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We report on a large-scale calculation of the hadronic mass spectrum in lattice quantum chromo-
dynamics with dynamical quarks using the pseudofermion algorithm. The calculation was carried
out on a 10' X 32 lattice, at a gauge coupling of P=5.70, with three flavors of staggered quarks of
mass (ma) =0.05 and 0.10 (in lattice units), and with four values of the acceptance: i.e., 60%, 70%,
81%, and 89%. The hadron masses were obtained from propagators calculated at mass ma =ma,
but also at ma =0.50 and 0.02, in order to study hadronic states with different valence and dynami-
cal quark masses. We also present the results of a calculation on a 10'X24 lattice at P=5.47 and
ma =0.05 carried out for comparison with the results obtained by Gottlieb, Liu, Toussaint,
Renken, and Sugar using the hybrid algorithm. Finally, we suggest a new parameter for a better es-

timate of the accuracy of the approximations involved in the pseudofermion algorithm.

I. INTRODUCTION

The numerical simulation of quantum chromodynam-
ics (QCD) using lattice techniques offers the exciting pos-
sibility of deriving the low-energy properties of the strong
interactions from first principles. Quantitative predic-
tions can be made, and although these require the use of
some approximations, the approximations themselves can
be gradually relaxed in a controlled and systematic way.

Over the years, many simulations of lattice QCD have
been devoted to the calculation of the hadronic mass
spectrum (see the review papers of Refs. 1 —3). Most have
been performed in the valence, or quenched, approxima-
tion, where the contributions from the creation and an-
nihilation of light quark pairs have been neglected. Such
an approximation can be justified on phenomenological
and theoretical grounds [Okubo-Zweig-Iizuka (OZI} rule,
large-X, expansion]; it also allows substantial savings in

computer time, which in turn permits the use of ever-
increasing lattice volumes (now up to V= 18 X42} and
gauge couplings (up to P=6.2), and decreasing quark
masses (ma down to 0.02) (Refs. 5 and 6). The quenched
approximation has also been used in comparisons be-

tween the staggered quarks and Wilson formulation of
hadron propagators and in the exploration of improved
actions. Ultimately, the comparison of the results from
a calculation obtained in the valence approximation with
those of QCD should yield a wealth of new information
on the respective contributions of the gluons and quarks.

Lattice QCD calculations have so far confirmed the
Goldstone nature of the pion, and also reproduced quali-
tatively the salient features of the hadronic mass spec-
trum (absence of pionic states of opposite parity, restora-
tion of flavor symmetry in the staggered formulation,
etc.).' At a more quantitative level, however, the mass
ratios of proton to p and of pion to p are systematically
higher than the experimental values by 30% and more.
In most of these calculations, the quark masses are of or-
der 50—150 MeV and typical lattice spacings are of order
0.10 fm.

Although very demanding in computer resources,
there have been several attempts at simulating QCD in
the presence of dynamical quarks. ' Most have been
done using two, three, and four flavors of dynamical stag-
gered quarks, on volumes ranging from 8 X 16 to
10 X32. Limitations in computer time have restricted
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the values of possible quark masses to the range
0.025 & ma 0. 10, and those of the gauge coupling to
5.20&@~5.6. Finally, most calculations were done us-
ing one of the three algorithms that implement the con-
tribution of the qq pair creation and/or annihilation in a
fast but approximate way, i.e., the pseudofermion,
Langevin and hybrid algorithms.

The hadronic mass spectrum obtained from these stud-
ies has been found to be consistent, within 10% error,
with that of the quenched approximation. At this level of
accuracy and for the values of the quark masses and
gauge couplings being considered, it appears that the
effect of the dynamical fermions mostly amounts to a re-
normalization of the coupling in a quenched simula-
tion. '

These conclusions, of course, must change drastically
as the continuum limit is approached since, with the use
of larger couplings and smaller quark masses, the pion
will reach a mass low enough to permit the decay p~2m. .
Moreover, one anticipates that the systematic errors due
to the shrinking of the lattice spacing and to the updating
algorithm will be much more severe than what has been
seen so far. It will therefore be very important, as we
proceed towards the continuum limit, to continue moni-
toring the effects of these systematic errors on the spec-
trum.

It is in this spirit that we present the results of our own
calculation of low-energy hadronic spectroscopy, done on
a 10 X32 lattice. We have used three flavors of stag-
gered dynamical quarks of mass ma =0.05 and 0.10, at a
value of the coupling larger than what has been used be-
fore, i.e., P=5.70. The contributions of the qq pair
creation and/or annihilation have been included in the
calculation through the use of the pseudofermion algo-
rithm, which we have run at four values of the accep-
tance (60%, 70%, 81%, and 89%) in order to study the
effects of the systematic errors. Finite-size effects were
monitored by a calculation of the spatial Polyakov line at
each value of the quark mass and the acceptance. The
hadronic propagators were calculated in the background
gauge field, using a source mass of ma =0.50, 0.10, 0.05,
and 0.02. Finally, in order to further address the accura-
cy of the pseudofermion algorithm on the hadronic mass
spectrum, we have carried out another calculation at
a=5.47, ma =0.05 (two fiavors), acceptance 81% and
90%, on a 10 X 24 lattice for comparison with the results
of a calculation by Gottlieb, Liu, Toussaint, Renken, and
Sugar' done with the hybrid algorithm at the same
values of P, mass and lattice size.

