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Based on the analysis of the free energies of topological defects, we develop further the study of
phase transitions in field theory at finite temperature. In the case of strings we have shown how one
can get, in the dilute-gas approximation, explicit expressions for the length of the string as well as
the density contrast in terms of the free energy per unit length of the string. In the high-

temperature limit one can get explicit expressions for all relevant quantities up to the one-loop ap-
proximation. When applied to the SO(10) model we get good phenomenological results. In particu-
lar we derive, in a simple manner, the scale-independent Zel dovich spectrum with the right order of
magnitude.

I. INTRODUCTION

The large-scale structure of the Universe is a feature
whose explanation requires the existence, in some stage of
its evolution, of small fluctuations in the density of an
otherwise homogeneous universe. The scenarios pro-
posed for explaining this structure evokes processes, for
the origin of the inhomogeneities, that take place soon
after the moment of creation of the Universe. The inho-
mogeneities acted as seeds in the formation of structures
that become effective only after the decoupling of pho-
tons from ordinary matter.

The most relevant question in this context, and as yet
not settled, is the one related to the nature of the inhomo-
geneities. One possibility is the existence of massive par-
ticles, different from ordinary baryons, in various stages
of the Universe. Fluctuations in the density of these par-
ticles in space act as seeds responsible for structure for-
mation. This possibility has been exploited by a very
large number of researchers. '

Among the physical processes that give rise to inhomo-
geneities we would like to emphasize the role of phase
transitions. As pointed out by Kibble topological de-
fects arise in cosmological phase transitions making them
natural candidates for seeds that emerge in the very early
Universe. Among these defects it seems that strings are
one of the best candidates. Strings may give rise to densi-
ty perturbations from which galaxies evolve. '

In this paper we will be concerned with the relevance
of defects in phase transitions and their possible role in
symmetry restoration. We will be concerned only with
topologically stable defects.

Our motivation for the study of the role of topological
defects in phase transitions is twofold: in the first place,
because this study, in the context of finite-temperature
field theory, has never been explored in a systematic way,
and in the second place, because one can argue, as will be
shown later, that phase transitions might be induced by
the condensation of defects as a result of thermal fluctua-

tions. When one takes into account the role of defects
one gets a novel picture for the phase transition. This
picture might be relevant, in field theory at finite temper-
ature, to the understanding of the large-scale structure of
the Universe.

There are two basic questions to be answered in any
string-based scenario for structure formation. These
questions are the loop formation (sizes, structure, and
density) and the string evolution. In Vilenkin's ap-
proach, for instance, the formation process of a small
closed loop seems to play a crucial role. The evolution of
strings has been studied by Kibble and Vilenkin.

In this paper we will be concerned only with string for-
mation in the early Universe. Our analysis differs from
previous ones in the fact that we have studied string for-
mation as a result of thermal fluctuations. We wi11 show
that thermal fluctuations induce the production of a large
number of strings. As a matter of fact, above a critical
temperature ( T, ) even infinite strings (of the Nielsen-
Olesen type) can be produced. Under these cir-
cumstances the system goes to a new phase for T & T, .
In this phase there is condensation of strings. Our con-
clusion is that thermal fluctuations are extremely relevant
in any string-driven structure formation.

The thermodynamical argument on which we have
based our argument is the so-called Kosterlitz-Thouless
picture of phase transition. As a rnatter of fact in their
classical paper Kosterlitz and Thouless were analyzing
spin configurations called vortices which are
configurations analogous to infinite strings studied here.

