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We consider the case when the spatial topology of the Universe is that of a torus with metric g,-, .
ee form an expression for the density of states under the constraint that the total momentum and

winding number are zero. To accomplish this we introduce nonzero values of goo, go„and Bo; in

the imaginary-time formalism and integrate over all such values.

I. INTRODUCTION

String theory on toroidal backgrounds is of special in-
terest because the R ~R ' duality is evidently present
there. ' Point-particle theories are incapable of such a
duality so this is a fundamental string result. String sta-
tistical mechanics provides one way of studying the dy-
namics on such toroidal backgrounds. String statistical
mechanics also provides us with fundamental string be-
havior in the way of the Hagedorn temperature.
Thus string statistical mechanics on toroidal back-
grounds are fundamentally stringlike and an interesting
system. String statistical mechanics on tori has been
studied by Turok, Bowick and Giddings, and Deo,
Jain, and Tan. The main emphasis has been on the cal-
culation of the density of states, computed either directly
or by taking the inverse Laplace transform of the parti-
tion function. If one opts for the latter approach then the
partition function for string theory is readily computed in
the imaginary-time formalism, that is by compactifying
the imaginary-time direction on a circle of radius
pl2n =(2srkT) ' and computing the one-loop contribu-
tion to the vacuum energy. In flat space this method has
been studied by many authors. ' On toroidal back-
grounds one must take into account momentum and
winding-number constraints in computing the density of
states. ' In the imaginary-time formalism this is ac-
complished by forming a constrained partition function
as was done in Ref. 27.

In gauge theories it is known that one can impose a
charge or colorless constraint by introducing a Wilson
line Ao in the imaginary-time direction and integrating
the partition function over all such Wilson lines. Note
that in the imaginary-time formalism the imaginary-time

direction is compact so it makes sense to put a Wilson
line through it. Similarly we find that momentum and
winding-number constraints can be treated by turning on
nonzero values of go, and Bo, in the imaginary-time
direction and integrating over all such values. Here g„
and B„represent the Euclidean metric and antisym-
metric tensor field.

This paper is organized as follows. In Sec. II we form
an expression for the density of states under the con-
straint that the total momentum and winding number are
zero by introducing nonzero values of goo, go;, and Bo; in
the imaginary-time formalism and integrating over all
such values. In addition by turning on g; and B; in the
compactified spatial directions we effectively introduce
nonzero values of g„, and B„. In Sec. III we discuss
SL(d, Z) and O(d, d, Z) transformation properties of the
thermal partition function. In Sec. IV we state our main
conclusions and discuss open questions raised by this
work.

II. WINDING NUMBER, THE ANTISYMMETRIC
TENSOR FIELD, AND DUALITY

There are three globally conserved quantities present in
any string theory: the total energy E, the total momen-
tum P', and the total winding number L'. The last quan-
tity is peculiar to string theory and present when the spa-
tial directions are not simply connected. We shall consid-
er the special case when the spatial dimensions form a
torus of radii R;. We shall consider off-diagonal elements
of the spatial metric shortly. We may count the number
of states available to the string theory of total energy E,
total momentum zero, and total winding number zero
from the expression
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The requirement of zero spatial momentum is familiar for any closed spatial topology. As momentum is quantized as
mR and winding number as nR clearly both momentum and winding-number constraints must be imposed if the den-
sity of states is to be invariant under R ~R . For the case of free string theory the trace can be evaluated by standard
methods with the result
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where p(m) represents the density of single-string states of mass m. One can use the identity
2
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to obtain
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Here cd(R; ) is the Casimir energy density. We have substituted the definition of p(m),
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and used the relation
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Now expression (2.4) is clearly related to the vacuum
energy resulting from some sort of compactification. For
x'=y'=0 we have the vacuum energy resulting from the
compactification of the imaginary-time direction on a cir-
cle of radius /3/2m. ' The vacuum energy of a toroidal
compactification in the presence of constant background
g,, B;, and A fields in the compactified directions has
been computed in Ref. 28. Comparison with those results
indicates that (11,R, )cd(R, ) —P 'lnZ(13, x',y') repre-
sents the vacuum energy produced upon compactification
of the imaginary-time direction on a circle of radius Pl2m
with constant background fields g '/g =x 'R; ' and

