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A canonical formulation, using equal-time commutation rules for canonically conjugate
operator-valued fields, is given for quantum electrodynamics and Yang-Mills theory in the light-
cone gauge. A gauge-fixing term is used that avoids all operator constraints by providing a canoni-
cally conjugate momentum for every field component. The theory is embedded in a space in which

the light-cone gauge condition and all of Maxwell s equations hold. Interaction picture fields and

the photon and gluon propagators in the light-cone gauge are evaluated for two alternate represen-
tations of the longitudinal and timelike components of gauge fields. One representation makes use

of the entire momentum space to represent these gauge field components as superpositions of ghost
annihilation and creation operators. The other uses only ghost excitations with k3 & 0 for the longi-
tudinal modes of A;, but restricts the gauge-fixing field to ghost excitations with k3 (0. It is shown
that the former mode leads to a formulation that corresponds to the principal-value (PV) prescrip-
tion for the extra pole in this gauge, the latter to the Mandelstam-Leibbrandt (ML) prescription.
Nevertheless the underlying theory for these two cases is identical. In particular, for QED both
modes give identical time evolution, within a physical subspace in which constraints are implement-

ed, as does QED in the Coulomb gauge. It is therefore concluded that canonical formulations of the
light-cone gauge cannot be a basis for preferring the ML to the PV prescription for the extra pole at
ko =k3 in the light-cone propagator.

I. INTRODUCTION

Work on light-cone formulations of gauge theories was
used as early as twenty years ago to study scaling behav-
ior in large momentum transfer processes. ' More re-
cently there has been interest in the light-cone gauge as
an example of an axial gauge that represents the gauge
theory in arbitrary reference frames, and without replac-
ing equal-time commutation rules by light-cone commu-
tation rules. ' In this work the propagator for the
gauge field is given by

5,b kn+kn nkk
kn (k n)

with n, =nz =0, and n3 =no= 1 in the light-cone gauge.
The ambiguity in the spurious pole at ko =k3 was origi-
nally resolved by choosing the principal-value (PV)
prescription, but detailed analysis of gluon loops has
shown that the PV prescription for resolving this ambi-
guity leads to uncontrollable infinities and that use of the
Mandelstam-Leibbrandt (ML) prescription avoids this
dilemma. ' An argument has furthermore been made
that consistent canonical quantization supports, indeed
requires, the use of the ML prescription. '

The canonical quantization of the light-cone gauge
given here applies procedures used in earlier work on the
temporal gauge ' to show that the same canonical for-
mulation can lead to either the PV or the ML propagator
prescriptions, depending only on the representation of
the gauge fields in terms of ghost excitations. This

demonstrates that a consistent canonical formulation
cannot distinguish between the PV and the ML prescrip-
tions. Moreover, when implementing the constraints that
fix the gauge and impose Gauss's law in a time-
independent fashion, this work includes all interactions in
the time-evolution operator.

II. CANONICAL FORMULATION

In this work we will use the Lagrangian

,'F;tF;J+ —,
'F—;oF—;o+giA; —

go Ao

+[(a,+a, )( A, —A, )]G+Z.„„,, (2.1)

and

DF, D,F, —j, = —5, —(t)+t) )G,
D Fo+jo (t)o+t) )G

(t) +il )(D +D )G=O,

(2.2)

(2.3)

(2.4)

(t)o+t)3)( Ao —A3) =0, (2.5)

where Do and D, represent Do =Bo—2e A o X and

where F;J =t) A; —t); A —2eA, X A for QCD and
FJ

= t)i A; —t); AJ for QED (we will use Yang-Mills
theory as a prototype non-Abelian theory and, at times,
refer to it as QCD). Similarly F;o= t)o A;+ t); A o

+2eA; X Ao for QCD and F;o=BoA;+8; Ao for QED,
and X,«„=P(m+y B)g; and finally jo=egy&rP and
j;=t'eely;rttt for QCD, while jo=egy4$ and j; =tery;P
for QED. Superscripts denoting Lie group indices will be
suppressed unless necessary to avoid confusion. The
Euler-Lagrange equations derived from X are
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D, =8, +2eA, X, respectively, in QCD, and Bo and 8;, re-
spectively, in QED. Alternate forms of Gauss's law and
Ampere's law, that are very useful for our purposes, are
based upon the observation that the current J„,given by

