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Dirac-bracket quantization of the nonrelativistic particle whose motion is constrained on the hy-
persurface f(x)=const embedded in a general curved space is discussed. The noncanonical nature
of commutation relations makes it difficult to obtain the coordinate representation. Then the sys-
tem with the derivative-type constraint df (x)/dt =0 is alternatively quantized, treating carefully
the operator-ordering problem. In this system it is shown that there exist no constraints on coordi-
nates and momenta and that one can thus have a straightforward representation, which leads, in
turn, to the representation and the Schrodinger equation in the former system.

I. INTRODUCTION

Quantization of constrained Hamiltonian systems was
first established by Dirac"? in the 1950s, and has been ap-
plied to various kinds of singular systems. With the
Dirac method one introduces Dirac brackets and, upon
quantization, replaces them by —i times commutators.
However, in many cases the underlying Dirac brackets
have rather complicated forms, and owing to this one is
led to several difficulties associated with the quantization.
We are, therefore, concerned with this problem in the
present paper. Namely, we want to have a general
method of quantization where the coordinate representa-
tion of momentum operators, with the commutation rela-
tions being complicated, acquires highly nontrivial ex-
pressions and cannot easily be found in contrast with the
conventional case in which momentum operators are
represented by —i times the derivatives with respect to
coordinate variables. Finding this representation is quite
important in writing down the Schrodinger equation.
Another difficulty, which we take up, is related to the
operator-ordering problem.’> This problem arises not
only in defining various observables such as the Hamil-
tonian, but in defining commutators and constraint
operators containing the products of noncommuting
operators.

In a previous work* we have studied the Hamiltonian
formulation of a rigid rotator,’ i.e., a free particle con-
strained on a sphere. The constraint x>= A4 [x =x(¢)
stands for the position of the particle in the n-
dimensional space and A4 the squared radius of the
sphere] was imposed through the introduction of a
Lagrange multiplier. As is well known, the correspond-
ing Dirac brackets differ from the Poisson brackets and
involve the products of coordinates and momenta. When
one quantizes such a system, in order to avoid the
difficulties stated above, one often transforms, at the clas-
sical level, to a specific coordinate system so that the
Dirac brackets for independent variables may reduce to
“Kronecker’s deltas.” Then, apart from the operator-
ordering problem, the quantization in the Schrodinger
representation will easily be carried out. However, it is
completely unclear whether or not the transformation of
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variables (i.e., the canonical transformation) is uniquely
defined at the quantum level. This will produce an addi-
tional ambiguity. It is hence desirable that one can find
the representation of operators without any recourse to
specific coordinate systems.

As a first step toward the resolution of these problems,
we have considered the system subject to the constraint
xx =0 (x =dx /dt) instead of x>= 4 (Ref. 4). Evidently
the former constraint is equivalent to the set of the con-
straints of the latter type for all values of 4. But, some-
what surprisingly, the corresponding Hamiltonian sys-
tems are apparently quite different. In the former case the
Dirac brackets for the phase-space variables, say, x and
m, have the same expressions as those of Poisson brack-
ets; i.e., they behave as unconstrained variables, and the
constraint xx =0 is implemented in the equation of
motion® such that {x? Hamiltonian}, =0. Then, setting
the value of the constant x2 to be 4, we have shown that
the tangential components P of the momenta 7 (“tangen-
tial” in the meaning of “perpendicular to vectors normal
to the hypersphere defined by x2= A4”) satisfy the same
Dirac brackets as the ones appearing in x>= A4 theory.
Thus the canonical momenta in x2=A theory are
identified with P (with a fixed constant A). The advan-
tage of choosing the constraint xx =0 instead of x*= 4
becomes manifest when we proceed to the quantization.
Namely, we can straightforwardly obtain the coordinate
representation of the momenta 7, and then their tangen-
tial components P give the representation of the momen-
ta in x?>=A theory.” Consequently we have the
Schrodinger equation without referring to a “convenient”
coordinate system such as a polar coordinate.

