —p) and pz(p) for p )0; which
means HI lM & =0. Hence these states will be exact eigen-
states for H', whereas for Manton's Hamiltonian they
only are approximate (he dropped the Coulomb term to
find these states ).

Writing

p '~'p, (p)=8 (p),

p
' 'p ( —p)=8 (

—p),

p
' 'p, (

—p) =8(p),

p
' p, (p)=8( —p) .

(53}

The 8's have the commutators of a scalar, and in terms of
them

M

Although every term in this sum is by itself an eigenstate,
obeying Gauss's law, with energy E„; it is only the sum

which is invariant under large gauge transformations, by
which A 0~ A 0+m and lM & ~ l

M+ m &, where m is the
homotopy class of the gauge transformation.

From the zero-momentum sector t l P„& ] we can easily
construct the rest of the eigenstates as follows. Define,
for p)0,

— 2 aH'lq&=y lM&
' +ie

HJ = g +p +p 8 (p)B(p) .
pwO

(54)

+ ( M + A () + —,
'

) y~ ( A () ) .

The operators 8(p) annihilate the states lP„&, whereas
the operators 8 (p) create excitations of energy
+iz +p . For example,

Thus a stationary state
l g & is specified by the set of wave

functions IyM( Ao)lMEZ, 0~ Ao ~ 1) satisfying

2

+ie +(M+A, +-,')' y (A, )
4m 8Ao

=ELM( A() ), (47)

H'8 t(p)
I q„&= [(n + ,' )p+ &pz+ p 2]8 t

l q—„& . (55)

Application of arbitrary sequences of these bosonic
creation operators to [lf„&I yield all the stationary
states, t l P & I, of the transformed Hamiltonian.

l P„& cor-
responds to the state with n zero-momentum scalars in
the bosonized version of the theory. The stationary states
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of the original Hamiltonian are

(56)

and by construction obey the constraint equation (31).

DISCUSSION

The normalized ground state is the n =0 state which
we have just constructed:

(
—)/) )(eA +M+)/2) —'0(20+M+(/2)

N
(57)

~g lElq,")= ( f "dx—e (x) e"(x), (58)

where 'M is the mth level harmonic-oscillator wave func-
tion with frequency p. The nonintegr able phase

2vrie Ao
A =e ' has matrix elements

~gglA le)o~=- —f dx Vl (x)e '"'M"(x) .

The vector charge is zero, whereas the axial charge is

(y lqty'(tip" &=—f dx n (x)xn"(x) .

(59)

(60)

These are all in precise agreement with Ref. 5 provided
that we set their constants to a =

—,', L =2m. . In particular
these imply the vacuum expectations

& E ) = ( y'y'y) =0 and ( A ) = —e -&~" (61)

To calculate the matrix elements of —,
' g( 1 —

y & )g, which
with our choice of y matrices is g, (x)gz(x), we first ob-
tain

where the normalization factor is easily determined to be
N = &pm l2 (when calculating scalar products one must
not forget to integrate over Ao from 0 to 1). In the limit
that the coupling constant p goes to zero, the value of Ao
is arbitrary and we choose it to be —„in which case, since
the canonical transformation (38) becomes the identity
li)/0) ~

l

—I ), which is precisely the ground state of the
free, purely fermionic theory. When the coupling con-
stant is nonzero there is a finite probability of finding any
particular number of fermions, in a charge neutral
configuration, in the vacuum.

Having obtained the states, we may calculate matrix
elements for the observables and compare our solution
with that obtained in Ref. 5. Because the nonzero-
momentum sector is identical in form for both treatments
we only give matrix elements for the zero-momentum
eigenstates lpga)—:exp( iS)l—ij/„), where l1()„) is given by
(52). The electric field is given by

&q lq'y ly")1= c—(i )
'

x f dx 'M (x +-,) )'M"(x —
—,
' ), (63)

which for the case of the vacuum gives

( q1'q ) — P C( )
(/2Pei8

2v'

Again this is in complete agreement with Ref. 5 provided
that p(C)=2&mB(p, 2m), where B is given in Ref. 5.
Matrix elements of products of operators can now be cal-
culated by inserting a resolution of unity between factors.