Some of the results presented here have been reported
and briefly discussed elsewhere. ' ' These, as well as new
data obtained at other values of the gauge coupling,
quark masses, acceptance and lattice volumes, will be dis-
cussed in more detail in this paper, which is organized as
follows. In Sec. II we describe briefly the various
methods used in the update of the gauge fields and in the
analysis of the hadron propagators. In Sec. III we dis-
cuss the various systematic errors encountered in our cal-
culation and how we have managed to control them. In
Sec. IV we report on our main results: i.e., the hadron
mass spectrum, the inverse lattice spacing associated with

our choice of gauge couplings, the mass ratios of proton
to p and of n. to p, and several masses of heavy (or
"charmed" ) hadrons. Finally, we present our conclusions
in Sec. V.

II. ALGORITHMS

A. The pseudofermion algorithm

So far, most mass spectroscopy calculations in lattice
QCD with dynamical fermions have been done with ap-
proximate but fast algorithms, which can be divided into
two groups: those based on the Metropolis approach,
such as the pseudofermion' and the bush factorized' al-
gorithms, and those based on the iteration of a stochastic
or deterministic equation of motion, such as the Langevin
and the hybrid' methods. All these algorithms intro-
duce some systematic errors which must be kept under
control. (A calculation using the exact hybrid Monte
Carlo algorithm has been reported in Ref. 12.)

The formulation of QCD on the lattice is defined by
the following path integral, here written with the fer-
mionic degrees of freedom integrated out:

Z =f [dU]det(M [ U]M [U]) exp( —SG [ U] ) (2.1)

ny
dU exp —SG+ Trln M M (2.2)

U„'"=R„"U„", R„"=exp(ip8'A;) . , (2.3)

The 0"s are normal Gaussian random numbers, the A, s

are Gell-Mann matrices, and p is a real number
representing the step size. This proposed change is ac-
cepted or rejected depending on the size of the variation
of the full effective action S:

5S =S [U'] —S [ U]

=5SG+ Tr[ln(M 'M') —ln(M M)] .
ny

(2.4)

In the pseudofermion algorithm, 5S is approximated
by a first-order approximation to the logarithm in Eq.
(2.4):

The gauge fields are represented by the link variables
U—= U„", and M[U]=(D[U]+ma) is the lattice Dirac
operator in the staggered quark formulation. The integer

nI is the number of flavors and SG stands for Wilson's

pure gauge action. For more details on our notation and
conventions, see Refs. 16 and 17.

In the quenched approximation, the evaluation of Eq.
(2.1) is drastically simplified by assuming det(M M)=1.
In recent years practical schemes have been introduced to
calculate the contribution from this determinant to Eq.
(2.1). The pseudofermion method of Fucito, Marinari,
Parisi, and Rebbi' is one such algorithm. Since it has
been discussed extensively in the literature' ' ' we re-
view here only its salient features.

The pseudofermion algorithm is a Metropolis pro-
cedure in which the link variables U" are tentatively
changed into U'", which we have chosen to define as
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5S=SSG+ Tr{[D(5D )+(5D)D ]/[(ma) +DD ]I .
P1f

8

(2.5)

Here 5D =D [U'] D[—U]. A second approximation in-

volves the use of the same matrix [(ma) +DD ] ' to up-
date all the links in a given sweep through the lattice. Fi-
nally the inverse of the matrix [(ma) +DD ] is calculat-
ed via an "internal" Monte Carlo simulation of a path in-

tegral featuring the bosonic variables P(x) (the so-called
pseudofermions) and an action P[(ma) +DD ]P:

The errors due to the approximation introduced in
Eq.(2.5) and the use of [(ma) +DD ]

' for all updates in
a sweep are eliminated, as shown in Sec. III, in the limit
of zero step size 5—+0, for which the acceptance, or the
ratio of accepted over proposed changes, is 100%. The
elimination of the errors introduced by the internal
Monte Carlo simulation [Eq. (2.6)] requires in principle
that the number of pseudofermionic sweeps N f becomes
very large, but it can be argued that their effects also de-
crease, for fixed N~&, as the acceptance increases. (This

requires, of course, that every sequence of pseudofer-
mionic upgradings begins with the final va1ues from the
previous sequence, but any sensible code would imple-
ment that. )

Our calculation was performed using several values of
p, i.e., 0.105, 0.075, 0.048, and 0.023, which corresponded
to 60%%uo, 70%o, 81/o, and 89%%uo acceptance, respectively.

See Tables I(a)—I(c) for more details on the values of the
parameters used in our calculation and Ref. 16 for the de-
tails of our implementation of the algorithm. In a given
sweep, each link was updated with eight Metropolis hits.
The inner Monte Carlo simulation was implemented by a
parallel heat-bath upgrading of all the pseudofermions
defined on random sets of statistically independent sites.
This procedure was chosen so as to achieve long vector
lengths (on a Cyber 205) and to avoid possible biases due
to a systematic scanning of the pseudofermionic vari-
ables. ' Here the selected average number of pseudofer-
mion sweeps was effectively equal to X~f =24.

The pseudofermion algorithm has been tested for vari-
ous simple models, and for several values of the quark
mass on small lattices. ' These studies have shown that
the algorithm can be inaccurate for small values of the
quark masses (i.e., ma &0.10) even at standard values of
the acceptance (60% to 85%%uo). On the other hand, the er-
rors of the internal Monte Carlo simulation appeared to
be under control for S f ~20. It is therefore important
to be able to devise a way to monitor the magnitude of
the errors due to the acceptance or, alternatively, to be
able to extract the exact operator averages from the re-
sults obtained at p%0. This will be shown in more detail
in Sec. III.