The plan of our paper is the following. In Sec. II we
establish the general framework. In Sec. III we give for-
mal expressions, in field theory at finite temperatures, for
the free energy of topological defects. These expressions
are fairly simple in the high-temperature limit. In Sec.
IV we consider the case of strings. We determine the free
energy of the Nielsen-Olesen string in the high-
temperature limit and determine the condensation tem-
perature of such strings. In Sec. V we give the results for
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the SO(10) model. Section VI is particularly relevant for

cosmological implications since in this section we give ex-
plicit expressions for the length of strings and the con-
trast density in the dilute-gas approximation. When ap-
plied to cosmology our results seem to lead to observa-
tionally compatible results for the contrast density in-
duced by strings, since it gives results with the proper or-
der of magnitude. Furthermore the contrast density is
practically temperature (time) independent. That is, we
get Zel'dovich's "constant curvature" spectrum.

II. FREE ENERGY OF TOPOLOGICAL DEFECTS

In order to study the problem of symmetry breaking
we shall employ the so-called variational method. Let
q, be a solution (herewith we will call them background-
field configurations) of the following variational problem:

51 (y, T)
(2.1)

5g

where I is a group-invariant functional depending also
on external parameters that we are labeling by T. Let us
assume for the moment that I (y, , T} represents the free

energy of the system in the presence of the background
field y, Let us designate by qrv the solution of (2.1) in-

dependent of x (the vacuum of the theory).
The study of phase transitions can then be pursued by

analyzing the difference between free energies associated
to different backgrounds (one of them we take as the vac-
uum), that is, we analyze the difference

F(y T)=l (tp T) I (yy T) (2.2)

In the case of the field theory at finite temperature, T is
the temperature and, as we shall see in the following, I is
the effective action defined by

r= f dx, . dx„I'"'(X, X„)y(X,)y(X ) y(X„),1

n.
(2.3)

where I'"' is the one-particle-irreducible Green's func-
tions of the theory.

In the case in which, as in the semiclassical method, y;
corresponds to a topological defect (pD },then we define

+(pD, T):I'(yD, T—) —I'(Ipv, T) (2.4)

(2.5)

Like in the phenomenological Landau theory of phase
transition, one looks for the extrema, Eq. (2.1), of the
thermodynamic potential V,tr(p, T}. Assume that at To
the absolute minimum of V is at g0. The different mini-
ma of theories with spontaneous symmetry varies with T.
Assume that at some temperature T& other minimum

I

as the free energy associated to a topological defect.
We would like to stress the difference between the ap-

proach that we propose here and the so-called effective-
potential method. From (2.2) it is very easy to see the
difference. In fact, the effective potential is a therrno-
dynamic functional analogous to F(ya, T) except for the
substitution cpD~tp where y is the generic space-tirne-
independent field configuration. That is,

(y, ) becomes equal to that at yo, i.e.,
V,tr(yo, To)= V, (gtr„T, ) at T, and becomes the new ab-
solute rninirnum when T (T, . This situation describes a
first-order phase transition.

The point that we would like to stress is that the
effective potential gives a description of the phase transi-
tion in terms of space-time-independent field-theoretical
configurations. We believe that a better description is
achieved by computing the free energies associated to
other background fields. ' In this section we will analyze
the expression of the Gibbs energies for nontrivial back-
ground fields.

In the following we will justify expressions that give
the (Gibbs) free energies for nontrivial backgrounds. "
Although, within the one-loop approximation, our ex-
pressions give results that are by now standard and can
be found in text books, ' we present this derivation due
to the fact that it is fairly general and is an extension, to
finite temperature, of the background-field method. '

Assume that yb is a generic field configuration and let
us compute the thermodynamical properties of the sys-
tem in the presence of such a background field. This
should be inferred from the functionals Z[J,y&] and
8'(J,yz) defined by

z[J,&b]=e
' ' = fD[y]exp S[qr y~]+ f d—rf d —x J(x)q(x) (2.6}

By means of a change of variables one can write

Z[ qJ&&]=e ' 'exp f dr f d x J(x)y&(x) =Z[J]exp f dr f d x J(x)q&&(x)
0 0

(2.7)

where Z [J]=Z(J,O) and 8'(J)= W( J,O) stands for the
above functionals evaluated without the background
field. As is well known Z (J) and IV(J) are the functional
generators of the disconnected and connected Green's
functions, respectively. Z(J, y& } and W(J, y&) stand for (2.&)

l

the same functionals in the presence of the background
fb.