Jo =jo+2eA; XF;0 2e—( Ao —A3) X G, (2.6a)

and

J, =j, +2eAO XFO+2eA XF, —5;"32e( Ao —
A 3 ) X G

(2.6b)

obeys the conservation law 8;J;+MOJO=O. Equations
(2.2) and (2.3) can be rewritten in the form

the gauge fields in terms of the excitation operators for
positive- and negative-helicity photons (and gluons) in a
form identical to the one used for transverse gauge fields
in the covariant, the temporal, as well as all other gauges;
and, as in the temporal gauge, for the representation of
longitudinal and timelike components of gauge fields, we
use the gluon (or photon) ghost annihilation operators
a&(k), aR(k) and the corresponding creation operators
which are their adjoints in an indefinite metric space,
a&(k) and az(k), respectively. These operators obey
the commutation rules [a&(k),aR (k')] = [a+ (k), a&(k')]
=51, |,, and combine to form the unit operator as illus-
trated for the one-particle ghost sector by

and

r},F, +J. =. (D +D )G (2.7)
I =+ [ag(k)IO) &Olaz(k)+a+(k)~0) &0~a&(k)] . (2.11)

k

BQF;0
—8 F;, —J; = —5; 3(Dc+D3 )G, (2.8)

and, with the substitution of the conserved current j„for

J„ in QED, Eqs. (2.7) and (2.8) apply in that case too.
These equations indicate that, to maintain the validity of
Gauss's and Ampere's laws, (Do+D3)G =0 must be im-

posed weakly in some appropriately chosen subspace, and
state vectors describing physical systems must remain in
that subspace under time translation. The Lagrangian 2
gives rise to canonical rnomenta

and

a
a(a, A, )

(2.9)

=F, +5, G=H, (2.10)

so that E =5; 3G' —H'; where E,'= —F,'0; when the ap-
propriate expressions for F, 0 are used, the same equa-
tions apply in QED and QCD. As in earlier works on the
temporal gauge, the gauge-fixing term we use avoids pri-
rnary constraints that arise in formulations in which Ho
vanishes identically. ' The canonical commutation
rules are [A;(x), H (y)]=i5;i5(x—y), [G(y), Ao(x)]
=i 5(x y), and—, consequently, that [ A;(x), Ei(y)]

i5;i5(x——y), [Ao(x),E3(y)]= i5(x —y), as —well as
[4(x),E3(y)]=0 and [4(x),G(y)] = —i5(x —y) for
4= A 0

—A 3. In constructing Fock-space representa-
tions of these gauge fields that implement these commu-
tation rules we represent the transverse components of

I

As in other axial gauges, there is no need for scalar fer-
mion (Faddeev-Popov) ghosts in this gauge. A;(x) will be
given as A, (x)= A, (x)+ A; (x), where A; (x), the tra s-
verse part, has the form

e,"(k )

A; (x)=g [a„(k)e'""+a„(k)e '""]
v'(2k)

(2.12)

and the index n is summed over the two transverse helici-
ty modes. A; (x) is represented in terms of ghosts opera-
tors, as well as the functions q(k), g(k), g(k), and g(k),
which will be given two alternate sets of values, which we
refer to as the PV and the ML values, respectively. All of
these functions are set equal to 1 in the PV case, but in an
adaptation of a procedure used by Bassetto et al. ,

' by
Lazzizzera, and by Landshoff and Taylor, they are
given by g(k) =28(k3), g(k)=8(k3), ri(k)=28( —k3),
and g(k) =8( —k, ) in the ML case. One consequence of
these definitions is that g(k)q(k)=g(k)g(k)=1 for the
PV case, but ri(k)g(k)=g(k)g(k)=0 for the ML case.
A,. (x) is given by

and representations of other gauge fields needed in this
theory are

ri(k }k,
A; (x)=g I[a+(k)e'"'"+a+(k)e '"'"]

k

+AFi(k)[a&(k)e'" "+a&(k)e '"'"]},
(2.13)

E, (x)=i+ e", (k)
k

k

1/2
g(k)k;