B. Hadron masses

The hadron masses are obtained from the quark propa-
gators M ' according to a procedure which is now well
established. ' It consists in forming first meson and
baryon propagators, which in the staggered quarks for-
mulation have the form

TABLE I. Simulation parameters.

(a)
P=5.70, V=10 X32, nf =3, ma =0.10

p/(ma)

7.50
4.80
2.00

Acc {%)

70
81
92

No. iterations

18 500
17 500
11000

Hadron propagators
(measurement interval)

Yes(500)
Yes(500)

No
(b)

p=5 7Q V= 1Q X32, nf =3, ma =005

52.0
42.0
30.0
19.2
10.8

50
60
70
81
89

9 000
8 000

15 000
19000
41 000

No
No

Yes(500)
Yes(500)
Yes(1000)

(c)
p= 5.47, V = 10' X 24, nf =2, ma =0.05

19.2

19.2

8.00

81
(ordered start)

81
{random start)

92

6250

10450

13000

No

Yes(500)

No
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and

P "'=y S,„„PS;,'„,I;, '„',
C, eo

(2.7} 0.584 +
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The index c, corresponds to SU(3) color; the S~k „~ are
suitable spin factors. The latter are defined as
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and act as (unnormalized) projection operators over
states of definite hadronic quantum numbers. In particu-
lar, P "' overlaps with states of J =0+ pion quan-
tum numbers, P ' ' with mesonic states of the p(1 )
and b, (1 +),P ' ' with mesonic states of the p(l )
and a, (1++ ) and finally P '"' with states of the m.(0+ )
and the fo(0++ ) mesons. On the other hand, the opera-
tor P ' ' will produce overlaps with states of nucleon and

baryon quantum numbers.
The hadron masses are calculated by averaging first the

P ' 's and P ' 's over the spatial coordinate x, thereby
resulting in zero-momentum propagators G„' '"', and
then extracting the exponential decay of the latter
through a fit with the form (N, =32)

(hm) = —1 ((mg —m) ) .
N —N

III. SYSTEMATIC ERRORS

FIG. 1. Wilson loop factors vs the acceptance with
ma =0.05, nI=3, P=5.70, and V=10'X32.

in which more hadron masses are extracted from y fits
of sets of propagators containing all but N consecutive
propagators in the measurement sequence, out of a total
of N propagators. From the resulting set of N/N masses
one computes the average ((m~ —m )2), where m is the
average mass extracted from the analysis of all N propa-
gators; the so-called "jackknife" error is then given by

' 0

+( —1)'g A„(e " +e " ),
—m„t t

—m„(32—t)

(2.10)

In Sec. II we have enumerated the different sources of
systematic errors which may affect the updating of the
gauge configurations, as well as the results of the fits to
the hadron propagators. In this section we take a closer
look at these issues and show how they have been elim-
inated or controlled in our calculation.

+A„[(—1)'e " +e " ]t . (2.11)
A. First-order discretization

and the pseudofermion algorithm

The terms in A„and A„represent the states in the direct
and opposite parity channels, respectively, a peculiarity
of the staggered quarks formulation. The exponential
with argument [—m„(32a —t)] corresponds to the fact
that periodic boundary conditions have been used in our
calculation. Fitting the average (G) out of N„, propa-
gators to form Eq. (2.10) with a program which mini-
mizes the y thus produces the hadron masses m„,m„
and amplitudes A„, A„as output variables. The errors
on the masses were obtained from a jackknife analysis,

As shown in Fig. 1 and in many other studies, '

various physical quantities such as the Wilson loop exhib-
it some dependence on p (or equivalently on the accep-
tance). Such a variation similarly occurs in the Langevin
and hybrid algorithms, relative to the discretization step
size b,~ (Refs. 8 and 19).

In a Metropolis updating step, the probability of ac-
cepting or rejecting the proposed change U' will be pro-
portional to exp( —S[U']+S[U]). In the fermion sec-
tor, this expression will have the form

PlI D'D'
~exact =exp Tr ln 1 +

28 (ma)

D'D'~ —DD t
~exact exp Tr ln 1 +

8 (ma) +DD

DD
(ma)

(3.1)

(3.2)
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Notice that

(D'D' D—D )=[D(5Dt)+(5D)D +(5D)(5D )) ~p+8(p ) . (3.3)

If D'D' D—D is smaller than the smallest eigenvalue of the operator (ma) +DD, or approximately, if p «(ma) and

p ( 1, the logarithm can be Taylor expanded as

co
( 1)n DiDrt DDt

b,,„„,=exp Tr ( —1) g (ma) +DD

n

(3.4)

and upon further expanding the exponential and using
Eq. (3.3),

D(5D )+(5D)D
8 (ma) +DDt

Tr

As mentioned earlier, using the same matrix
[(ma) +DD ] ' for all the updates in the same Metrop-
olis sweep will introduce an additional relative error.
Considering the second term on the right-hand side of
Eqs. (3.5) and (3.6), for example, one has the extra term

+ Tr + +0, . (3.5)
8 (ma) +DDt

D(5D )+(5D}D
(ma) +DD

+ ~ ~ e +O p +0
(ma)

(3.6)

or
r

(5D)(5D ) + +0Pf exact 8 ( }2+DD t (3.7)

5, r and b,,„„,thus differ by terms of order p[p/(ma) ]
and of order

2

p p
(ma) (ma)

2

2 P
(ma)

(and higher powers) .