From (2.6) and (2.7) it follows that

IV[J,y„]=W[J]—f dr fd'x J(x)y, (x) .
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Since y=5W[J, yl, ]loJ, the expected value of the field

in the presence of J and yb, we can write

I [@,yb]—= W[J,pb] —f dr fd'x J(x),

(2.9)

F(p, pb)=—lim W[J gb]J 0

—:lim I [gab]+ f dr f d x J(x)y
J 0 . 0

(2.14}

where I [y, yb ] is the background-field effective action.
By substituting (2.8) into (2.9) it follows that

r[y, y ]—:W[J]—f dr fd'x J(x)[y(x)+y, ] .

(2.10)

=0, (2.15)

Finally, one notes that if yb is a particular solution of the
classical equation (2.1),

Consequently if one differentiates (2.8) with regard to J
one obtains

0'e=V' ~ (2.16)

5W
J 0'+0'b . (2.1 1)

then in the limit J~O Eq. (2.16) leads to (p=O. Under
this circumstance it follows from (2.13) and (2.14) that

From (2.11) one gets the relationship F(p, +, ) =r[+,]; (2.17)

%b. (2.12)

If one substitutes (2.12) into (2. 10) one then obtains

I [y,gab]= W[J]—f dr f d x J(x)y(x)
0

=r(q)=r[q+q ]. (2.13}

1S

Expression (2.13) is well known within the context of
the background-field method —that is, the generating
functional for the theory in the presence of the back-
ground can be obtained from the generating functional
without the background field computed just by making
the replacement y~q+yb.

The free energy in the presence of the background field

i.e., the free energy of the system in the presence of the
background field y, satisfying the classical equation
(2.15) is given by the effective action computed at this
configuration. If I" is computed at the zero-loop level,
(2.15) corresponds to the classical Euler-Lagrange equa-
tions. This is precisely the situation that we are interest-
ed in the semiclassical approximation.

III. FORMAL EXPRESSION FOR DEFECT
FREE ENERGY

The partition function for a given gauge theory, whose
Euclidean Lagrangian density is L, may be expressed as a
function integral'

r

Z(p)=N '(p)It)[Dy]exp —f

deaf

d x[L —J(x)y(x)] Xgauge-fixing terms,
0

(3.1)

where 7. is the Euclidean time; y stands for all fields in the
theory and the integral over the fields is subject to the fol-
lowing boundary condition in y:

y(x, O)=g(x, P) for bosonic fields

I

field configuration MJ. The effective-potential method
analyzes I for constant field configurations MJ in order
to obtain the phase diagram of the model. '

One can define the free energies of the different types of
topological defects' ""by

and

y(x, O) = —y(x, P) for fermionic fields .
ZMF = —P lnM z (3.5)

N is a normalization constant which may be chosen such
that Z( ~ )=1.

The free energy of the system is defined through the
equations'

and

Z
F~ = — ln

L Zv
(3.6}

F(P J)=—P 'lnZ, (3.2)
F~= — ln

L 2

M(x, J)—:MJ(x) =—5(PF)

r(P, M )=F(P,J)+P ' f dr fd'xM (x)J(x) .
0

(3.3)

(3.4)

1(p,MJ) is the generating functional of one-particle-
irreducible Green's functions and is the free energy of the

(3.7)

where I'~, I'&, and F~ are, respectively, the free energy
for domain walls, strings, and magnetic monopoles. Usu-
ally a given model does not exhibit all the three different
topological defects, so one must consider only the
relevant ones. ZM, Zz, and Z~ stands for the partition
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function of the system evaluated when one imposes
boundary conditions that force the existence of a magnet-
ic monopole, string, and domain-wall defect in the sys-

tem, while Zv is the partition function obtained using to-
pologically trivial boundary conditions (vacuum sector).
L is the size of the system.

