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Inertial effects of a Dirac particle
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Stationary laboratories on Earth accelerate and rotate relative to the local inertial frames. Any

experiment preci e enough would detect and/or need to take into account the effects due to ac-
celeration and rotation. We derive these inertial effects for a Dirac particle in a straightforward and
unified way within the framework of special relativity. The effects found include the Bonse-
Wroblewski phase shift due to acceleration, the Sagnac-type effect, the rotation-spin effect, and the
redshift of the kinetic energy.

Because of Earth's gravity and rotation, a local inertial
frame accelerates and rotates relative to Earth. Accord-
ing to Einstein s equivalence principle, local physics in
this frame is that of special relativity, provided we can
neglect curvature (tidal) effects. However, an observer in
a stationary laboratory on Earth finds himself in a
noninertial frame, and inertial effects arise due to ac-
celeration and rotation. '

This is, of course, well known from classical mechan-
ics, and the Foucault pendulum is the most spectacular
evidence for the noninertial nature of our local laboratory
frames. The optical "Foucault pendulum" is the
Michelson-Gale light interferometer in which the rota-
tion of Earth yielded a Sagnac shift of the light waves.

In the last 15 years, neutron interferometry has been
developed with ever increasing accuracy. Interferome-
ters with a typical length of about 10 cm built from sil-
icon monocrystals are in use, and the neutron analog of
the Foucault-Michelson-Gale, effect has been found by
Werner et al. , whereas Atwood et al. found the neu-
tron Sagnac effect using an angular velocity of about 30
times that of Earth.

Moreover, Bonse and Wroblewski, with a neutron in-
terferometer positioned horizontally in their laboratory,
accelerated it, and found the predicted phase shift. If we
apply the equivalence principle, the same effect has to
show up in the gravitational field. This has been verified
by the celebrated Colella-Overhauser-Werner (COW} ex-
periment, ' which preceded the neutron experiments
mentioned above. The COW and the Bonse-Wroblewski
experiments, taken together, attest to the validity of the
equivalence principle for neutron waves. Curvature
effects in Earth laboratories are small compared to these
effects and can be neglected to first order.

It has become feasible to use polarized neutrons in the
interferometer experiments. Hence the possible effects of
the spin of the neutron come into focus. Mashhoon"'
has recently proposed a coupling of the neutron spin to
the rotation of a noninertial reference frame. He derived
this new rotation-spin coupling from a "simple, yet tenta-
tive, extension of the hypothesis of locality. "

In this paper' we will put the special-relativistic Dirac
equation into a noninertial reference frame by standard
methods, confining ourselves strictly to Aat Minkowski

spacetime. ' We assume that the noninertial observers
are equipped with ideal measuring instruments which are
insensitive to acceleration ("standard observers"). ' We
compute the inertial effects of a Dirac particle exactly.
Applying three successive Foldy-Wouthuysen transfor-
mations, we find in a nonrelativistic approximation in
lowest order, the Bonse-Wroblewski, the Page-Werner,
and the Mashhoon coupling terms all at once.

Coordinates and tetrad (frame) f'teld. ' Consider an
inertial frame of reference with Minkowskian coordinates
x" . In it an observer moves with proper three-
acceleration a(r} and proper three-rotation co(r), r being
the proper time. The orthonormal tetrad (frame) e, the
observer carries, can be defined as follows. eo(r) is iden-

tical with the four-velocity u" of the observer; the spatial
triad e is defined to be orthogonal to eo(~) and rotates
with proper rotation co(r). ' Put in mathematical terms,
the orthonormal tetrad e (r) transports according to

de
Qe ( l)

where the antisymmetric rotation tensor 0 splits into a
Fermi-Walker part QF and a spatial rotation part Qz.

Qt'"=Qt"+QtR" =(a"u"—a'u—")Ic +u cotte ~"'Ic .

(2)
a" is the four-acceleration of the observer, e" its four-
rotation; e ~"' is the Levi-Civita tensor with e ' = —1.
To each point P on the world line of the observer, associ-
ate the spacelike hyperplane S(P) orthogonal to it.
Define x =ct—:c~ and, moreover, x ',x,x as Cartesian
coordinates using the triad e (r) with the observer at the

origin: x"=(x,x',x,x ) are the local coordinates for
the observer. From P, parallel transport the tetrad e (r)

P
to all neighboring points on S(P). This defines the
orthonorrnal tetrad field e&(x"). Such a local coordinate
system is what we actually use in our laboratory. The
world line is that of our reference clock.