In the present paper, we extend the above arguments to
the case of a general hypersurface f(x)=B (B =const).
Here the space in which the hypersurface is embedded
need not be flat, but is assumed to be a curved space en-
dowed with a (Reimannian) metric structure. We impose
the constraint with the use of a Lagrange multiplier and
construct the Dirac brackets. Next we consider the sys-
tem under the derivative-type constraint f(x)=0, which
includes the constraint f(x)=B as a ‘“subset.” The mo-
menta in this system are unconstrained, but the Hamil-
tonian involves them in combination with a certain pro-
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jection matrix picking up the components tangential to
the hypersurface f(x)=const. The actual motion is
thereby restricted to the hypersurface and we recover the
relation f(x)=0 through the equation of motion. Then,
arranging the order of operators in a certain way and set-
ting the value of the constant f(x) to be B, we will find
that the quantum mechanics for this system is equivalent
to that with the constraint f(x)=B. [Of course, there is
not a complete equivalence, in the sense that in the sys-
tem subject to the derivative-type constraint one can arbi-
trarily choose the value of f (x) as an initial data, not just
as B.] Further, the tangential components of 7 (including
quantum corrections) precisely give the coordinate repre-
sentation of the momenta for the f(x)=B theory, with
which we can obtain the Schrdodinger equation. We also
propose some principles that can be used to determine
the order of noncommuting operators.

The present paper is organized as follows. In Sec. II,
we study the Dirac-bracket quantization of the system
under the constraint f(x)=B. We find the four second-
class constraints and with these we construct the Dirac
brackets. In Sec. III, we consider the case of the
derivative-type constraint f(x)=0. In the Hamiltonian
formulation there appear no constraints on coordinates
and momenta, but the equation of motion tells us that the
particle is still “constrained” on the hypersurface
f(x)=const. We study in Sec. IV the relation between
these systems, paying attention to the problem of opera-
tor ordering, and the Schrodinger equation is derived in
both systems. Section V is devoted to the application of
our method to the simple example: the rigid rotator in a
flat space. We give concluding remarks in Sec. VI.

II. QUANTIZATION OF THE SYSTEM
UNDER THE CONSTRAINT f(x)=B
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mass m whose motion is constrained on the hypersurface
defined by

f(x)=B (B=const) . (2.1

In the presence of the vector and the scalar potentials,
A;(x) and V(x), the Lagrangian is given by

%'+ A,(x)x'=V(x)+A[Lf(x)—B],

L=img;x

x'=dx‘zdt, (2.2
where x(¢) denotes the position of the particle and A is a
Lagrange multiplier. The Lagrangian is singular because
it does not contain the ‘“velocity” A. Hence we apply
Dirac’s method."? The canonical momenta conjugate to
x'and A are

pi=mg X'+ A4, , (2.3a)

pr=0, (2.3b)

respectively, and Eq. (2.3b) represents the primary con-
straint:

do=p; =0 . 2.4)

The primary Hamiltonian (the total Hamiltonian) H, is
then written as
1

H,= .2’_n_gij(pi —A)p;—

—ALf(x)

where g¥ is the inverse of g; ;» and v(t) is the multiplier
associated with the primary constraint (2.4) (v =X in this
case). Requiring the time derivatives of the (primary
and/or secondary) constraints to vanish, we have, succes-
sively,

A)N+V(x)

—B]+up, , (2.5)

; = —B=0, 2.6
Let x' (i=1,...,n) be the coordinates of the n- $1=flx 2.6)
dimensional curved space equipped with the Riemannian 6, = 1 g af( — 4,)=0 2.7)
metric g;(x). We consider a nonrelativistic particle of 2= 8 P )
|
1 | k| 9 | iof 9 | i of
=— — - \p,——— ——A. | [(pp—4))
3 mz [g axk g ax’ p] 3 k g Ax! j Pi !