The various thermodynamical functions can be writ-
ten, in the one-loop approximation, as shown in the Sec.
II, as differences of the effective action of the theory eval-
uated at certain field configurations. Let r(y) be the
effective action of the theory and pi, be the constant field

configuration associated to the vacuum of the theory. In
terms of the effective action one can write the effective
potential

(3.8)

where the overbar stands for constant field
configurations.

Whereas for the defects that we are concerned in grand
I

unified theories (GUT's) (monopole, string, and wall) one
has"

FM=[r(Vw) —r(V v)]

F =—[1 (qr ) —r(y )],1

(3.9)

(3.10)

1F =, [r(y ) —r(p )];
L

(3.11)

that is, all thermodynamical parameters can be written as
differences between the effective action computed at some
special field-theoretical configurations and those associat-
ed with the vacuum of the theory. These special field-

theoretical configurations, within the semiclassical
scheme, are the defects associated with the classical solu-
tions to the Euler-Lagrange equations of the model.

The general structure of I [P,yD(x)] is

r[P, qD(x)]= g, g f d; fd'x, ~,(x, ) r'"'(r, x„.. . ,.„x„), (3.12)
, nt. ~, p

where I '"'(r&xi, . . . , r„x„)are the one-particle-irreducible Green's functions, yD stands for the fields associated with
the defect. If one uses the Fourier transform of I'"', given by

d k n

r'"'(r, x, , . . . , &„x„}=p"g g f r'"'(co, k, , . . . , co„k„)exp i g —(coirl+ki xI)
(2m )

(3.13)

where co& =2m lP ', and remembering that translational symmetry allows us to set

i '"'([co;k; I )=6(2n)'5 ga); 5' gk; I '"'([;k;I) (3.14)

then, for static field configurations (those with which we will be concerned in this paper), the general structure of
r(p, yD) is

n

r(P, q )=p g , g fd'k, @(—k, )r '"'(Ik, , =0))5' gk, (3.1 5)
n=1 ' j=1

The graphs that contribute to I '"' will involve sums over the discrete co which, once performed, yield a term in-
dependent of temperature plus one which has the full T dependence. This separation can always be implemented if one
uses identities of the form

2
2n& +Z

1 1

z(e@—1)
(3.16)

One can then split I '"' into two parts

(3.17)

where the second term contains all the T dependence. The general structure of this dependence can be inferred by mak-
ing a change in all internal momenta integration variables. This change is just a replacement p~p =pP. After this
scaling in the internal momenta one can predict, from pure dimensional analysis, that I 'r"'( [k;,co, =OJ } has the struc-
ture'

~n
~n

(3.18)

where d (y„) is the superficial degree of divergence of a graph y„contributing to I and Gr is dimensionless. Putting
~n

(3.15), (3.17), and (3.18) together, we have
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I(Pq )=I (y )+ g, P Jd'kg ( —k)QT "G ', —5' gk,
tr

(3.19)

where I o(pD ) is the effective action computed at the background field tpD at zero temperature.
Using (3.9)—(3.11) and (3.19), the free energies of the various topological defects can then be written as

F «)=(I'o(mD) —I o(mv)l
1

r

Jdrkq ( —k )S3 yk yT "G,——y, q" yT"'&'G 0, —1,3I,
n=1 ' j=l ~n

(3.20)

where a is an index that, in accordance with (3.9)—(3.11),
runs from 0 to 2.

To get a formal series for the free energy from any
solution associated with a particular defect, we just intro-
duce it in (3.20).

Just for the sake of completeness, we write the expres-
sion for the effective potential. From (3.8) and (3.19) it

follows that

1I'ff(e)= V~1 0(V'D) 10(tv)i

(3.21)

From expression (3.20} one can see that, in the high-
temperature limit, the leading contributions comes from

graphs that have higher superficial degrees of divergence.
As we will show in the next example, these graphs up to a
given order in the semiclassical expansion, are easy to iso-
late.

