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We demonstrate the existence of a class of nontopological fermion string solutions. The fermion
configurations exist because of a nontrivial coupling between the fermions and a real scalar field,
and their long, thin regions of false vacuum are supported against collapse by the pressure of mass-
less particles trapped in the interior, rather than by the supporting pressure given by Pauli’s ex-
clusion principle in white dwarfs and neutron stars. Our solutions, even with angular momentum,

appear unstable to perturbations in the scalar fields.

In recent years, the active interplay between particle
physics and cosmology has made frequent use of scalar
fields as driving the dynamics and the formation of struc-
ture in the early Universe. Phase transitions of quantum
fields in the early Universe may produce very thin tubes
of false vacuum, known as cosmic strings."? Topological
defects demand the presence of internal symmetries,
whose associated charges are absolutely conserved re-
gardless of the dynamics. On the other hand, nontopo-
logical solitons (NTS’s) occur in theories with a continu-
ous symmetry and therefore a conserved Noether charge
carried by fields confined to a finite region of space. Pre-
vious investigations of NTS’s have, for the most part,
concentrated on theories with global symmetries. The
simplest example of a NTS is the so-called Q ball that can
appear in a U(l)-invariant theory with a single complex
scalar field that has nonlinear self-interactions.’ The
NTS’s found in the literature all possess spherical symme-
try.>~3 Recently, Copeland, Kolb, and Lee® (CKL) inves-
tigated the possible existence of nontopological string
solutions, analogous to the topological-inspired vortex
solutions.” Such solutions possess a cylindrical symmetry
rather than the spherical symmetry of Friedberg, Lee,
and Sirlin*® (FLS).

Friedberg and Lee® extended their studies of nontopo-
logical soliton solutions to include also the fermion field.
The interaction between a scalar field and a set of fermion
fields is investigated by decomposing the total Hamiltoni-
an H into a sum of two terms: H =H ,+H,,, where
H ., denotes the quasiclassical part and H,, the quan-
tum correction. General theorems have been given for
H,, concerning the existence of solutions, the general
properties of such solitons, and the condition under
which the lowest-energy state of H, is a soliton solution,
not the usual plane-wave solution.

In this paper we investigate the possible existence of
nontopological fermion string solutions analogous to
those obtained by Copeland, Kolb, and Lee® except, in
our model, there is a spin -3 field ¥ and a real scalar field
o. Such fermionic configurations exist because of a non-
trivial coupling between the fermions and the real scalar
field, and their long thin regions of false vacuum are sup-
ported against collapse by the pressure of massless parti-
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cles trapped in the interior, rather than by the supporting
pressure given by Pauli’s exclusion principle in white
dwarfs and neutron stars. Our fermionic configuration is
a nondissipative solution with cylindrical symmetry to
the classical field equations that, for fixed charge Q,
represents the field configuration with lower energy than
the free-particle solutions and, hence, is stable against de-
cay into free particles. However, the strings appear un-
stable to forming spheres when we allow the charge to
migrate along the string by perturbing the scalar field
solutions, even if we introduce a current along the string
or give it some angular momentum since there is no topo-
logical reason for their stability unlike the case of cosmic
strings. We discuss the properties of Higgs-type bosons,
including the possibility that the nontrivial coupling be-
tween the fermions and the Higgs-type fields may cause
the fermions to decay and make the strings unstable.

In the model we consider in the following, the interac-
tion between the real scalar field o and the fermion field
Y is

—fiyo ,

where f is the coupling constant, and ¥ is the adjoint of
1, making ¥y a Lorentz scalar. Let the fermion mass (in
the normal vacuum) be m. For simplicity we assume

m—fo,=0,

so that the fermion has a zero effective mass in the false
vacuum. Therefore the expectation values of the Higgs-
boson fields modify the masses of other fields.