B0, =B,= —y'R; turned on in this direction. Further-
more the turning on of a constant vector potential A0
and subsequent integration would impose an overall
colorless constraint on physical states but we shall not
do so here. In the limit R ~ ~ it is well known that ex-
pression (2.4) can be rewritten as an integral over the fun-
damental region of moduli space by the inclusion of a
winding number in the imaginary-time direction and the

I

definition of a suitable F function. ' '

Now we generalize our previous results to include off-
diagonal metrics g; and antisymmetric tensor fields B, .
Together with the g0; and B0; introduced above this
amounts to introducing a constant background g„and
B„, on a d-dimensional torus T". We parametrize the
four-metric as

~ +gkgIy

with inverse metric then

Vlk
(2.7)
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As bosonic theories at finite temperature can be formu-
lated by compactifying the imaginary-time direction, one
can extend our previous results for toroidal com-
pactification by defining

d/2F(13,g, , B, , y, , B, )=r2 —g g exp[i~r, (2n "m„)—mr2(g" m„m, , 2B",m„n'+—B&„B, n "n'+g„„n"n )] . (2.9)
(n) (m)

The insertion of F into the vacuum amplitude of a string theory yields the identity
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d~1 Pa 51 s2 F,g;, B;,Q,, ,B; g = /Ad+ /cd f;,B;J —lnZ, g;,B;,y,-,B,J—) /2
(2.10)

where Ad and cd(y, , B",, ) are the vacuum and Casimir energy densities. We have defined

PB(&1 r2) &2 r[exp[ rr&2(ML ™R)+&rrr)(ML MR )]l

Shapere and Wilczek have shown that the inclusion of the B„„field extends the discrete symmetry from SL(d, Z) to
O(d, d, Z) and this modular invariance is big enough to include the duality symmetries P~ I/P and y,~

~y . Our final

expression for the density of states is given by
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This formula should be compared from the sum over the point-particle expression discussed previously:
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In this formula F' is identical with F except the winding
number n in the imaginary-time direction is fixed to be
zero.

We seek a generalization of the McClain —Roth-
O' Brien —Tan theorem including the constraints of
momentum and winding number. In Ref. 30, Shiraishi
has derived a generalized McClain —Roth —O' Brien —Tan
Theorem for the special case of a one-dimensional circle
compactification. In the Appendix we extend his result
to the completely compactified case considered here.
This in turn tells us that

Z(P~gi/»i/~go)»oi )=Z(f3~gi/~Bi/~goi»o~ )

and od(E)=od(E). Again such constrained partition
functions are of interest in studying the high-temperature
limit of string theory.

the desire to maintain these symmetries. We thus suspect
that SL(d, R) and SL(d, Z) will prove useful in studying
d-dimensional gravity.

The d-dimensional partition function Zd (P,g;, y;/ )

=Zd(g„, ) is one quantity which possesses these sym-

metries (for the time being we set B,=O). It is con-
venient to define g„, through g„,=g ' "g„, so that
det(g„, , )=1. It is well known that g„, parametrizes
SL(d, R)/SO(d) and is transformed by SL(d, R) and
SL(d, Z) according to

II T
g pv=LI ) gzaI-~v ~ (3.1)

where l. ESL(d, Z). If we define Cd(g„„)=g' cd(y;J ) as
the total Casimir energy times P then the partition func-
tion obeys

III. SL(d, Z) AND O(d, d, Z) INVARIANCE
OF THE THERMAL PARTITION FUNCTION —Z (g / g)»d) d nv

—C(g g )

(3.2)
SL(2,R) and SL(2,Z) invariance have proved to be

useful symmetries in (1+1)-dimensional gravity. Indeed
the inclusion of winding and twisted sectors arises from

In 1+1 dimensions this formula has been applied to
string theory. For a single bosonic scalar field we have

pLc2(L) —2n—( nIP+ing) L )/L
1 ) /p

—f3 "Lc2(L) 2n'( In p" +ing ('L )

( /L) e ' (1—e (3.3)

In 1+ 1 dimensions the Casimir energy of a massless sca-
lar field is c2(L)= 4m/24L . Usual t—reatm. ents work
with the variables r2=P/L and r) =g)L . Finally the
inclusion of the Casimir energy explains the x ' prefac-

I

tor in the Dedekind g function

rt(x)=x' " g (1 —x")
n =1
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(Ref. 31).
It is known that g„and B„parametrize

O(d, d, R)/[O(d) XO(d)] (Ref. 28) and again Wilczek and
Shapere have recently shown that the SL(d, Z) invari-
ance is extended to O(d, d, Z) invariance by the inclusion
of the antisymmetric tensor field. This invariance in-
cludes the duality transformation