IV. THE STRING FREE ENERGY (Ref. 16)

In this section we will be concerned with strings at
finite temperature. ' The ones we will be discussing were
obtained explicitly, in the U(1)-gauge model with spon-
taneous symmetry breakdown, by Nielsen and Olesen. '

Within the classical context, the energy per unit length
associated to the string is positive. Since the ones we will
consider are infinitely extended, one might argue that
such a structure cannot be present in the system, as its
cost, in energy, is infinite. Quantum effects, however,
aught change this picture. In fact, as has been pointed
out by Bricmont and Frohlich, ' there is a certain region
in parameter space for which the cost in energy is zero.
This implies that one has reached, for these values of the
parameters, another phase of the theory —the one in

which the condensation of defects takes place. We will
show that, for high enough temperatures, the defect free
energy becomes zero, thus signaling a transition tempera-
ture.

We would like to stress that our approach is particular-
ly convenient when we are interested in the production of
strings as a result of thermal fluctuations within the usual
framework of field theory at finite temperature (and con-
sequently thermal equilibrium). The picture that we pro-
pose for the role of strings in phase transitions is inspired
in the so-called Kosterlitz-Thouless picture of phase tran-
sition. In their classical paper they have dealt with vor-
tices which, in the model studied by Kosterlitz-Thouless,
are configurations analogous to strings.

In the case of strings, the argument of Kosterlitz and
Thouless can be stated in the following way: the free en-

ergy per unit length associated to a given string can be
written as

F,t„„(T) =M —TS ( T), (4.1)

where M is the mass per unit length at zero temperature
and S ( T), to be identified later, is an entropy term.

Assuming that M is positive (as in the case at classical
level} there is no chance, for low temperatures, for the ap-
pearance of strings in the system since the energy cost for
the introduction of a string in the system is infinite.
However as the temperature increases, as will be shown
later, the entropy term takes over the mass term, so that
for a critical temperature we will have

F„„;„(Ts,)=0 . (4.2)

That is, the cost in energy for introducing one infinite

string is zero. In this way for temperatures high enough
there is a condensation of strings. The system goes to a
phase in which there is a condensate of strings. This en-

tails a new phase of the system.
In the case of the string solution one writes, from (3.10)

and (3.20),
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oc l n

F, . (T)=[r,(+, )
—r, (+ )]——— g g fd'k~, ( —k, )5' gk, g T " 6,

n=1 ' j=l ~n

n y Tdtr")6 (}
~n ~n

(4.3)

In the high-temperature limit ( T»w, lk l, m) the expression above depends only on the zero-momentum character
of Gr . One can then write, in this limit, Fst„„s under form (4.1) where Ms is the energy per unit length of the string,~n

I
M, —=—[r,(q, )

—r,(q, )], (4.4a)

and

oo Pl—TS(T) = — Q, g fd3ky (
—k, )5 gk, g T "G (0,0)—,y" g T "6 (0,0)L

n=1 ' j=l ~n ~n

(4.4b)

%ithin the one-loop approximation the graphs with
higher superficial divergence will dominate in the high-T
limit. The superficial divergence has index two, so that,
in the high-temperature limit one can predict the general
structure of the free energy per unit length, independent-
ly of the model, as

F„,;„(T}=M+ T'gg;(0, 0)A;, (4.5)

where A; is a constant that depends on the model, M is
the classical energy per unit length, and g, (0,0) is the ith
contribution of a graph that has superficial degree of
divergence 2.

In this way one can predict that, independently of the
model

(V —2e P'P) A= iP*VP- ,

(V+ie A) =2AP(P*P —g) .

(4.10)

(4.11)

The normalizing constant N is such that N( oo ) =1.
In order to fix the gauge we have to add to LF in (4.8) a

gauge-fixing term. In the Fermi gauge we just add a term—(1/2a)(B„A„) . We shall see that, although the indivi-
dual graphs depends on a (that is, on the gauge} the free
energy per unit length is independent of a (that is, gauge
independent).