Metric and connection. The tetrad field e& is anholo-

nomic. Define the coordinate tetrad e„as 8/Bx".
Denote the nonrotating local coordinate system with
co(r) =0 by double-primed indices. According to Misner,
Thorne, and Wheeler (MTW} (Sec. 6.6},'
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e-=e- =
p Oil

1+
C

. eo" (3)

From rotational coordinate transformation, as in classical
mechanics,

eo- =eo —[(ce/c) X x]"ek . (4)

Combining (3) and (4), and noting that e =e;, as is evi-

dent from our construction, we have

The tetrad field (5), which is orthonormal,
e e~=5&„=diag (+ ———), and which behaves as a ro-
tating Fermi-Walker-transported reference frame, is all
that we need as input for the description of the noniner-
tial reference frame. The results of this paper are a
consequence of (5), the Dirac equation, and the assump-
tion of the existence of standard observers.

From (5},the dual basis (of one-forms) is

0

1+ a'I
c2

. Ieo —[(co/c) Xx]"e„],
8 =(1+a x/c')dxo,

&'=dx'+ [(r0/c) X x]'dx

e =e;.
(5)

The metric, as obtained from

ds =I9 (38 —8'(30' —8 (30 —t9 (3)6I =g dx"dx

=(dx ) [1+2a x/c +(a x/c ) +(co x/c)' —(co ro/c )(x x)]—2dx dx. (ro/c) Xx—dx dx,

is in agreement with Ref. 2.
The connection expressed with respect to the orthonor-

mal tetrad (5), reads

I"„-~ =
—,'(C-~p —C - —Cp- ),

where the object of anholonomicity is defined by
C;,~=e~ e~",(a,e„( a„e„"—)

We And

D-=
0

D, =

where

x

a + au-x�' 2c'
c2

1
co' J

cA

(13)

e,jk co /ckr,-= — "
I JO

1+
c2

J=L+S=xX — + —,'Acr,
l Bx

(14)

is the total angular momentum.
Substituting (13) into (11), the Dirac equation acquires

the form
I- -= —I0(0 700

0POt 000

1+ax
c 2

=H%,

with the Hamiltonian

(15)

where e;k is the three-dimensiona1 Levi-Civita symbol
with E~23

= 1.
Dirac Equation in the Observer's Noninertia/ Frame.

The Dirac equation in inertial coordinates reads'

H =Pmc +6+6,
16=ca p+ [(a x)(p a}+(p a)(a x)],

2c

6=Pm (a.x)—ca.(L+S) .

(16)

(17)

i Ay" 0„+'=mc%" .

In the observer's local frame, (10) becomes'

igy~D +=mc+,

with

(10)
6 is an odd and 6 an even operator. Note that this equa-
tion is exact. Table I lists the relativistic inertial eft'ects.

Dirac Equation in Nonrelativistic Approximation. After
three successive Foldy-Wouthysen transformations, the
Hamiltonian can be put into the form' (dropping triple
primes)

D =a ——'~~'I ---,6 & 4 PP&

~By (~P~r ~rl, P)
2

(12)
62H=P mc +

2mc

64
sm'c'

Using (5), (6), and (9),
+(~ — [6,[6,6']]— [6,6] . (19)

8m 'c4 ' '
8m 'c4
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1. Pm (a.x)
1

2. —[(a.x)(a p)+(a p)(a.x)]
2c

Energy-momentum
redshift effects

3 co'L
4 —co S

Sagnac-type effect
Rotation-spin coupling

TABLE I. Relativistic inertial effects in the Hamiltonian of a
Dirac particle. The Dirac matrices are P and a. The mass of
the particle is m, x, its local spatial coordinates, p its momen-

tum, L its orbital, and S its spin angular momentum. The
noninertial frame is characterized by its proper acceleration a
and its proper rotation u. 1. f3m (a.x)

2.
3.

4.

N L
8 S
p(a. x)p

2mc

Bose-Wroblewski (Ref. 9)
[~COW (Ref. 10)]
Page-Werner et al. (Ref. 7)
Mashhoon (Refs. 11 and 19)

Redshift effect of the
kinetic energy

5. , 0 (aXp)4mc'
New inertial spin-orbit
coupling

TABLE II. Inertial effects of a Dirac particle in nonrelativis-
tic approximation. The spin matrix is denoted by o., otherwise
see Table I, The gravitational effect corresponding to an inertial
effect is indicated by an arrow.

Evaluating the operator products to the desired accuracy
we find

H=Pmc + p +Pm(a x)+ p p
2m 2m

—ra (L+S)+ o"(aXp)
4mc

+higher-order terms . (20)

Inertial effects in H are listed in Table II.
Discussion. As announced we have calculated the iner-

tial effects of a Dirac particle. In particular, these results
are valid for a neutron. Therefore the rotation-spin cou-
pling, predicted by Mashhoon for a neutron wave, has
been derived in an alternative way. There can be hardly a
doubt left that this effect will be found as soon as the
necessary experimental accuracy is achieved.