0, denotes all the terms in higher order, i.e.,
[p/(ma) ]"-, p[p/(ma) ]"-, and p [p/(ma} ]"- .
With a similar expansion using Eq. (2.5), the pseudofer-
mion approximation b f will read

[D(5D )+(5D)D ]5
(ma) +DD

—[D (5D')+(5D)D "]' 1

(ma) +DD

2

p
(ma)

(3.8)

Including this source of error in b f
—5,„„,will generate

more terms, proportional to an extra factor p/(ma) with
respect to those enumerated in Eq. (3.7).

What comes out clearly from this discussion is the fact
that the probability of acceptance in the pseudoferrnion
algorithm does not depend on p alone, but on the ratio
p/(ma) at the lowest order. Consequently, it makes
more sense to extrapolate the results of a pseudofermion
simulation with respect to p/(ma) . This is particularly
important in QCD, where the quark masses ma, along
with p, are also tuned to smaller values. An extrapola-
tion to ma ~0 at fixed p wi11 involve large variations in
the difference

~
b f

—b,,„„,~, thereby losing any control on
the systematic error. The correct approach should in-
volve an extrapolation to p=0 first, and then ma =0.

Figure 2 shows how our data at P=5.70 change with
p/(ma) . Figure 2 [see also Table II(a)] shows that the p
dependence of the Wilson loop of W(1,1) is strongly mass

WO, I)

~Iaa"Q

.Sao--
10 32

P=S.70

.$84--

.$12-

-$80 2461~0
l

92 Il 70 $9

20

70

40

60 50

p/(me)
I

ace (%,)

FIG. 2. %'ilson loop factors vs p/{ma) and the quark mass. The lower abcissa shows the corresponding acceptances for
ma =0.10 (acc: 92 to 70 on the left) and for ma =0.05 (acc: 89 to 50, on the right). The continuous and dashed lines are to guide the

epe.
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dependent. It appears that a linear extrapolation may be
possible in the case of ma =0.10. However, it has to be
pointed out that the values of the ratio p/(ma) are all
greater than 1 and thus outside the validity range of the
p/(ma) «1 limit discussed above. A linear extrapola-
tion from these data can only be validated if points for
which p/( ma) & 1 can be included.

Figure 2 shows that, clearly, a linear extrapolation is
out of the question for our data at ma =0.05, regardless
of the fact that supposedly "high" acceptances of 70% up
to 90a%/have been used in the simulation. Here the
dashed and continuous lines are to guide the eye. Figure
2 also suggests that looking for small variations of the
Wilson loop in order to choose a single optimal value of
the acceptance to run a simulation, as done in the past,
may also be hazardous.

Although the plaquette data do not prove as yet the

usefulness of the ratio p/(ma) as a parametrization of
the updating systematic error, we feel that it is far more
objective than monitoring the acceptance only, in that it
can be related directly to the two major sources of error,
i.e., the step size p and lowest eigenvalue of the operator
(m +DD ).

The dependence of the hadronic mass spectrum on
p/(ma) may be substantial as well, as shown in Fig. 3.
The data at ma =0.10 show a clear variation towards
smaller p. Depending on the state, a variation of 2—10%
seems to take place between the finite-p values and the
limiting values for p=0, as suggested by a linear extrapo-
lation where one obtains 0.74(3), 0.77(5), 0.87(4), 0.82(5),
1.03(4), 1.20(4), and 1.31(3) for the m., m', p, p', fo, a, and
baryon, respectively. The errors associated with the
ma =0.05 data are too large to yield a meaningful extra-
polation. What can be done, however, is to get a rough

8'(R, T)

TABLE II. Wilson loop factors vs the acceptance.

(a)
P=5.70, V=10'X32, nf =3, ma =0.10

Acc (%): 70 81 92

1X1
IX2
1X3
2X2
2X3
3X3
3X4
4X4
5X5

0.580 766(37)
0.369 269(55)
0.239 727(60)
0.178 821(74)
0.093 618(71)
0.042 559{62)
0.020 320(49)
0.008 825(36)
0.001 651(21}

0.581 365(47)
0.370 190(72)
0.240 740{75 )

0.179923( 89)
0.094 598( 81)
0.043 336(68)
0.020 787( 53 )

0.009 168(39)
0.001 737(25 )

0.582 103(105)
0.371 300(150)
0.241 917(173)
0.181090( 179)
0.095 532( 171)
0.043 979( 135)
0.021 241( 112)
0.009 374(81)
0.001 819(39)

8'(R, T) Acc (%): 50

(b)
P=5.70, V=10 X32, n&=3, ma =0.05

60 70 81 89

IXI
Ix2
1X3
2X2
2X3
3X3
3X4
4x4
5X5

0.581 226(48)
0.369 755(64)
0.240 146(73 )

0.179 346(83)
0.094 013(79)
0.042 892{70)
0.020 501(48)
0.008 967(42)
0.001 697(35)

0.581 361(77)
0.369 962(115)
0.240 447(123)
0.179 697( 140)
0.094 432( 145)
0.043 244( 132)
0.020 830{121)
0.009 152(91}
0.001 757{40)

0.581 594(45)
0.370 461(64)
0.241 023(70)
0.180 323(77)
0.094 926(65 )

0.043 505(58)
0.021 038(49)
0.009 344(34)
0.001 819{33)

0.582 183(45)
0.371 455(68)
0.242 074(73)
0.181417(88)
0.095 844(75)
0.044 275(67)
0.021 431(53)
0.009 485(42)
0.001 845(32)