Vortices are static solutions of the classical equations
and that have finite energy per unit length. For static
solution, the Euler-Lagrange equation associated with the
model (4.9) in the Coulomb gauge (V A =0) is

' 1/2

—gg, (0,0) A,
(4.6) By employing cylindrical coordinates (r, 8,z) and look-

ing for a z-independent solution with cylindrical symme-
try one writes

In order to give explicit examples, in field theory, of
the structure predicted by (4.5) we will work with two
models. The first model is scalar electrodynamics at
finite temperature. Its Lagrangian density is written as

A(r, 8)=—8A (r) =8—[1—F(r)],
er

P(r, 8)=p(r)e'"e,

(4.12)

(4.13)

L = ',F„.F„.+ ID„—pl-' —Xly" y
—y'v)' . (4.7)

The partition function for the theory may be expressed
as a functional integral involving the Euclidean Lagrang-
ian density Lz and imaginary times, ~=it:

Z(p)=N 'It) [dp][dA„]exp —f drd x Lz
L

P(8) =$(8+2'�) . (4.14)

The asymptotic conditions imposed by the finite-energy
requirement are

where n is the topological charge associated with the
classical solution and should be an integer number in or-
der that

X gauge-fixing terms,

LF= FF +lD Pl +—A(P P Py) A4=iAO

(4.8)

(4.9)

F(r) ~ 0,

p(r) — 4v .
f ~oc

(4.15)

(4.16)

The integral over the fields is subject to boundary condi-
tions in ~:

P(x,O)=P(x, P}, A„(x,O)=A„(x,P) .

In the high-temperature limit the graphs with highest
superficial degree of divergence can be easily identified.
So that, in the high-temperature limit the expression for
the string free energy can be written in the Fermi gauge,
as
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F„„„=——[I (P, A„)—I ($,0)]

S(P, A„)—S(pv, 0)—T
L l /

( /
/ ~ / f d~f d x(l/t/~ P~—~)

f 'd ~f d'x X„X„ (4.17)

where S is the classical action.
After the renormalization process we get the following

results, in the high-temperature limit:

6~s
m(43, +3e )f dr r(gv —

p )

(4.25)

2———T
3

3+a
I

-/' =-' 12'

e AT
12

(4.18)

(4.19)

(4.20)

(4.21)

At this temperature the cost for introducing a string in

the system is zero and one expects that condensation of
strings takes place thus signaling a new phase. As ex-

pected, the critical temperature is gauge independent.

V. FREE ENERGY OF COSMIC DEFECTS

Let us analyze the high-temperature behavior of the
free energy associated with topological defects that might
be relevant to cosmology. In this context an interesting
example will be to study the SO(10) model. This model
exhibits, depending on the symmetry-breaking pattern,
different types of defects. ' ' Consider the symmetry-
breaking patterns

T'==+:—+e 5,, (4.22)

where i,j=1,2,3. Substituting (4.18)—(4.22) in (4.17) we

get

4k+3eF„„;„=M&+ T f dr 2mr[p (r) Pv], (4.2—3)
12 o

where Ms is the zero-temperature energy per unit length
that can be written, in terms of the function p and F
defined in (4.12) and (4.13), as' '

'2 ' 2 2
1 n dF n 22Ms=2m r dr + — F p

o 2 er dr r

Fd,f„,—M —BT (5.1)

In order to prove this all we have to do is to show that
the effective action behaves like (5.1). Let us give an ex-
plicit example. The Lagrangian density describing the
SO(10) model is

SO(10)~SU(5) XZq ~SU(3) X SU(2) XU(1),
126 45

SO(10)~SU(5) X U(1)~SU(5) .
45 126

In the first case one expects' the production, at the
phase transition, of stable strings. In the second case one
expects the production, at the first phase transition, of
magnetic monopoles. In this way, depending on the
symmetry-breakdown pattern we will have the produc-
tion of different defects in the Universe.