1 3g" i of il i Of 1 ,df av , 1
~g* - +——(g"A4,)g"— ——gl————+—DA=0. (2.8)

2 ax & ax TRP T a8 B Pl [T ki ax T m

Here the function D appearing in the last line of Eq. (2.8)
is defined by

p=gidL 8

dx' ox’
Namely, D is the squared length of the vector 3f(x)/dx"’
normal to the hypersurface (2.1). We can assume without
loss of generality D >0 with g;; being the Riemannian
metric. As a consequence the requirement ¢,~0 solves

2.9

[

v(t) as a function of x' and p;,. We now have the four
constraints, and the Poisson brackets satisfied by them
are
1
__D s
m

{003} = (2.10a)

{d1,0,) -L1p , (2.10b)
m

and those which are not needed in the following calcula-



tions. All the constraints are thus second class. In the
next step we construct the Dirac brackets by making use
of their iterative property.? The results are®

{(x,x/}p=0, (2.11a)
{x.p;}p=F"(B), (2.11b)
o= _ L |9Of 9 | udf
{p"pJ}D D | 9x' 3x/ ax*k P
_9of 98 | wof
-9 4,
ox' ax/ dx B
—(ij),  (@.1lc)
where F';(B) is given by F',(B)=F";| 3, with
F=8),— gL 9L (2.12)

I 7 D® axkoaxi

Because of the constraints which are now imposed strong-
ly, the Hamiltonian reduces to

Hp=-2—i—'1~g"j(p,-—A,)(pj—A]-H—V(x). (2.13)
The classical dynamics of the system can be described by
this Hamiltonian and the Dirac brackets (2.11).

In order to quantize the system, we must replace Egs.
(2.11) by commutators. However not only the Hamiltoni-
an (2.13) but also the Dirac brackets (2.11c) contain the
products of the coordinates and momenta, which do not
commute in the quantum theory. Thus the commutators
are not uniquely determined. Among the various possi-
bilities, the simplest choices for the fundamental commu-

tation relations are

[x',x/]=0, (2.14a)
[x',p;1=iF'(B), (2.14b)
_ 11 aF 8 | wof
spi)=—il— | ——=—— g = |(p,— 4
[Pan] ’lz D 3x' ax/ ax" (P[ 1)
3 | wd |aFr1
+(p,—A,)— |gh—=— | S~
Pre255 |8 axk | ax
D” ax'ox* ax’ ||
(2.14c)

The quantum Hamiltonian also is not unique and we as-
sume

1 y

In principle, the quantum-mechanical property of this
system is entirely characterized by the commutation rela-
tions (2.14) and the quantum Hamiltonian (2.15). But it
is rather unclear how the constraints are realized in the
quantum theory. Indeed it comes to a nontrivial problem
because, for example, the constraint (2.7) suffers from the
ambiguity in the order of operators. In the classical
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description, the constraints are implemented in the intro-
duction of Dirac brackets such that they have vanishing
Dirac brackets with an arbitrary function of phase-space
variables, which fact leads us, at the quantum level, to
the natural requirement that the constraint operator ¢
should obey
[¢,G(x,p)]=0, (2.16)
where G(x,p) is an arbitrary operator. This condition
imposes a strict restriction on the operator form of the
constraint. For example, the expression of Eq. (2.7) with
x' and p; replaced by operators is forbidden when we
adopt the commutation relations (2.14) [especially, Eq.
(2.14¢)]. In fact the “symmetrization” of the right-hand
side of Eq. (2.7) gives us the simplest solution satisfying
the condition (2.16) for ¢ =¢,:
1 ;i O af i
$=7 g”g}%(pj— A;)+(p;— A,)a—f;g" =0,

(2.17)

which we take up as an operator form of the constraint
(2.7). If one chose the commutator different from Eq.
(2.14c), the allowable expressions for the constraint
operator ¢, would also be different. Hence choosing
specific forms of commutators amounts, in general, to re-
stricting the operator forms of constraints to some ex-
tent.’