[a„(k)e'""—a„(k)e '" "]+ — [a&(k }e'""—a&(k)e ' "] (2.14)

g(k }k3
G(x) =i ag — —[az(k)e'"'" —az(k)e '"'"]—g(k)[a&(k)e'" "—a&(k)e '"'"]

k

(2.15)

and

N(x)= g [a&(k}e'""+a&(k)e ""].
~(k)&k

k

(2.16)

I

Direct substitution confirms that these representations
implement the equal-time commutation rules for any real
values of k and a. A. and a therefore remain unspecified
parameters in these representations. The canonical
prescription %=

Hollo A 0+ H, BoA, —X leads to the
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Hamiltonian density which we represent as A=Ho+%„
where %o is given by

,'E,'—E,'+ —'(8 A —t3;A')(a, A; —a, A;)
—A 'd, E,'+. G'8, ( A' —A; )+& (2.17)

for QCD, and by an identical expression for QED, but
with the Lie group superscripts omitted. & represents

qq

the Hamiltonian density for noninteracting quarks (elec-
trons in the case of QED). &, is given by

& ——jo Ao —j,. A, for QED, and, for the non-Abelian
case, it is given by

k~=jo. AO
—j;.A, —2eAO (A;XE, )

+2eB, A, (A, X A, )+e (A, X A, ) (A, X A, ) .

(2.18)

&, is free of operator-ordering problems in QCD as well
as in QED, because noncornmuting gauge field operators
never appear in operator products. Operator-ordering
problems that arise in &0 are not serious, and are always
resolved in favor of normal-ordered bilinear products. It
is useful, for later analysis, to represent the Hamiltonian
Ho in terms of the particle excitation operators used in
Eqs. (2.13)—(2.16). In this representation Ho is given by

Ho=+ k[a„(k)a„(k)+g(k)a&(k)a&(k)]+k3[az(k)a&(k)+a&(k)a„(k)]
k

+ [a&(k)a&( —k)+a&(k)a&( —k)] —g(k)g(k) — [rt(k) —g(k)] +—g(k)g(k) a&(k)a&(k)
k — kk k

Q Q Q Q 2 ak3 cz k3

+ —e3(k) Ia„~(k)[a&(k)g(k)+a&( —k)g(k)]+a„(k)[a&(k)g(k)+a&( —k)g(k)] j
2

'

+P ~q q, s q, s +
q, s e q, s ) &

q

(2.19)

4'(x) = g g(k) [II'(k)e'" "+II'*(k)e '" "] .
2o; „k3

(2.21)

Equation (2.4) together with 83[8,E,'( x )
—Jo ( x ) ]

i g k3((k)k— [0'(k)e'"'*—0'*(k)e '"'"] determine
the space-time dependence of 8;E,'(x) —Jo(x) to be

[8,E,'(x, t )
—Jo(x, t )]

= —y Pk)k'"[n'(k)e
k

+0'*(k)e ' ] . (2.22)

where co~ =(q +rn )' and m is the mass of the fermion
(electron in QED, quark in QCD). Ho applies equally to
QED and QCD with the sole exception that in the case of
QCD all a, a, or a* operators carry an additional Lie
group index, which is contracted over the two elements
of each bilinear product of such operators.

To impose constraints we employ a procedure we pre-
viously applied in the temporal gauge. ' %e note that
DTG = —B,E, +Jo where DT =Do+D3. By substituting

jo for Jo, and making the other changes indicated after
Eq. (2.5), we arrive at the corresponding form of this
equation for QED. This permits us to write

[9;E (x)—Jo(x)]=—g g(k)k [0'(k)e'""
k

+gee(k) —ik x]

(2.20)

where II'(k)=a&(k)+71(k)JO(k)/(2k ). We can also
express 4= Ao —A3 as

Equation (2.22) is verified by the observation that
BOO'(k ) = i[H, II'(k) ]= ik—3Q (k ') both in QED and

QCD. We can therefore use II'(k) to define a subspace
[lv) j of an indefinite metric space with the time-
independent constraint

fI'(k) v) =0 . (2.23)