%e will show, in the following, that independently of
the type of defect its free energy has the structure pre-
dicted by (4.5), that is

2

+ +—(2p —qrv)
dr 4

(4.24) X = —
—,', T„(G„„G")+ ,'T„(D„P) V(P), ——(5.2)

From expression (4.23) one can see that for tempera-
tures high enough the free energy of strings becomes
zero. The temperature for which this happens is

where

D„y=a„y &1y2ig [a„,y], — (5.3)
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V(y) — (T y2)2+ iI T P4 i 2T y2 (5.4) (5.6)

6„„=& I /2a''G„'~„, (5.5)

D„P in (5.3) is then the covariant derivative and V is
the potential that will lead to spontaneous breakdown of
symmetry that depends, in this model, on the parameters
a, b, and p. g is the coupling constant of vector-boson
fields.

The rnultiplet of the Higgs field P is in the 45-
dimensional adjoint representation. In terms of the fields
G„'J„, A 'i, and P'i one can write G„, A „,and P in (5.1) as

(5.7)

Let us analyze the behavior of the free energy associat-
ed with a classical field-theoretical configuration associat-
ed with a set of 45 Higgs fields P', and 45 gauge bosons

Up to one-loop approximation the free energy of the
topological defect has the structure predicted in Sec. III
that in the example that we are considering has the ex-
pansion

1.(q, A„)=S„(q,A„)+ +00000

+ 00000

I(
I)

«L

+- I]r
======+000000

+ 00000

=S„(tp, A„)——,X' (T)J dr Jd'xydy„——,II„'„(T)J dr jd'x A „'A, + (5.8)

S,i
is the classical action associated with the background field, X' ( T) can be represented graphically as

gab( T) (5.9)

whereas II",b( T) can be represented as

(5.10)
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The wavy, solid, and dashed line stand, respectively, for the gauge bosons, Higgs bosons, and ghost fields (for the fluc-

tuations we are working in the Landau gauge). 11„'„canbe identified as the polarization tensor for zero external momen-

ta. ' Following our earlier prescription (3.17), we can also write

X'"(T)=Xo +X 'r( I K; ),co; =0), (5.11)

(5.12)

First of all one notes, looking at (5.8), the appearance of ultraviolet divergences. These, however, can be treated, as
usual, by adding appropriate renormalization counterterms which are just the usual ones at zero temperature. This
means that the zero-temperature renormalization scheme suffices for getting finite expression to free energies of topo-
logical defects. Substituting (5.11) into (5.8), one can obtain the topological defect free energies of the SO(10) model:

F (T)=M ——,X' (T)f 'dr fd'x[q ', (x)q ', (x) g',—]
' —ll—„"„(T)f 'dr f d x A „'(x)A „(x)+ (5.13)

where now Md stands for the renormalized mass of the defect at the zero-loop level, X ' (T) and II„'„(T)are given in

(5.11) and (5.12), the fields g d and A „' are the classical field-theoretical configurations associated with the defect and
the ellipsis represents contributions that are not shown in (5.13).

One could go further and write down similar expression for all the one-loop graphs for the topological structures of
the SO(10) model. However, instead of doing this explicitly, we will just analyze the high-temperature limit of the free
energy. In this limit, the form (4.3) is particularly useful, since the leading power in T of series (4.3) is easily obtained.
Property (3.18) permits us to identify those contributions, which are the ones with higher superficial degrees of diver-
gence. These contributions are precisely the ones we have written explicitly.