To illustrate the basic mechanism, consider the follow-
ing example of a nontopological string. The theory con-
tains an additive quantum number N (as the baryon num-
ber) carried by a spin-1 field ¥, with elementary field
quantum having N ==1. In addition, there is a real sca-
lar field 0. Take the self-interaction of o to be the typical
degenerate vacuum form (in units i=c =1):

2

) (1)

-

Ulo)=1ulc?
2 o

where u=go is the mass of 0. We may take 0 =0 to be
the normal vacuum state and o =0 the false (or degen-
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erate) vacuum. The string contains an interior in which
0 ~0,, a shell of width ~u~!, over which o changes
from o, to 0, and an exterior that is essentially the nor-
mal vacuum. The Hamiltonian density # of the system
is

H=im+HVo P+ Ulo)+y (—ia-V+pm — fBo ),

(2)
where
[m(r,t),0(r,t)]=—i8%r—1"),
L) 3 3
{(r, ),y (r',1)}=8(r—r1') ,
and a_and B are 4X4 Dirac matrices, r=(p,60,z) and

p= Vix2+ y2
Let the fermion mass in the normal vacuum be m. For
simplicity we assume

m—fo,=0, (4)

so that the fermion has a zero effective mass in the false
vacuum. We introduce an operator x(r,?), defined by

x(r,t)=o(r,t)—0o.(r), (5)

where o,(r) is a time-independent c-number function
that satisfies

0,—0 asp—oo (6)

the detailed form of o is yet to be determined.

It is convenient to expand the operator ¥(r,¢) in terms
of a complete set of orthonormal c-number time-
independent spinor functions u,(r) and v,(r):

2 [a,(2

=1

u,(r +b[ (th ( )] s (7)

where u; and v, are determined by

[—ia-V+Bim—fo )X | /=¢x | “ (8)
vy Vs

in which the subscript /=1,2,... is arranged so that
0<€,<¢,=< ---. By using (3), one sees that the opera-
tors a; and b, all anticommute, while

{ajan}= {b1,bg ) =8, - 9)

In terms of x, m, a;, and b,, the total Hamiltonian H may
be written as a sum of two terms, a quasiclassical part

H . and a quantum correction H ,,:

H= [#dr=H +H, , (10)
where
= [[4(Vo )+ Ulo,)]d> r+S elala+bb)
=1
(11)
and
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He= [ 137 +[ = Vo + U'a,) = f4BYIx
+1(Vx)? +%U”(oc))(2
+ UM o U o x
- i €, +counterterms . (12)

=1

The possible existence of string configurations can be
seen by assuming cylindrical symmetric solutions in the
equation of the scalar field. We use trial solutions with
the cylindrical symmetry

oy forp=R,

Te= ooexp[—u(p—R)] for p=R . (13)
The fermion field ¥ is confined to the interior of the
string which is the false vacuum. For the treatment of a
gas of fermions whose interactions are neglected, the
Fermi-Dirac statistics must be used. The restriction of
the Pauli exclusion principle on fermions will only permit
one particle per elementary state. Thus at 7T =0, we
would expect

1 if e<egp,
ne)= 1o if e>ep , (14)
where € is the Fermi energy. The number and kinetic
energy per unit length are

dN _V ,

anv ¥ 15
dn  2m €F (15)
dEk |4 3

—_— N 16
dn  3n €r (16)

where 7 is a dimensionless scale n=zu. We have

9B _2v2 - (a7
dn 3R dn

The shell contains a surface energy, and the surface ener-
gy per unit length is

dE,
dy
Substltutmg Eq. (14) into (18), we have

UVe )P+ U(o

J27rdr . (18)

317T 0_2
144y °

dE; _ 7R

2
.+_
dn 12 70

(19)

The larger N in the string is, the larger the radius R is, so

for R >>u ! we can ignore the last term in Eq. (19) and
write an upper bound for the total energy density:
— 32
dE dE 2V'2 | dN —1
— — =~ | +27Rsu™ ",
d'f} true d’)’] trial 3R d7]