In that subspace (v'l4'lv) =0 and (v'ld, E; —Jolv) =0
obtain at all times because the subspace I lv) j remains in-
variant under time evolution. Moreover, we can verify
that gauge-invariant quantities do not project from the
"physical" subspace t lv) j. We note that in QCD, quan-
tities that transform according to the adjoint representa-
tion of the Lie group, such as the field strengths F (x),
E,'(x), and the fermion charge density jo(x) [here col-
lectively denoted as V'(x)], obey [V'(x), Q (k)]
=[2ie/(2k )]q(k)e,b, V'(x)exp( —ik x), so that invari-
ants such as F;;(x)F;;(x) or E (x)j (x) commute with
0 (k). In QED the field strengths and current densities
themselves are gauge invariant and commute with Q(k).
For any such gauge-invariant quantities S(x), since
[$(x),II (k)]=O, Q (k)$(x)ill'i) =0 if 0 (k)lg) =0.
When the unit operator

l
a ) ( a

l
is inserted [note that, as

illustrated in Eq. (2.11), la) and la) are not always iden-
tical], &"(k)la)(alt(x)le') =0; and for those elements

[ I&) j in I la ) j which are not part of the subspace [ lv) j,
for which 0"(k) l k) WO, (A.

l
4'(x) l g) =0 follows from

II (k)S(x)lg) =0. This demonstrates that only matrix
elements (vlS(x)lg), for which both lv) and lg) are
within the physical subspace I lv) j, contribute to prod-
ucts (or commutators) of gauge-invariant quantities.
Similarly, application of the equal-time commutation
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rules demonstrates that for Q'= fJo(x)dx, [Q', 0 (k)]
=2iee, b, Q'(k), so that for 0 (k)~lt)) =O, Q (k)Q'~p) =0
also.

III. PERTURBATIVE VACUUM STATES
AND PROPAGATORS

In a canonical formulation of gauge theory, the propa-
gator is the vacuum expectation value

D„„(x[1],x[2])=(0~T[A„(x[1]),A„(x[2])j ~0),

(3.1)
where T indicates time ordering, and where x[1],x[2]
refer to two space-time points. The interaction picture
field A„(x)=exp( iH—ot ) A„(x)exp(iHot ) can be explic-
itly evaluated and, for the PV option for the functions
q(k), g(k), g(k), and g(k), and for A, =O, A, (x) is given

by

a„(k)
A (x t ) y " eik x en(k)e

—ik( e3(k)(e ' ' —e '
) +a~(k) e

2I 3"

(k3k, +5; 3k )[cos(kt) e'—] i (kk;—+5; 3k3k )sin(kt )+a&(k)e'"" +Hermitian adjoint .
&k (k —k3)

(3.2)

Equation (3.2) can be used to evaluate the vacuum expectation value of T I A„(x[1]), A „(x[2])j in the perturbative
vacuum annihilated by all gauge-field annihilation operators, including those for the ghost excitations. The resulting
expression lacks time displacement invariance, in conformance with a previously reported theorem. There is, howev-
er, no a priori reason for identifying that vacuum state as the proper perturbative vacuum for the propagator. The fun-
damental requirement that must be satisfied, in order to derive the Dyson-Wick reduction of the S matrix to Feynman
rules that include the expression in Eq. (3.1) as the propagator, is that the vacuum and the n-particle Fock state be
eigenstates of Ho. However, the vacuum state annihilated by all annihilation operators does not satisfy that require-
ment because Ho creates, from the vacuum, gluon (or photon) pairs which consist of a transverse and a Q-type excita-
tion. To construct a satisfactory vacuum state that is an eigenstate of Ho we make use of a unitary transformation to
transform Ho so that the undesirable term that creates the gluon pair from the vacuum is eliminated. A suitable trans-
formation is given by Vl=e, where 5 is

e,"(k)
5= —g — Ia„(k)[a&(k)g(k)+a&( —kg(k)] —a„(k)[a&(k)g(k)+a&( —k)g(k)] j .