0.583 549(62)
0.373 546(97)
0.244 381(110)
0.184003(124)
0.098 187( 110)
0.046 189(81)
0.022 763(68)
0.010440(43)
0.002 200(45)

8'(R, T)

Ix1
IX2
1X3
2X2
2X3
3X3
3X4
4X4
4X5

(c)
P=5.47, V=10'X24, nf =2, ma =0.05

Acc (%%uo): 81

0.534 567{178}
0.308 720(236)
0.181 466{227)
0.120480(232)
0.050 458( 175}
0.016 197( 113}
0.005 403(67)
0.001 471(45 )

0.000 127(34)

92

0.538 114(202)
0.313499(293)
0.186006(295)
0.125 225(282)
0.053 722{216)
0.018025( 127)
0.006 232(71)
0.001 819(51)
0.000 081(35)
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estimate by using the ma =0.10 pion mass at p —+0.0, as-
sume the relation (m„a) ~ ma and interpolate at
ma =0.05. We obtain then m„a =0.52(2), i.e., a 10%
variation over the value at acceptance 80% and 90%.

B. Confinement versus deconfinement

m„a"

1 50"

ma = ma 0.10

e

1.40--

1 30.-

1 20-. a, (1++)

1.10--

1 00--

O.ao-

f (0++)
'I p

p

0.80"

0.70
1 2 3 4 5 8 7 8 p/(tna)'

lYII a „

1.30--

ma=ma= 0.05

1.20-

1.10--

1.00-

0.90--

0.80--

Q.T0--

a (1++)

f (0++)

p (x)

()

The introduction of dynamical fermions will, in con-
trast to a quenched simulation, lower the average value of
the action. Effectively, the fermions contribute in reduc-
ing the lattice spacing, thus inducing size effects similar
to those involved in a simulation at nonzero temperature.

It is therefore important to verify that the system is
effectively on the confinement side, rather than on the
deconfinement side, of the QCD high-temperature phase
transition.

That dynamical quarks may induce a deconfinement
transition on a small lattice has been demonstrated by
Fukugita, Oyanagi, and Ukawa. Using the Langevin al-
gorithm at br=0. 01 with P=5 6,.nf =3, ma =0.05 (and
also 0.10), they have shown that the system does indeed

go from the confinement phase to the deconfinement
phase as the lattice size is decreased from 10 X20 to
8 X18. This transition was monitored via the Polyakov
line L in each of the spatial directions, which shows clus-
tering around the origin in the confinement phase and
around one of the Z3 axes in the deconfinement phase.

We have looked for finite-temperature effects in our
calculation in two ways: first by comparing the Wilson
loop from a simulation started with an ordered
configuration with the Wilson loop from another simula-
tion started with a random configuration (with accep-
tance 80%); both simulations gave the same value for the
loop factors within errors, i.e., 0.582 192(43) and
0.582104(65), respectively, thus supporting the absence
of metastable states.

In our second approach, the Polyakov lines (L ) have
been calculated for all the measurement runs, in the three
directions, at all values of the acceptance. Figures 4 and
5 show plots of Im(L ) vs Re(L ) for each of these cases.
By and large, all show a strong clustering around the ori-
gin. Two plots at acceptance 90% and ma =0.05 and
0.10 show some degree of elongation, but by no means a
clear clustering along any of the Z3 axes. Overall, the
plots of Figs. 4 and 5 have much the same characteristics
(including the elongated plots of 90% acceptance) as
those of Fukugita, Oyanagi, and Ukawa at volume
10 X20. We therefore conclude that our data do not
show any signal of finite-temperature effects.

Let us mention that approximate algorithms such as
the Langevin or pseudofermion methods could fail to
show deconfinement even when this could be legitimately
expected. Because these algorithms tend to produce
more disordered gauge configurations, a too large value
of h~ or p could effectively lower the temperature. But
because we do not see any clear evolution of our
Polyakov lines toward a deconfinement state as the ac-
ceptance is increased, we conclude that the spatial
volume of 10 should be large enough to support
confinement at P=5.70 with nf =3 and ma =0.05,0. 10.

C. Autocorrelations

Q.M--

0.50--

ff (x)

fF( ~)

0.40
10 20 30 p/(Ala)*

FIG. 3. Hadronic masses vs p/(ma), for ma =ma=0. 10
{top) and ma =ma =0.05 {bottom); nf =3, P=5.70, and
V= 10'X32.

Turning to smaller values of p increases the accuracy
of the pseudofermion algorithm. But then the evolution
in the SU(3) space of link variables becomes slower and
thus the autocorrelations between successive Monte Car-
lo configurations increase.

We have looked for autocorrelations in the Wilson
loops, which were calculated every ten Metropolis sweeps
(see Table II). The samples of 1200, 1700, 3900 loops, for
acceptance 70%, 81%, 89%, respectively, were grouped
and averaged in bins of several sizes and the variance
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over the averages calculated. By locating the onset of a
plateau in the variance with respect to bin size one gets a
good estimate of the autocorrelation length in the Wilson
loop data. Figure 6 shows such onsets for various loop
sizes at acceptance 80% (ma =0.05 here). The auto-
correlation lengths at 89% acceptance (300 to 500
sweeps) seem to be 3 to 4 times those at 70% and 81%
(100 to 200 sweeps). This information has been used in
our calculation of the error by the jackknife method, in
setting the proper number of points to be removed

We have also studied the autocorrelations between the
measurements of the pion propagator. Figure 7 shows
this quantity on time slice 17 versus the Metropolis
sweeps. The propagators were calculated every 500
(70%, 81% acceptance) and 1000 (89%) iterations. The
results show the presence of autocorrelation intervals of
order 2000 to 4000 iterations, depending on the accep-
tance. These intervals are of the same magnitude as
those of the pseudofermion study of Born et al. ' per-
formed at P=5.20, 5.35, nf =4 and ma =0.025, 85-92%
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acceptance and one Metropolis hit per link. Effectively,
their Metropolis random walk updating distance in SU(3)
space is smaller than ours by a factor 2 (we use eight
Metropolis hits per link), but their evolution could be fas-
ter since Born et a/. have used a large gauge coupling g
(p=6/g ).