Now we are left with an important task to write down
the coordinate representation of operators and the
Schrodinger equation of motion. The commutation rela-
tions (2.14) are quite complicated and moreover they are
singular (i.e., all the p;’s are no longer independent opera-
tors): it is thus too hard to construct a representation
from Eqgs. (2.14) by a trial-and-error method. As was
briefly commented in Introduction, the Dirac-bracket
quantization of constrained Hamiltonian systems often
encounters such a difficulty and, in many cases, one car-
ries out the calculation in the reduced phase space. In
fact, the (reduced) phase space is a symplectic manifold in
the mathematical language,'° and then Darboux’s
theorem ensures that one can find at least locally the
coordinates in terms of which the Poisson brackets
(defined on the reduced phase space in the presence of
constraints) have the canonical forms. Therefore the
classical description of constrained systems can always be
performed in the reduced phase space equipped with a
canonical Poisson-bracket structure. Then one can quan-
tize the system as in the conventional quantum mechan-
ics. However the procedure stated above cannot in gen-
eral be completely justified, because it is not evident
whether or not the transformation to the reduced phase
space has a uniquely defined quantum analogue. It has
been an open problem.

In relation to this point, the case of special interest
worth being mentioned here is that in which the repre-
sentation of operators is fixed through certain physical or
mathematical principles, without referring to the canoni-
cal coordinates in the reduced phase space. We will find
a situation such as this in Sec. IV, where we consult a
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somewhat indirect procedure to obtain the representation
of operators.

III. QUANTIZATION OF THE SYSTEM
UNDER THE CONSTRAINT f(x)=0

In this section we consider the quantization of the sys-
tem subject to the constraint defined by the time deriva-
tive of the function f(x) [x =x(¢)]:

f(x)=0. (3.1)

Incorporation of the constraint into the Lagrangian for-
mulation is again performed by using the Lagrange multi-
plier A:

L=1mg,x'%/+ A,(x)x'~

x)+Af(x) (3.2)

A glance at the constraints (2.1) and (3.1) would imply
that both systems lead to, up to the constant B, the essen-
tially equivalent (classical or quantum) dynamics. But as
will be seen, it is far from a trivial problem.

We start with the definition of the canonical momenta:

=mg;;x I+ A4,+A sfl , (3.3a)
The latter becomes the primary constraint:
Xo=m =0 . (3.4)
The primary Hamiltonian is given by
1 af af
=— ol|g — —
H, 2 g |\mi— A, —r—= Py ] ; A= oy
+Vix)tum, , (3.5)
where u(=A) is a multiplier for the primary constraint.

The consistency condition provides the following secon-
dary constraint:
1 _;9of

XlE;g A’

A_L
dax/

(3.6)

and the requirement Y,;~0 enables us to solve u(z). The
constraints (3.4) and (3.6) are second class because
{XoX1}=D/m [D is defined by Eq. (2.9)], which does
not vanish on the constraint surface. Owing to these con-
straints A and w7, are no longer independent variables:
not so, however, for the x s and the m;’s in contrast with
the system based on the Lagrangian (2.2). The Dirac
brackets for these variables consequently reduce to the
same forms as those of Poisson brackets,

(3.7a)
(3.7b)

{x'x/}p= {mmi}p=0,
{x',m;}p=8,
while the Dirac brackets for A and , are used to impose

1 4of (3.82)
}\Dga,(ﬂ A4;) .8a

and
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=0 (3.8b)

as strong equations. These relations are inserted into the
Hamiltonian (3.5) to give

H, =5 —g"F(m,— A)Fi(m, = 4)+V(x) . (3.9)
The matrix F' [defined by Eq. (2.12)] satisfies
F’ F/, =F' A,and

F/, of - =gk =L of F';=0. (3.10)

" ox/ ax*

These identities show that F ’j is the matrix which pro-
jects all vectors onto the hypersurface defined by
f(x)=const. The form of the Hamiltonian (3.9) there-
fore tells that it contains only the “tangential” com-
ponents of the vector m; — A4;. Here it should be noted
that the third term on the right-hand side of Eq. (3.3a) is
proportional to the vector normal to the hypersurface,
and thus the m;’s are certainly wunconstrained (with
nonzero A). But the Hamiltonian, as it stands, prohibits
the motion away from the hypersurface:

df(x) _
dt

where use has been made of Eq. (3.10). Namely, the rela-
tion (3.1) is recovered through an equation of motion and
then f (x) is a constant of motion.