2 k3 —k

Q transforms Ho to (Ho)s where (Ho)s=SHOQ ' and (Ho)& is given by

(3.3)

(Ho)s=g ka„(k)a„(k)+k3[az(k)a&(k)+a&(k)a&(k)]
k

kk+ [a&(k)a&(k)g(k)g(k) —[a&(k)a&( —k)+a&(k)a&( —k)][ri(k) —g(k)] j
O.k3

(3.4)
q

The transformed perturbative vacuum state 'M~O), and the Fock space constructed on it, are eigenstates of Ho, and the
vacuum expectation value

D„.(x[1]»[2])s=('Ol+ 'T[ A„(x[1]) A.(x[2])j+IO~ (3.5)

can be used consistently in a perturbative S-matrix expansion. D„,(x [1],x [2])s can also be represented as
D„„(x[1], [2x])&=(0~TI A„(x[1])s,A„(x[2])sj~0), where A„( tx) sQ A( tx)'ll ' and A, (x, t)s is given by

k,
A;(x, t)s=g e,"(k)— e3(k) [a„(k)e' " "')+a„(k)e '"" "]

2k'"
3/2

X g(k)g(k) — '
[a&(k)e ' +a&(k)e ' ]g(k)

~k 9(k%(k)+k (k. —k () —(k —k ()
it [—a&(k)e ' —a&(k)e ' ]2ak3

(3.6)
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The modified propagator D„(x[1],x[2])s has two alternate forms depending on whether the PV or the ML sets of
values are chosen for the functions rj(k), g(k), il(k), and g(k). For the PV set of values, for the case A, =O,
D„„(x[1],x[2])s is given by

ik.X
[D; (x, , t„x2, t2)s]

2k

5, 3k +5 3k,

k k 3

k(t —t ) ~', 3kj +~j,3k k (t —t, )

3

5i 3kj+5j,3ki ik(t~ )) ) 5(,3kj +5j,3ki ik)()~ t) )

k+k3 k —k3

and agrees with the Fourier transform of D„„(k) in Eq. (1.1) when the PV prescription is used in the kp integration.
The extension of this result to nonvanishing values of A. is trivial to evaluate, but will not be reported here. For the ML
set of values of g(k), g(k), rj(k), and g(k), D„„(x[1],x [2])s is given by

I

ik X

[D;,(x [1],x [2])s]
k

5; 3kj+5 3k;

k —k, 2

5 3k' +5J 3kt tk (t —t

3

5, 3k +5 3k,

k+k3

—ik(t —t )2 1

5i, 3kj+5j,3k ik (t —t

3

(3.8)

and agrees with the Fourier transform of D„,(k) in Eq.
(1.1) when the ML prescription is used in the kp integra-
tion. In both cases the subscript 0 may be substituted for
3 in D„,(x[1],x[2])s. Equations (3.7) and (3.8) demon-
strate that two canonical formulations based on the same
Lagrangian, the same equations of motion, the same
equal-time commutation rules, and the same weak con-
straints can lead to two different propagators, corre-
sponding to the PV and ML prescriptions, respectively.
Only the explicit dependence of the longitudinal and
timelike components of the gauge fields on the ghost exci-
tations accounts for the difference between the two prop-
agators.

We now show that the ad hoc substitution of 'M~O) for
~0) leaves scattering amplitudes unchanged except for re-
normalization constants. For purposes of this argument
we express H as H =(Hp)s+H, , where H, =H, +h p and
h p is given by h p

=Hp —(Hp )s. h p includes all those
parts of Hp that create gluon (or photon) pairs from the
vacuum. We write SI, =5j, 2m i 5(EI E, ) T—

, and-
compare TI; = (f ~H) +H, (E, H+ie) 'H, ~i—, the
transition amplitude in the Fock space constructed on
the ~0) vacuum, with

Tj, = (f ~(H) )s+(H) )s[E, (H)s+i—e] '(H, )s~i),

I

to external lines, and the resulting contributions are ab-
sorbed into wave-function renormalization constants.
When we consistently use the vacuum state '9~0) and the
n-particle states built on it to derive Feynman rules, we
obtain, in addition to the gauge field propagator, the
three-gluon vertex rule

ie t [(pi q' ) (pp 'qp )5', 3]5

+ [(q —k )
—

(q()
—

k() )5 3]5, „
+ [(k„—p„)—(kp Pp )5,3]5, ] &&p)

where the three gluon lines correspond to momentum p,
spatial component m, and isospin index a, to q, n, and P
and to k, i, and y, respectively, and all have momenta
directed towards the vertex. The four-gluon vertex is the
obvious generalization of the three-gluon case; and the
projection operator for external incident and scattered
gluon (and photon) lines is obtained from Eq. (3.6) and
has the form

k,
~3(k) e ("" "')-

&2k

IV. UNITARITY IN THE PHYSICAL SUBSPACE

Tf Tf '+(Ef E )Vf '+lETf; (3.9)