A similar comparison of the autocorrelation intervals
in the pion propagator can be done also with the
Langevin data of Fukugita, Oyanagi, and Ukawa
(10 X24, nf=2, ma=0. 05, P=5.5, br=0. 01), where
shorter intervals of about 500 iterations have been seen.

D. Mass spectrum analysis

-O.OS—

-0.10
-0.1

a I a ~ a a

0 OO5

Re 9
FIG. 5. Polyakov line in the complex plane. Here ma =0.10,

nf =3, P=5.70, and V= 10'X32.

Using the conjugate gradient algorithm, we have cal-
culated the inverse (D+rna)„„' every 500 or 1000 itera-

0

tions, depending on the acceptance (Table I). That in-

verse was obtained for three different sources xo, located
at x =1, y =1, z =1, and t =1, 12, and 23 on the same
gauge configuration. In the jackknife analysis, only the
three propagators corresponding to these three sources
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I I I I I I
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Fl~. 7. »on propagator at time slice 17, vs iteration number, for ma =ma =0.05, n =3, p=5. 70, and V=10 X32. The accep
tance is 70% (a), 81% {b),and 89% {c).
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on the same configuration were removed at a time. Such
a jackknife would thus probe correlation intervals of 1000
(2000) iterations, which is about the same as the range of
the fluctuations observed in the pion propagator. For
each value of the lattice parameters, samples of 3 X25 to
3 X 30 propagators were considered (see Table I).

The propagators were calculated for different values of
the mass m, 0.01 ma ~0.50, in order to study the
effects of the valence quarks of masses different from
those of the dynamical qq pairs. Residues ranging from
10 (ma =0.50) to 10 (ma =0.02) were typically
achieved with 100 to 500 conjugate-gradient iterations. '

The finite extent of the lattice in the temporal direction
will induce important contributions from excited hadron-
ic states, which will be rejected in nonzero amplitudes
A„» and A„) i in Eq. (2.10). These can be isolated or
suppressed by fitting the propagators at large ~t to~

—or
by including such amplitudes in the fits. The problem
with the former is that it reduces the number of data
points in the fit; the latter, on the other hand, uses all
points but involves many parameters to be fitted. These
two problems do reduce the quality of the fits, but in
different ways. Therefore, a comparison of the lowest
mass extracted from these two approaches can give an
objective estimate of the lowest mass involved in the
channel under consideration.

The hadron propagators were fitted to Eq. (2.10) in the
interval t;„(t((N, t;„). Se—veral values of t;„were
tried (i.e., t~;„=0,1,2, . . . , 6) until the masses stabilized
and the fit gave a reasonable y . Several fits were also
made by adding or removing terms corresponding to ex-
cited states. For example, in the mesonic channels
represented by S(i,x) propagators, fits with one state in
the direct parity channel (i.e., A, PO, A„»=0, A„,=0)
were compared to fits with two states in the direct parity
channel (i.e., A„A2%0). A similar comparison was
done for the S~2 ) S(3 ) and S(4„) meson propagators,
with fits involving one direct and one opposite parity
channel (i.e., A, , A, AO) and those involving two direct
and one opposite-parity channel ( A, , A2, A, 40). Final-
ly, the four baryonic propagators were combined into a
less noisy form, and then fitted with one direct and one
opposite-parity channel.

In general, we have observed that, in the case of the
S(3 )

and S~4 ) rnesonic propagators, the fits with excited
states (i.e., A 2+0) were not very stable with respect to a
variation of t;„. The fits for the mesonic S(, ) and

S~2 ), on the other hand, achieved stability for much

smaller values of t;„than for the fits containing no excit-
ed states (i.e., A2 =0). In their respective range of stabil-
ity, both fits showed consistent (within error) values for
the lowest hadron masses m

&
and m ].

Most A „A,%0 fits were seen to be stable for
t;„=4,5, 6. In Tables III—V we show the resulting
lowest hadron masses at t;„=4 in the case of the S~2 „),
S(3 ) and S&4 ) mesons. For the S&, „) meson propaga-
tors, the masses come from a fit with two states in the
direct parity channel at t;„=0; for the baryon, the
masses come from A „A i %0 fits at t;„=6.

IV. RKSUI.TS

A. A comparison with the hybrid algorithm

It is useful to compare directly the hadronic spectros-
copy obtained from different updating algorithms such as
the pseudofermion, Langevin or hybrid methods, at the
same values of the quark mass, gauge coupling, and lat-
tice volume. To this end we have compared the Wilson
loop (here measured every 10 sweeps) and several hadron-
ic masses with those calculated by Gottlieb et al. ' ' us-
ing the hybrid algorithm. For this calculation we have
adopted their values of the parameters, i.e., P=5.47,
ma =0.05, nf =2, and a lattice size of 10 X24. In our
pseudofermion runs we have used acceptances 81% and
90% (the masses were calculated with acceptance 81%
only) accumulating 16000 and 12000 iterations, respec-
tively (including thermalization). The hybrid algorithm
runs were performed with a step size of 6~=0.04 using
1000 trajectories. ' The propagators were measured
every two trajectories.