The quantization is carried out with the Dirac brackets
(3.7) replaced by the commutation relations

{f(x),H,},=0, (3.11)

P

[x',x/]=[m;,m;]=0, (3.12a)

[x',m;1=i8; . (3.12b)

The coordinate representation of the momentum opera-
tor involves the corrections originating from the curved
nature of the underlying space,'! and is given by

__ .0 .
= laxi %t{jl-](x),

where

(3.13)

3,8 (3.14)

jlk ]=%g”(ajgk1 +0,8;i —

is a Christoffel symbol constructed with the Riemannian
metric g;;(x). One can arrive at the expression (3.13)
without suffering from the problem of operator ordering
as in the conventional quantum mechanics, and such a re-
markable feature (compared to the case treated in Sec. II)
comes from the “constraint-free” property of the system.
The Hamiltonian, however, has a more complicated form
than that of the system under the constraint (2.1) and is
not free from the operator-ordering problem. At this
stage, aside from the condition of Hermiticity, we have
no appropriate guiding principles to determine the order-
ing of the Hamiltonian (3.9). We return to this point in
the next section.



IV. EQUIVALENCE OF THE TWO ALTERNATIVE
FORMULATIONS

Now we have the two theories describing a particle
moving on a hypersurface of the type f(x)=const—the
theory with the constraint f(x)—B =0 (system I) and the
theory with f(x)=0 (system II). As mentioned before,
these systems are expected to give essentially equivalent
dynamics once one assigns, in system II, the initial value
B to the constant of motion f(x). (Henceforth we refer
to the equivalence of both systems in this narrow sense
unless otherwise stated.)

In the first place, we consider at the classical level and
the vector potential A4; is set to be zero for simplicitly.
The notable aspect of system II is that the Hamiltonian
(3.9) contains the matrix of rank n —1, and one degree of
freedom for the unconstrained momentum 7; happens to
be dropped out of the Hamiltonian. It implies that the
only n —1 coordinates (i.e., the conjugate partners for
Fim ;) acquire “dynamics” through the Hamiltonian, and
hence we have the identity (3.11). On the basis of the ob-
servation stated above, we introduce the new momentum
variables which are defined by the ‘“tangential” com-
ponents of 7;:

Pi=Ffi1rj . 4.1)
Then the classical Hamiltonian simply becomes
=1
Hp—ﬂg PP, +V(x), (4.2)

resulting in the form quite similar to that of the Hamil-
tonian (2.13) of system I (in the absence of the vector po-
tential). Remembering the fact that f(x) has been found
to be a constant of motion, we specifically set f(x)=B on
the right-hand sides of Egs. (4.1) and (4.2) to find
H, =gijPi(B)Pj(B)/2m + V, where

P,(B)=F/.B)m; .

: 4.3)

The question is now that whether or not one can identify
the P;(B)’s with the momenta p; in system I. As regards
to this, one is to notice that the following relation holds:

{P,(B),P{(B)}p={P,P;}plp , (4.4)
which can be verified with the help of the identity
Ff,-(B)a—f. =0 4.5)
ax’ |p

or equivalently {P;(B),f(x)}pls=0. We can then prove
by a straightforward calculation that the P;(B)’s obey,
with the x”s, the same Dirac brackets as those in Egs.