The phase shifts caused by acceleration and rotation,
listed under no. 1 and no. 2 in Table II, have been experi-
mentally verified by Bonse and Wroblewski, and Werner
et al. , respectively. We recovered these effects in our
derivation straightforwardly. Their verification and the
consistency of our derivation leads us to believe that also
the higher-order terms in the Foldy-Wouthuysen pro-
cedure presented mirror the actual behavior of Dirac par-
ticles in noninertial reference frames. Higher-order iner-
tial effects, the application of the equivalence principle,
the discussion of the corresponding gravitational effects,
and the tidal gravitational (curvature) efFects will be
presented in forthcoming publications.

This work was supported in part by the National Sci-
ence Council of the Republic of China under Contracts
Nos. NSC-79-0208-M007-110 and NSC-79-0208-M007-
07.

'Permanent address: Institute of Theoretical Physics, Universi-

ty of Cologne, D-5000 Cologne 41, Federal Republic of Ger-

many.
'For a general discussion, see C. W. Misner, K. S. Thorne, and

J. A. Wheeler, Grauitation (Freeman, San Francisco, 1973),
Chap. 6, Sec. 13.6.

zW. -T. Ni, Chinese J. Phys. 15, 51 (1977); W.-Q. Li and W.-T.
Ni, ibid. 16, 214 (1978).

W.-T. Ni and M. Zimmermann, Phys. Rev. D 17, 1473 (1978).
4B. DeFacio, P. W. Dennis, and D. G. Retzloff, Phys. Rev. D

18, 2813 (1978).
For a review of these effects, see E. J. Post, Rev. Mod. Phys.

39, 475 (1967).
6See, Matter Wave Interferometry, International Workshop,

Vienna, Austria, edited by G. Badurek et al. [Physica B151,
1—400 (1988)].

7S. A. Werner, J.-L. Staudenmann, and R. Colella, Phys. Rev.
Lett. 42, 1103 (1979};this effect has been predicted by L. A.
Page, ibid. 35, 543 (1975).

8D. K. Atwood, M. A. Horne, C. G. Shull, and J. Arthur, Phys.
Rev. Lett. 52, 1673 {1984).

U. Bonse and T. Wroblewski, Phys. Rev. Lett. 51, 1401 (1983).
' R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev.

Lett. 34, 1472 (1975).

"B.Mashhoon, Phys. Rev. Lett. 61, 2639 (1988).
' The rotation-spin coupling has also been found by V. Schroth,

Diploma thesis, University of Cologne, 1984 (unpublished).
This paper is based on a talk given at the Hsinchu School on
Gravitation, Relativity and Cosmology, Hsinchu, Taiwan,
Republic of China, 1989.

' The Dirac equation in the grauitational field of Earth has been
discussed by E. Fischbach [in Cosmology and Gravitation:

Spin, Torsion, Rotation, and Supergrauity, proceedings of the
International School, Erice, Italy, 1979, edited by P. G. Berg-
mann and V. de Sabbata (NATO Advanced Studies
Institutes —Series B: Physics, Vol. 58) (Plenum, New York,
1980), p. 359] and by D. M. Greenberger and A. W.
Overhauser [Rev. Mod. Phys. 51, 43 (1979)], among others.
See also more recent work by C. Q. Xia and Y. L. Wu, Phys.
Lett. A 141, 251 (1989). The Dirac equation in a rotating
frame has been discussed by T. C. Chapman and D. J. Leiter
[Am. J. Phys. 44, 858 (1976)], E. Schmutzer and J. Plebanski
[Fortschr. Phys. 25, 37 (1977)], and B. R. Iyer [Phys. Rev. D
26, 1900 (1982)],among others.
We use latin letters to denote three-indices and greek letters to
denote four-indices. Different coordinates systems are denot-
ed by primes or double primes on the indices. A caret on an
index denotes an orthonormal-tetrad component. We use the



2048 FRIEDRICH W. HEHL AND WEI-TOU NI 42

(+,—,—,—) signature for the metric throughout the paper.
The components of a three-vector v are denoted by
(v', v', v').

'6For the y", P, and a matrices, we use the Dirac repreesntation
of J. D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, San Francisco, 1964).
For the Dirac equation in an arbitrary frame, compare D. W.

Sciama, Recent Developments in General Relativity (Per-
gamon, Oxford, 1962), p. 415; T. W. B. Kibble, J. Math. Phys.
2, 212 (1961),or the discussions in F. W. Hehl, Found. Phys.
15, 451 (1985).

'SSee Sec. 4.3 of Ref. 16.
' S. A. Werner (see Ref. 11).