(20)

where s = 74#00 By using
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d |dE
— |5~ |=0, 21
dR |dn ’ 21
we obtain the mass per unit length:
— 172 3/4
dM _ | 16V 27 daN (22)
dn 3u dn

Because the exponent of dN /dn is <1, where dN /d7 is
large, the string mass density dM /dn is always less than
that of the free particle solution, and that ensures its sta-
bility against decay into free particles. Equation (22)
should be compared with the energy density of the
plane-wave solution for N free particles:

dE
dn

N
dn -’

(23)

free

The nontopological string solution is stable against decay
into free particles when it is formed with a lower energy
density than the free-particle distribution; comparing
Eqgs. (22) and (23), this occurs when

4N
dn

4
m

N

u

N

> 27t
T dn

(24)

[4
where m = foo, s =7/24ucd. Thus if the number densi-
ty at formation is larger than (dN /d7),, then it is ener-
getically favorable to form fermion strings.

Under a Lorentz transformation along the z axis we
have the relation between the original z-independent
string in a frame (z',¢’) and the Lorentz-boosted coordi-
nate frame (z,1):

’

z'=y(z—vt), t'=y(t—vz), (25)

where ¥ =(1—v2)" /2 v =dz /dt: The energies in the two
frames are also related by

E'=y(E—uP,), 26)
|

sE=LN'" | [@H}0dr
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where P, is the particle momentum in the z direction.
Equivalence of z-dependent and z-independent solutions
is obtained by taking v =k /w, in Eq. (25). Thus we can
always Lorentz boost our k-dependent solution to an
inertial frame where there is no such dependence, and use
our results of Eq. (24).

Next, we investigate the stability of these solutions to
arbitrarily small perturbations in the fields. By using
Egs. (15) and (16), we obtain that the average kinetic en-
ergy € of a fermion is

2
e=sermt | Fubrion | o

where €5 is the Fermi energy and the normalized wave
function ¢ satisfies

Hpyr=e€rdr , (28)
where

Hp=—ia-V+pm—fPo. , (29)
and

Hi=—V+(m —fo.)?—gp,0-(Va,) . (30)
We define

=Ny, , 31

then the string energy is given by the minimum of the
functional E (®,0 ) at a fixed N:

172
E@0)=N""|[o'H}0dr |
+ [[180 )+ H(Vo 2+ U(e ))d’r . (32)
Under arbitrary perturbations

P>P=d+8d(r,t), 0 >F=0+860(r,1). (33)
We have

V2 trr2 fyg2 f
fd r{® Hi(8P)+ (8P )H P+ @' [2f(fo,—m)(8o,.)—gp,0-V(80 . )]}

+ [dr[(380 (B0 ) +(V,80,)(V,0,)+ U, 80.] . (34)

The requirement of charge conservation, SN =0, becomes

SN= [d*r[(80"o+0'(50)]=0. (35)

Upon substitution into Eq. (34) and after integrating by parts,
-1/2 ,
SE=1N"2 [fq>*H}q> d’r ] [ar[(@'HZ—®'2)sF ]+ [d*r[—(V, Vo + U, Jbo, , (36)
[

where U, =dU/do,.. The first-order variation in E  we see how € is to be interpreted as a function of ®:
vanishes from the equations of motion as expected. We €r
will use the fact that under a perturbation in ® or ¥, the Sep= N fd3r[d>f8<b+(8<l>’\)d>]
Fermi energy €p calculated from 1w also change:
€p—>€p+8€p. Since the Fermi energy formula + 71\; f¢+(8HF yddr . (38)

6F=%f¢THF(1> d’r, (37)