(2.11). In addition, it follows from Eq. (4.5) that the
P;(B)’s are subject to
¢ 2L | p(B)=0, (4.6)
ox' |p

which is equivalent to Eq. (2.7). Now that we have the
P;(B)’s satisfying the Dirac brackets (2.11) and the con-
straint relation (2.7), we are led to identify P;(B) with the
momentum p; in system I:
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P(B)~p; . 4.7)
Consequently Hamilton’s equation for system II is found
to be equivalent to the one for system I. This equivalence
is essentially represented by Eq. (4.7).

We now make a comparison, at the quantum level, be-
tween system I and system II. In fact we have not yet
had a quantum theory for system II, mainly owing to the
operator-ordering problem in the Hamiltonian (3.9). It is
here to be stressed that one can have the quantum theory
equivalent to system I only when picking up a certain
specific ordering of operators out of various possibilities,
and thus the equivalence at the quantum level is not a
direct consequence of the classical results. We therefore
define the quantum theory for system II by demanding
the equivalence of the two systems as a first principle, now
at the quantum level. With the requirement one is able to
quantize system II almost uniquely, or turning to the
different standpoints, we will see that the requirement en-
ables us, through the quantum version of Eq. (4.1), to
have the representation of the commutation relations
(2.14) and hence to have the Schrodinger equation in sys-
tem L.

We first “symmetrize” the P;’s defined by Eq. (4.1) in
order that they become Hermitian operators. Since the
m;’s defined by Eq. (3.13) are Hermitian, we replace the
P;’s by

P,=L(Flm+m;Fl)

(4.8)

This is not, of course, the unique choice. There is also
the ambiguity in writing down the quantum analogue of
the classical Hamiltonian (3.9). Then we determine the
order of operators so that the quantum Hamiltonian
should be equivalent to the Hamiltonian (2.15) when we
identify the P;’s defined above [with a suitable value for
the constant f(x)] with the momenta in system I. The
quantum Hamiltonian is thus assumed to have the form
1

H,=——Pg"P,+V(x).

=35, 4.9)

Here we have used the notation of Eq. (4.8). Fixing the
value of the constant f(x) as B, the momentum P; in the
Hamiltonian is to be realized by P;(B), where

) (4.10)

which is just the quantum analogue of Eq. (4.3). We now
understand that the commutation relations among the
P.(B)’s and the x"s reduce to the same forms as those of
Egs. (2.14). Moreover, with Eq. (4.5) [or Eq. (3.10)], we
have the operator identity for the P,(B)’s:

:0’
B

gu_a_f_ P-(B)+P]—(B)§Ligu 4.11)
X

i j
ox' |p

which has the same content as the constraint (2.17). We
can thus identify the P;(B)’s with the momentum opera-
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tors in system I to obtain the same commutation relations
and the Hamiltonian that we derive in Sec. II. In other
words, employing expression (3.13), one has in system I
the coordinate representation of the operators satisfying
the commutation relations (2.14) and the constraint
(2.17), which fact manifests the great merit of considering
the quantization of system II rather than system I. That
is to say, one can write down the Schrodinger equation in
system I via the formulation for system II.

Let us now comment on the operator-ordering prob-
lem. In Sec. II, we have chosen the order of operators in
the commutation relations and the Hamiltonian as in
Eqgs. (2.14) and (2.15). However it is, of course, possible
to make a different choice, and in such a case, we need to
symmetrize the P;(B)’s in the way different from Eq. (4.8)
so as to have the same commutation relations and the
Hamiltonian in system II. Namely, for the various
choices of the order of operators in system I, one can ac-
cordingly construct many quantum theories (having the
same classical limit) for system II under the requirement
of the equivalence of both systems.

When it comes to the operator-ordering problem in the
constraint, we point out that the form of constraint (4.11)
has been obtained unambiguously once the expression
(4.8) is adopted. The ambiguity is again translated into
the nonuniqueness in defining the quantum analogue of
Eq. 4.1).