Since E, =Ej in S-matrix elements, "T&; and 'T&; do not
contribute to the latter unless Y&, or Y~&,- exhibit
(E; Ej )

' or (is) ' s—ingularities, respectively. Such
singularities can develop only in self-energy corrections

the transition amplitude in the Fock space constructed
on the '90) vacuum, where (H)s= QH5' ' and

(H)s=(Hp)s+(H, )s. The demonstration that Tj, may
safely be substituted for T&, in S-matrix elements, is

based on a proof, used in earlier work, ' that

In this section we will demonstrate that the 5 matrix in
this theory saturates unitarity in the space of states that
contains quarks and transverse gluons only (the quotient
space). This result applies to QCD as well as to QED,
and follows from the fact that S-matrix elements to final
states that include even a single R-ghost vanish, since
ghost states have zero norm unless they contain at least
one mixed pair (Q and R). We show that a single R ghost
in the final state is sufficient for the S-matrix element to
vanish, by choosing a final state (f ) of the form
alai(k)~ f'), where

~

f') designates a state that may con-
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tain quarks, transverse gluons, or either variety of gluon
ghost, R type as well as Q type. This makes the transi-
tion amplitude Tf; for transitions from states li ) to

l f ),

Tf, =(f'lag(k)[H, +H, (E; H—+ie) 'H, ]li), (4.1)

since it is the combination az( k)l f') (f' la&( k)

appears in the unit operator. The identities
[ag(k), H(]=[ag(k), H, ] and

Tf ' ( Qf' (p —k )l[aq(k), H( ]lp, "'(,
) & (4.3)

where g, '+'(E, represents the scattering state given by
t

(~ (=[I+(E, H—+i@) 'H, ]li) (4.4)

and gf, ' '(z( represents the scattering state with "incom-
ing" boundary conditions whose asymptotic limit as
t ~ + oo is the state

l f ' ), and is given by

a&(k)(E, H+—i e) '=(E; —k3 H+—i e) 'a&(k)

+ (E; —k3 H+—i e)

X [ag(k), H, ](E, H+—i e)

'(g) = [I+ (E H —is—) 'H, ] lf'),
where (Hz E)

l f—' ) =0. We can also verify that

[a&(k),H(]=((k)l [H, JO(k)]+k3JO(k) l,

(4.5)

(4.6)

lead to

(4.2)
where the Lie group index has been suppressed and
g(k) =ri(k) —,'k ' (. From Eqs. (4.2) —(4.6) we obtain the
result that

I

Tf, =((k)[~0f ( '(~)IJO(k)lf, (+((~ ))(E—E, +k, )+is(f 'IH, (E—H+ie) 'Jo(k)l@(+I(~ ))

ie(pf— (E) Jo(k)(E; H+ie—) 'H(li )] (4.7)

I

gauges, and that is why Faddeev-Povov ghosts are not
necessary in axial gauges.

In the case of QED it is possible to demonstrate a more
inclusive result, that is sufficient but not necessary to
prove unitarity in the subspace of electrons and trans-
verse photons. In that case states which obey the con-
straint equation, and operators, can be unitarily
transformed to a representation in which QED in the

P

q'

with E =E; —k3. Equation (4.7) establishes the following
result for an S-matrix element from a state li ), which
consists of only quarks and transverse gluons, to a state

lf ) that contains at least one R-type ghost, but may con-
tain anything else, including Q-type ghosts. The only
contributions to that 5-matrix element that survive are
the ones in Eq. (4.7) that are proportional to i e, and these
vanish in the limit a~0, except when the matrix
elements (f'lH, (E H+ie) —'Jo(k)lg +'(z () or

( Qf (g) l Jo( k )(E; H+i e ) 'H—
( li ) develop (ie)'

singularities; and that happens only in self-energy correc-
tions to external lines. As we discussed previously, these
contributions do not affect scattering cross sections, and
in particular cannot keep these from vanishing.