Because 8 is multiplied by the axial charge Q5 [recall
formula (35)], the sole effect of a chiral transformation

l0e~-e" ' 0e~ (65)

is to shift the value of the 6 angle by 2', as has been not-
ed in the literature. Recently, authors have found two
vacuum angles in the Schwinger model, the other of
which enters similarily to 6, but multiplies the vector
charge. This cannot appear here because we consider
only physical states, and these have zero vector charge.

The sum (52) may be viewed as a basis transformation
from the subbasis [ lM ) j, to the subbasis [ lf„)j. In old-
er treatments, this basis transformation was introduced
to diagonalize certain local observables; however, only
one row of the transformation matrix was known—
giving us only one state of the new basis, namely, the 8
vacuum. Our result may be summarized as follows. Ful-
ly gauge invariant, nondegenerate eigenstates to the
canonically transformed problem are obtained by apply-
ing the transformation matrix yM [given by (51)] to the
subbasis [lM) j to obtain the subbasis [lP„)j. The rest
of the eigenstates are obtained by applying nonzero-
momentum creation operators to [l1(„)j. The eigen-
states for the Schwinger model on the circle are then
given by applying e ', and are in fact precisely the parti-
cle states of the free massive scalar theory.

(Mle' P(g&e
' lN) = — C(p)5(N, M —1), (62)
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APPENDIX

Here we proceed to demonstrate that ~F & obeys
Gauss's law (15). To do so we must first obtain its deriva-
tive by A (x). Hence we claim that the operator A
defined (up to a to-be-fixed additive constant) by

Eq. (Al) and the orthogonality of the y'„'s imply

[A(y), a' ]=—g A' „(y)a„',

where

(A5)

= [A(x),a ],5a
(A 1)

where a is any of the elementary creation or annihilation
operators, gives the derivative

=alF& .
A

(A2)

The proof is as follows.
Since ~F &

=a a ~0& for some string of elementary
creation and annihilation operators we may write

5~F& 5, , 5
,a a ~0&+a a ~0&

A

5q&'„(x )
A' „(y)= f qr'* dx . (A6)

2tr o 5A (y

Equation (A5) is to be understood as acting on ~F &, and
in turn implies

A(x)=g A'„(x)a' a„'+f,
mni

(A7)

where f is some complex-valued function which we set
zero in order to obtain (0~% ~0&=(O~E„~O&=0. Substi-
tuting the eigenmodes (17) into (A6) gives 3 „,which in
turn gives A as

A(x)= — g (m. —x) pa' a'ie
2' m m

J m

=[A,a . a ]~0&+a . a ~0&
A

i(m —n)x

m n
(A8)

=AfF& —a a A-
5A

(A3)

5
,g a„'qr'„(x) =0,

n

(A4)

Hence it remains to show that (A2) is true for ~F &
= ~0&.

We may use the fact that A is still only defined up to a
constant to set (0~A~0&=(0~(5/5A)~0&. It is easily
shown that for some other abritrary basis state
~G & =a a ~0& that (G~A ~0& =(G~(5/5A )~0&. The
arbitrariness of

~
G & allows us to say our claim is true,

and we go on to find an explicit expression for A.
Since the electric field operator and the Fermi field

operator commute,

so that finally we get Gauss's law for the state ~F &:

t)„A(x)=ieP (x)g(x) . (A9)

A heat-kernel regularization, as in the main text, does not
change the conclusions.

Using the chain rule for differentiation we may rewrite
Eq. (A2) as

a[F&
BA o

e ' xdxF (A10)

which for the case m =0 gives r)„~F& =0, and for the

case m%0 this is Gauss's law in momentum space for the
state ~F &.
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