B„'„=(B gB —'g)
(3.4)

If one works in the Z(g„„B„„)representation so that the
integrand of the free energy is modular invariant, then

—[g A+ Cd(g )]Z, (g„„B„„)e
[g' A+ Cd(g I]

d gpv~ pv e (3.5)

Thus SL(d, Z) invariance tells us that the exponential of
the Casimir energy must be included as a prefactor to the
partition function. O(d, d, Z) invariance tells us that the
exponential of the cosmological constant should also be
included as a prefactor.

string Casimir energies in exotic situations indicates that
such generalizations do not always exist. If a winding
number is introduced in the imaginary-time direction,
then the integrand of the one-loop contribution to the
free energy is modular invariant as in the unconstrained
case. Interactions can then be included by working on
higher-genus surfaces if an appropriate generalization of
the Fishier Susskind mechanism exists. Recent work by
Gribosky, Donoghue, and Holstein on field theory at
finite temperature in curved space indicates that such a
generalization is possible. In the modular-invariant rep-
resentation we have found that the exponential of the
Casimir energy and cosmological constant should be in-
cluded as a prefactor in order that the partition function
be invariant under SL(d, Z) and O(d, d, Z). Finally this
paper has been concerned with the statistical mechanics
of bosonic string theories by compactifying the
imaginary-time direction on a torus of radius p/2m. We
can extend this analysis to more realistic string theories
containing fermions (such as the heterotic string) by com-
pactifying the imaginary-time direction on a twisted
torus of radius p/2n. as was done in Refs. 20, 22, and 23.

IV. CONCLUSION ACKNOWLEDGMENTS

We have formed an expression for the density of states
for a bosonic string theory when the spatial topology of
the Universe is that of a torus. We have done this by in-
troducing nonzero values of goo, go;, and Bo, in the
imaginary-time formalism and integrating over these
values. We have introduced two partition functions
Z(g„„B„„)and Z(g„„,B„„)depending on whether or
not a winding number is introduced in the imaginary-
time direction. In the Appendix we extend the result of
Shiraishi to show the equivalence of Z(g„„,B„„)and

Z(g„„,B„„). It is necessary to explicitly check this as
work by Burgess, Hambli, and Kshirsager on super-
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APPENDIX: GENERALIZED McCLAIN-ROTH-
O' BRIEN-TAN THEOREM

In this appendix we extend the result of Shiraishi to
the completely compactified case in order to show the
equivalence of Z(g„„,B„„)and Z(g„„B„„).Performing
a Poisson resummation of (2.9) we obtain

F(r,P,g;, B, , yv, B~)= g +exp ——g„,, (m„+rn")(m, , +r*n')+2miB„, m„n',
(m) (n) 'T2

(Al)

Now as in the usual McClain —Roth —O' Brien —Tan theorem set

a~+b
c d cz+d

where ( m o, n ) = r (c,d ) and the greatest common divisor of c and d is one:

F(r, P, g, ,B, , y, , B, )= g g g exp — g~r go—, r(d—+c—r') '(m;+r*n')
r (m') (n') T2 V2

, g;o(d +cr) '(m, —+rn')r——
g, ~d +wc~ (m, +rn')(m +r'n J)

i2 72
'

+2~iBo, r dn '+2~iB,om, rc+2miB, -m, n (A2)

The main device used in Ref. 30 is to define m, '=am, —bn' and n"=dn' —cm, , where ad —bc = I. This allows us to
rewrite (A2) in terms of r', m, ', and n" as
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F(r,P,g, ,B, , y, ,B"; )= g g g exp — —goor ——
go, r(m +r' n") — —go(m, '+r'n")r

r (m') (n') 72 ~2 72

——g,. (m, '+ r'n")(m '+r"nt')+2triBo; rn "+2triB &m,
'n~'

~2
' (A3)

Identifying r as the momentum in the imaginary-time
direction we see that the summand in (A3) is equivalent
to fixing n in (Al) to zero. This is by definition the sum-
mand of F' which was used to define Z(g„„,B„,). The
sum over c,d still exists in the integration over ~ and
sums up to yield the region r; E[—

—,', —,'], rzE[0, ~]

which as in the usual case is the integration region of
Z(g„„B„,). The only new feature of this proof from the
one-dimensional case is the presence of the last term in
(A3) which is identically zero for a one-dimensional
compactific
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