It is worth mentioning how the argument given above
fails for QCD in covariant gauges so that Faddeev-Popov
ghosts are required in the latter. In the case of covariant
gauges, Eq. (4.6) is replaced by

[a&(k),H(]= —,'k ' ~ 'l[H, Jo(k)]+kJo(k)l+X(k) .

(4.8)

After the on-shell condition has been imposed, and the
terms proportional to i e have been discounted, the transi-
tion matrix to the state

l f ) still contains the term
( Qf ' (g —k )IX(k) I ((( "(~ ) &. X(k )

a&(k), so that if the state
lf ) consists of quarks, trans-

verse gluons, and Q-type gluon ghosts exclusively, then
the S-matrix element will still vanish. But X(k) does not
commute with a„(k), so that if R-type ghosts are includ-
ed in the final state, the final states that combine Q- and
R-type ghosts do absorb probability, and unitarity in the
physical subspace is not conserved. The structure of
X(k) allows us to construct the Faddeev-Popov ghost-
gluon coupling necessary to restore that unitarity.
X(k) vanishes identically in the light cone and other axial

P

FIG. 1. s-, t-, and u-channel tree graphs for a gluon-gluon
collision producing a quark-antiquark pair. The solid lines
represent quarks, the dashed lines gluons. The graphs corre-
spond to the expressions for JR„AL„and Af„given in the Ap-
pendix.
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light cone gauge and QED in the Coulomb gauge are
identical in the quotient space of electrons and transverse
photons. In the entire subspace allowed by the constraint
equation, the transformed Hamiltonian differs from the
Coulomb gauge Hamiltonian, but in ways which can have
no observable consequences for the time evolution of
states vectors. The proof is virtually identical to a similar
one for QED in the temporal gauge, which has been
given elsewhere and will not be repeated here.
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APPENDIX: S-MATRIX CALCULATIONS
IN THE LIGHT-CONE GAUGE

In this appendix we will calculate the lowest-order tree
contribution for the inelastic scattering of two gluons of
momenta p and q, and polarizations e(p) and e(q), respec-
tively, into a quark-antiquark pair of momenta p' and q',
respectively. All of the diagrammatic rules for the light-
cone gauge, the propagator developed in Sec. III, as well
as the projection factor

k,
&n(k )

'
&n( it ) e t(k.x—kt )

&2Ic '
k3 —k

for external transverse gluons, and the expression for the
three-gluon vertex

te[[(p, —
q, ) —(po —qo)5, ,]5 „+[(q —k )

—
(qo

—ko)5 3]5, „+[(k„—p„)—(ko —p, )5„,]5, je ttr

must be used. It is worth noting that each of the three
graphs in Fig. 1 is frame dependent, and that frame in-
dependence is not restored until the s-, t-, and u-channel

I

graphs are combined. We find that JI(,„tA(,„and JN„, ,

each designating the contribution to the S-matrix element
made by the corresponding graph in Fig. 1, are given by

y (q —p)e(p) e(q)+y e(p)p e(q) —y e(q)q e'(p) y'&(q)&3(p) y'&(p)&3(q)
~Q$g +g +2

p'q P3 P 9'3

'Y 'q &3(q )&3(P )

(p3 —p»)(q3 —
q )

for the s-channel graph,

y py ~ e(p)y ~ e(q)+2y ~ e(q)p' ~ e(p) y' (eq)E (P3) y'e(P)&3(q) y'q&3(q)&3(P)~,=e'~. ~b + +

(Al)

(A2)

for the t-channel graph, and

y f(q)y f(.p)y p . 2y e(q—)q f(p) y. e(q)e3(p) y e(p)~3(q) y Pe3(q)~3(p)
Af„=e rbr, + +

2q 'p
(A3)

for the u-channel graph. The sum of the contributions from the three graphs is given by JR=JR, +A4t+Jtt(, „. , and JR
takes the form

ye(p)—y py e(q)+2y e(q)p"' e(p) y e(q)y py e(p)+2y ~(q)q' ~(p)
Jttt, =e ~.rb, rb s. —

t —m Q P7

y (q —p)&(p) e'(q)+y e'(p)p e(q) ye(q)q e(p—)—2t e,b
S

(A4)
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