To carry out the comparison we have analyzed the sca-
lar and the vector meson propagators of Ref. 13 using
our own fitting package. The stability of the fits was
checked upon the remova1 of several points at both ends
of the hadron propagator. The masses quoted here have
been obtained with exponentials corresponding to two
direct parity channels (the scalar propagator) and to two
direct, one opposite-parity channels (the vector propaga-
tor).

Figure 8 shows the results of our comparison. Within
the margin of error, there is an agreement in the case of
pion and p masses, as well as the excited state in the
direct channel and the opposite-parity state of the S~2 „)
spectrum. As hinted by the excited state in the S~&

TABLE III. Hadronic masses vs the acceptance. The propagator mass (ma) is the same as the dynamica1 quark mass (ma).

Hadron

P
P
a (1++)
7T'

fo(0++)
N(1/2+ )

ma: 005
Acc (%):70

0.561(7)
0.713(41)
0.736(51)
0.988(60)
0.562(36)
0.802( 16)
1.186(30)

0.05
81

0.575(6)
0.725(21)
0.756{25)
0.978( 37)
0.600(21)
0.812( 17)
1.249(41 )

0.05
89

0.597(6)
0.711(19)
0.702(23 )

0.899(27)
0.579( 50)
0.732( 10)
1.274( 14)

0.10
70

0.791{8)
0.923(9)
0.971(9)
1.199(19)
0.874( 13)

1.032(8)
1.518(33)

0.10
81

0.772(9)
0.904( 11)
0.918(13)
1.208(9)
0.838( 16)
1.031(11)
1.422(41)
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TABLE IV. Hadronic masses vs the acceptance, for maWma. Here, ma =0.05.

ma: 0.50
Hadron Acc (%): 70

0.50
81

0.50
89

0.10
70

0.10
81

0.10
89

0.02
70

0.02
81

0.02
89

p
a, (1++)
f,(O++)
1V (1/2+ )

1.654(1)
1.817(4)
2.173( 15 )

1.989(24)
2.867(7)

1.654(2)
1.836(5)
2.035(22)
1.991(23)
2.862(24)

1.653(6)
1.812{2)
2.096( 12)
1.989(12)
2.862(7)

0.779(3)
0.919(6)
1.194(39)
1.031(14)
1.540(31)

0.783(7)
0.925( 12)
1.190(20)
1.045(27)
1.513(30)

0.794{3)
0.904{11)
1.119{15)
0.972(73)
1.526{37)

0.380( 12)
0.592( 11 )

0.819(65)
0.628(51)
1.167( 140)

0.401(9)
0.589(41)
0.841(57)
0.688( 37)
1.396{276)

0.476( 13)
0.664(21 )

0.808(31 )

0.589(25)
1.418(150)

channel, the masses from the pseudofermion approach
appear to be systematically higher than those of the hy-
brid calculation (see also Tables III and V).

The comparison of the Wilson loop is also shown in
Fig. 8. The loops differ by less than 1% (91% accep-
tance) and 2% (81% acceptance). Here the pseudofer-
mion algorithm has produced the smaller values (see also
Tables III—V). Linearly extrapolating those two points
to p=0 would give a value 0.5406(4)—still lower than
the hybrid value. It has to be stressed however that the
results of Fig. 2 at ma =0.05 do not support a linear ex-
trapolation in the present range of acceptances, and sug-
gest instead a higher extrapolated value, presumably
much closer to the hybrid value, or perhaps even higher.
Let us point out that for the sake of a complete compar-
ison between the two algorithms it would be useful to
have data obtained with the hybrid algorithm for many
values of the step h~.

The difference between the two updating schemes can
be understood from the fact that the typical step sizes p
and de are of the same order of magnitude and that the
hybrid algorithm includes derivatives approximated by
second-order finite differences, in contrast with the
pseudofermion method, which uses a first-order discreti-
zation [see Eq. (2.5)]. Most approximate algorithms tend
to not include all of the necessary fermion polarization
during the update, leading to more disordered gauge
configurations, and hence to a lower Wilson loop and
higher hadronic masses.

A similar comparison between the pseudofermion algo-
rithm and the hybrid algorithm has been carried out by
Born et al. ' at P=5.20, with a similar outcome.

and

m =1.64(5), ma =0.10,
P

M =1.79(7), ma =0.05,
P

M
=0.86(2), ma =0.10,

P

(4.1)

(4.2)

(4.3)

10 24 p =5.47 ma =0.05

The masses for which m is equal to m allow us to study
the light-quark sector of QCD; those for which m is
different from m can, on the other hand, provide useful
information about charmed (and heavier) mesons and
baryons.

As discussed in Sec. III A, it may be difficult to extra-
polate with respect to p j(ma), due to the still large
values of that ratio (see Table I). At best, extrapolating
linearly or quadratically can provide a rough estimate of
the errors involved. The only thing we can do in these
circumstances is therefore to use the data which corre-
spond to similar values of p/(ma), i.e., use those masses
computed at ma =0.05 from 89% acceptance runs, and
those at ma =0.10 from 70% acceptance (see Fig. 2).

In studying first the meson containing the u, d quarks
(i.e., m =m ), we obtain the following mass ratios of pro-
ton to p and of pion to p:

B. Hadronic spectroscopy

We now turn to the hadronic spectroscopy which can
be inferred from our calculation (see Tables III and IV).