Here we consider the case in which the vector potential
is present. We can define at the classical level the P;’s in
the same way as in Eq. (4.1), now replacing the m;’s and
the P’s by m;— A; and P,— A;, respectively, so that
P,— A;=F/,(m;— A;). As a result, we obtain

P,— A, =1[F/(m;— A)+(m;— A4;)F/] (4.12)

in the quantum theory. Setting the value of the constant
f(x) to be B, the P;’s turn out to be

i 1 aFji
Pi(B)—A,-(B)=Ff,»(B)[7rj—A,(B)]—;i e/
x’ |B

(4.13)

b

where A;(B)= A;|5. We thus have the commutation re-
lations and the Hamiltonian in both systems being
equivalent. By means of Eq. (3.13), the P;(B)’s are found
to acquire the coordinate representation

i d |k
P,(B)=F/, —f——1 .
;(B) /(B) laxf 1k ,
|-aFji J J
— 1 ™ B+[6,~-F ,»(B)]Aj(B) , (4.14)

which straightforwardly gives the representation of the
momenta in system I. After all, one obtains the
Schrodinger equation for system I by inserting Eq. (4.14)
into i3y /9t = H ), with ¥, a wave function.
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V. EXAMPLE: THE RIGID ROTATOR
IN A FLAT SPACE (REF. 4)

Let us give a simple application of our formulation
developed in the preceding sections. As an example, we
consider the motion of a particle constrained on the n-
dimensional sphere of the constant (squared) radius A4.
The Lagrangian for the system (system I) is given by

L=1mxx;,+Mx>— 4), x’=xx, , 5.1)

where the underlying space is assumed to be flat for
simplicity’s sake. Then we have the following Dirac
brackets® and the Hamiltonian H,:

{x;,x;1p=0, (5.2a)
_ XiXj
{xispj}p=58;— 1 (5.2b)
PiX;—PpjX;
{pispj}p=—""""— Ap’ , (5.2¢)
H=-""1pp (5.3)
p 2mp1pl . .

Here the constraints with which the fundamental Dirac
brackets are constructed are

¢ =x’—A4=0, (5.4a)

QSZ:__—xip’.zO . (5.4b)

In the quantum theory, Egs. (5.2) are replaced by the
commutation relations. The situation characteristic to
this simple example is that the “symmetrization” of the
right-hand side of Eq. (5.2c) does not cause any change in
the expression. Namely, from Egs. (2.14) we immediately
have

[x;,x;1=0, (5.5a)
[x;,p;,1=i 5, — 1% (5.5b)
) ij A ’
iXj T PjXi
[p,-,Pj]=i——p ’AP’ (5.5¢)

Once we fix the commutation relations as above, there
remains no ambiguity in the order of operators [except
for the operator form of the constraint (5.4b)]. The
Schrodinger equation can then be obtained by represent-
ing the momenta so as to satisfy the commutation rela-
tions (5.5). Finding the representation is carried out
along the same line as in the previous sections, we consid-
er the system constrained by the condition x;x; =0 (sys-
tem II). The Lagrangian is given by

L=imx;x; +Mx%;) . (5.6)
Eliminating the Lagrange multiplier and its conjugate
partner, one finds the Hamiltonian Hp:

1 2

H,=—(M;m;)",

5.7
= m (5.7)

where ; is the momentum conjugate to x; and



M;=58;—(x;x; )/x? is a projection matrix which satisfies

M;;x;=0 (x; is the vector normal to the hypersphere
x2=const). Now the new variables P, are defined as

P,=Mm; . (5.8)

By this the Hamiltonian (5.7) is rewritten as
H,=P,P;/2m. Since dx*/dt= {xz,Hp } p =0, and hence
imposing the initial condition x?= 4 on the P,’s, we ob-
tain the same Dirac brackets as Egs. (5.2) in terms of the
new variables.
Upon quantization, we replace the P;’s defined above
with
P,=%(Mij7rj+7rjMij) , (5.9)

according to Eq. (4.8). The quantum Hamiltonian conse-
quently becomes H, =(M;;m; +m;M;; )2/8m. The coordi-