The second variation is easily obtained from Eq. (34):
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(52E)N=fd3r 0o'HO , (39) where |e| <<1 and ¥,(p,0) is the s-state eigenfunction
that has a negative eigenvalue when acted upon by H.
where For this type of perturbation, Eq. (42) becomes
172
| o0 |
F 2g 1py o a2 2
o= 5o , (40) " (8°E )y ; cf(N+k%), (45)
c
and ) )
where k2 comes from the V,V? term in the Laplacian of
_ L la b Eq. (41).
H=-V,V'+ c dl’ 41 We can see that for sufficiently small k2, ie., long-
wavelength perturbations, the eigenvalue corresponding
where to the s state will remain negative; hence, (82E)N <0 for

a=(mfo.)—gp,0-Vo,—€% ,

b=®[2f(fo,—m)—gp,o-V],
e=®'[2f (fo.—m)—gp,0-V],
d=6g’cl—6g%c,0,+g%} .

The stability of a particular configuration is established
by evaluating Eq. (39) or at least the sign of Eq. (39). If
(8%E)y >0 this implies that the perturbation has pro-
duced a new configuration of higher energy than the orig-
inal string configuration, and so the original is stable.
The crucial equations for our purpose are

282

(82E)y=3'c2A; , 42)

1

where the sums exclude zero A;’s, and the ¢; are defined
for an arbitrary eigenfunction ®; by ®=73,c;0®; where
©®, are a complete orthonormal set of real function, and
A; is the set of eigenvalues satisfying

HO=—d’®/dt* . (43)

We can use an analogous argument in Ref. 4 to demon-
strate that there exists at least one negative eigenvalue for
the (6,r) component of H since the s state must have
lower energy than the p state. From Eq. (42) the corre-
sponding (82E), would be less than zero. Without going
into a type of the nontopological soliton analysis per-
formed, we cannot say whether there exist more than one
negative eigenvalue of H.

The next step in the analysis is to investigate possible
perturbations allowed by the equations of motion. If we
have azimuthal symmetry in the v field, and the solution
for ¥ is independent of z, then we can have a perturbation
of the form

Y, (p,0,z)=€y,(p,0) cos(kz) , (44)

some perturbations. Only for small-wavelength perturba-
tions along the z axis is the string solution stable. Under
these perturbations, the effective string tension varies
along the string. Regions with a very small string tension
which have lost the number become surrounded by the
regions with a high tension which have gained the num-
ber. The result is that the low tension regions become
pinched off and spherical solutions form with an intrinsic
size ~k L.

If we consider the rotating nontopological strings, the
result is to increase the radius of string R and decrease
the kinetic energy dE, /d7. Since there is still a transla-
tional invariance in the p-6 plane, the negative eigenvalue
A still exists. However, the magnitude of the eigenvalue
A decreases, because of the 8 dependence in the solution
and the V,V? term in the Laplacian of Eq. (41) acting on
Eq. (42). The decay time goes roughly as
tyee~1/|AI+k?% So for decreasing |A|, the decay time
increases. Therefore the effect of angular momentum is
to mitigate, but not remove, the instability.

It has been previously demonstrated that putting a
current along the string is equivalent to Lorentz boosting
a string in an inertial frame with a current to a frame
moving with relative velocity k /o. Hence, we expect the
physics of the perturbation analysis when there is no z
dependence on ¢ to follow through even when there is in-
itially a current present.

At present, very little is known about the nature of the
Higgs bosons, except that they should be massive, spin 0,
and have expectation values which should modify the
masses of other fields. Thus the (dN /dn), for nontopo-
logical strings could be less than the above estimate, de-
pending upon the theory. It is quite likely that the scalar
fields are in fact phenomenological fields, and their in-
teractions should be described by an effective Lagrangian.
The nontrivial coupling between the fermions and the
Higgs-type fields may cause the fermions to decay and
make the string unstable. We will address these problems
with more details in a separate publication.

We have investigated the possible existence of nonto-
pological fermion strings. Although the energetics and
equations of motion allow for them to be formed, it ap-
pears that they would be unstable to the formation of
spherical solitons.
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