TABLE V. Comparison of hadronic masses, hybrid vs pseu-
dofermion algorithm. Here ma =ma =0.05, V = 10 X24,
nf =2, p=5.47.

2 0.-

0)
1.8- +
1 4
1.4--

1.2--

mp

W(1,1) ..0.548

~ .CL$46

~ .0.$44

~-. $42

- -0.$40
-%.538

- -0.534

81' - -0.$34

--0.$32

Hybrid
Ref. 13

published

Hybrid
Ref. 13

recalculated
Pseudofermion

{81%acceptance)

0.2--

0.0

A this study
S reference 13

A B

--0.$30

0.528

p
Ad)m2

m q(d)

p(a)m

0.6099( 10)
0.937(45)

0.6116(20)
0.989{30)
1.485{10)
1.60(17)
1.69{10)

0.6083(23 )

1.170(330)
1.779{11 )

1.70{23)
1.75{12)

FIG. 8. Comparison of hadronic masses, hybrid vs pseudo-
fermion, ma =ma =0.05, P=5.47, nf =2, and V=10 X24.
m 2"' corresponds to the second excited state in the direct-parity
channel, m'&" the first state in the opposite-parity channel.
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M

M
=0.84(3), ma =0.05 . (4.4)

a ' = 1540(100) MeV . (4.5)

We now turn to the charm spectroscopy ' which can
be inferred from the ma%ma data [see Table IV]. Here
the 0+, 1,0++, and 1++ states would correspond to
the 7)„J/g, g,o, and ri, t, respectively. The presence of
the heavy quark introduces another scale which needs to
be fixed by using experimental data. ' To this end, we
use Eq. (4.5) and the data of our J/f-like meson state
(the 1 state) and compare that with the experimental
mass of the g„' by extrapolating linearly in the range
ma &0.05, we obtain

mrna
=0.57(7) (4.6)

or m&=878(111) MeV, again using Eq. (4.5). [We get
m&=970(123) MeV when using the 0+ state and the
mass of the r), .] Our "lattice renormalized" heavy-quark
mass m& is in the general range of values obtained from
potential models: 0.9&m& &1.6 GeV. Let us stress
here that m& is renormalization-scheme dependent and
therefore varies widely from one model to another.

In Fig. 9 we show the splitting m„—m J/f m,
e 0

m J//f m g m J/f in lattice units versus the propagator
Icl

quark mass ma. These can be compared at m& [see Eq.
(4.6)] with their experimental values which, in units
defined by Eq. (4.5), are given by —0.076(5), 0.206(13),
and 0.268(17), respectively. The few data points and the
large errors prevent any clear signal for behavior of the
type 1/m or 1/m which are expected from the kinemat-
ics and the spin interactions.

It appears that the presence of the dynamical ferrnions of
mass 0.05 and 0.10 does not help to bring M~/M down
to its experimental value of 1.2. Our values are con-
sistent with most of those obtained from the quenched
approximation.

A physical value for the lattice spacing can be extract-
ed by extrapolating to the zero quark mass limit and by
using the experimental value of the p mass. We obtain

We have described a large-scale calculation of the ha-
dronic mass spectrum in lattice QCD. The effects of the
dynamical quarks were included via the use of the pseu-
dofermion algorithm. The systematic errors of this algo-
rithrn were monitored over a wide range of acceptances
and over two values of the dynamical quark mass and of
the gauge couplings.

At P=5.7, we have seen that a 5—10% systematic er-
ror was introduced by the pseudofermion algorithm in
the hadron mass calculation. In the case of the Wilson
loop factors, on the other hand, variations of the accep-
tance rate in the range 60—90%%uo induced changes of or-
der 1% in W(1, 1) and of order 5% for W(3,3), both for
mc =0.10 and 0.05. A more important issue was the ex-
trapolation to 100%%uo acceptance, or as we have suggested,
to p/(ma)z=0. 0, which ultimately removes the updating
systematic error. We have seen a linear behavior in both
hadronic masses and plaquette variable in the case
ma =0.10; however, since p/(ma) & 1, no linear extra-
polation could be taken seriously. For ma =0.05, on the
other hand, nonlinear behavior was seen in both pla-
quette and hadronic mass data.

With the coupling P=5.47, we could compare our re-
sults with those obtained with the hybrid algorithm. '

Our Wilson loop factors were found to be smaller by
about 1—2%; hadronic masses were typically higher than
those of the hybrid algorithm by 2 —10%, depending on
the state. From our experience at P=5.7, we expect
these differences to be substantially reduced by going to
higher acceptance. We understand these differences to
come from the fact that, for similar step sizes p and h~,
the errors in the hybrid algorithm are smaller than those
of the pseudofermion because derivatives are approximat-
ed by higher-order finite differences. It would be very in-
teresting to compare with hybrid data obtained from
simulations done for more than one value of the step hv.
For the moment, we believe that the issue concerning
which algorithm is best cannot be settled until such data
are available.

We have also verified that our simulation was done on
the low-temperature (or confining) side of the QCD phase
transition, for all values of the quark masses and accep-
tances. We have estimated the inverse lattice spacing of
our simulation at a '=1540(100) MeV; the proton-to-p
and pion-to-p mass ratios were found to be consistent
with those of the quenched approximation. In the
"charmed" sector of the spectrum, we have estimated the
heavy-quark mass scale to be 878—970 MeV.
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