ij 7
nate representation of the momentum is given by
m;= —id/0x;, and for a fixed value of x2, say A, the
operator expression for the P;’s yields
) 9d .n—1
Pi(A)Z—lM,-j(A)E;Y‘*‘%ITx‘- y (5.10)

where M;(A)=M;| ,=8,—(x;x;)/ A. It gives the rep-
resentation of the commutation relations (5.5) with the
identification P;( A)~p;. Now having obtained the repre-
sentation, one has the Schrodinger equation and further-
more, one can write unambiguously the quantum analo-
gue of the constraint (5.4b) as x;p, +p;x;=0. [The
difference between x;p;, and p;x; is a ¢ number and we
cannot specify the form of the constraint operator as
above with the condition (2.16) only, which situation is
slightly different from the general case treated in the pre-
vious sections. One thus needs an additional principle,
that is, in our case, the equivalence of both systems.]

VI. CONCLUSION

We have discussed the quantization of the system
describing the motion of a nonrelativistic particle with
the constraint f(x)—B =0 (system I). In the Hamiltoni-
an formulation, all the constraints are second class and
thereby the Dirac-bracket quantization has been applied.
The resulting Dirac brackets, however, contain the prod-
ucts of phase-space variables which do not commute in
the quantum theory. Having defined the commutation
relations from the Dirac brackets through the simplest
“symmetrization” method as in Egs. (2.14), we obtain the
equations of motion with the appropriate quantum Ham-
iltonian (2.15).

For writing down the Schrodinger equation we need,
further, the coordinate representation of the momenta
obeying the commutation relations (2.14). The represen-
tation can be constructed by considering the system con-
strained by the relation f(x)=0 (system II) instead of
system I. That is, the commutation relations reduce to
the canonical forms in this case: we can get the coordi-
nate representation quite easily in system II. On the oth-
er hand, the difficulty in quantizing system II mainly
originates from the operator-ordering problem in the
Hamiltonian (3.9). We have resolved the ambiguity by
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demanding that the Hamiltonian and the commutation
relations have the same expressions as those in system I.
As a result, we can construct the quantum theory for sys-
tem II with the fixed value B of f(x), and at the same
time, we have the representation of the commutation re-
lations (2.14), by which one can write down the
Schrodinger equation for system I.

The essential point in the above prescription to obtain
the Schrodinger equation is that we have determined the
order of operators [especially in Eq. (4.8) or (4.10)] so as
to get the equivalent quantum systems in both cases.
Namely, we have first determined the quantum theory for
system I, and accordingly we have chosen the expression
of Eq. (4.8). In fact, the most general form of the
momentum operator P;(B) is given by

PB)=F/(B)m;+A,(B:x),

l

(6.1

where A,(B:x) is a certain function of the x s represent-
ing the quantum corrections due to the noncommutativi-
ty of operators. Evidently the function A;(B:x) admits
various expressions, all of which vanish in the classical
limit. It is thus expected that for a given A;(B:x ) we can
correspondingly construct the quantum theory for system
I under the requirement of the equivalence. The quan-
tum theory with Egs. (2.14) and (2.15) is, for example,
realized by

) (6.2)

as was shown in Sec. IV. When we adopt the different
commutation relations in system I, the coordinate repre-
sentation of the momenta ought to be modified. To ob-
tain the correct representation, we must seek for an ap-
propriate quantum correction A;(B:x) in the quantiza-
tion of system II.

Furthermore, determining the quantum corrections
amounts to determining the operator form of constraints.
Namely, Eq. (4.10) leads us uniquely to Eq. (2.17), while
condition (2.16) does not give the unique form of con-
straint operators.

Since our formulation includes an arbitrarily chosen
metric, it permits various applications not just as the
motion of a particle in a curved space. Indeed the motion
in a flat space is often preferably described in terms of
curvilinear coordinates, in which one must formulate
with a “metric” in the Lagrangian.

In addition, physically, we can conclude our results in
this paper, in such a way that we have obtained the
Schrodinger equation that describes a particle under
some potential constraining its motion on the hypersur-
face f(x)=B.
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