In the high-temperature limit, the graphs appearing in (5.9) and (5.10) yield

I
'n

T= —( 4'a +720b) 5 ",
4 12

(5.14)

4 2T2 ab
I I

0 b
(5.15)

fJ
7

a ~ -' b

', g T 5' 6„„—fo—r p, v=1,2, 3,
—', g T fi' 5„„ for p, and/or v=4, (5.16)

t
0

V l 4 2 T2gabg
3 pv ~ (5.17)

—'g T 6' 5 for p v=1 2 3

——', g T 5'"5„ for p and/or v=4, (5.18)

4g2T2gabg for p v= 1,2, 3

—4g T 5' 5 for p and/or v=4, (5.19)
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10g 2Z 2fiabfi
3 PV

(5.20)

From (5.8)—(5.14), (3.11),and (3.12) we have the asymptotic expressions for X'"(T) and II„'"(T):

X'"(r)——T 2g +
24

II ab( Z.) «g 2Z.2fiabfi
PV |LI,V

+72{)g /cd
4

(5.21)

(5.22)

One obtains from (5.13)-(5.22) the high-temperature behavior

1 47a~,(Z)=M, +Z' 2g'+ '+72' f "" y y + — ' +« 'Z'f ""y g g
a=1 a=1

(5.23)

Fd( T) =Md BT— (5.24)

where 8 is the constant that depends on the classical
solution associated to the defect and Md is (in this ap-
proximation) the classical energy (per unit length or area)
of the topological defect.

The appearance of the term J d x( A '„)2 in the last ex-

pression seems to be a problem. First of all because it
seems to be not gauge invariant and, finally, because it
diverges. This implies that in order to be consistent one
has to adopt a "physical" gauge for the background field.
We take the background in the gauge 34=0. Only in
this gauge we get a finite result for the free energy of the
string. This has been discussed, in the case of the Nielsen
and Olesen string, in Ref. 16.

The conclusion is that, also in the SO(10) model one
can predict, for the free energy associated with any de-
fect, in the high-temperature limit:

fstring =LFs

Mstrlng =LE (6.1)

Hypothesis (6.1) can be understood on very simple
grounds: it means that finite strings formed below the
critical temperature are just formed above the critical
temperature but, due to their instability, have broken into
pieces of smaller sizes of length L. This hypothesis, that

M„,;„=LM„can be used for deriving time-independent

density perturbations in a very simple way.
The length of the string should depend on the tempera-

ture. One can expect that as one increases the tempera-
ture, the length of the string increases. That is, thermal
fluctuations induce the creation of strings of higher and
higher length as the temperature increases. As a rnatter
of fact we have seen that at the critical temperature even
strings of infinite length can be produced. This means
that at this temperature one should expect that

VI. APPLICATION TO COSMOLOGY L (T, )= oo . (6.2)

In the preceding sections we have shown that for tem-
peratures high enough there is condensation of cosmic
strings. For a critical temperature there is consideration
even of infinite strings.

Below the critical temperature only finite strings are al-
lowed to exist in the system. In the following we will

consider the formation of finite strings of length L and,
by making simple hypotheses, we will compute their
lengths as well as their distribution.

We will make only two hypotheses. The first one is
that the strings that are formed below the phase transi-
tion do not differ (except for the finite length) from the
strings that we have dealt with in the preceding section.
More explicitly we assume that the mass (M„„.„s), free
energy (f„„;„s), and energy (Est„„s) and other relevant

physical quantities associated with a single string can be
obtained from analogous quantities defined per unit
length, for the infinite string (M„F„E„.. . ), by just
multiplying these quantities by the length of the string
(L). That is,

=exp fd xfd pe
(27r)'

(6.3)

where Zz is the partition function associated with one
string.

The energy (E„„„s) of a string moving with velocity V,
in the nonrelativistic limit, is

string
Estrins =fstring( ~)+

2

2
—=f„„;„(T)+

string

(6.4)

The other hypothesis that we will make is that the gas
of strings is dilute. Under this hypothesis one can write,
for the partition function (Z) of the dilute gas,

s

Z =exp
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From (6.3) and (6.4) it follows that Zs can be written as
' 3/2

The energy density associated with strings whose aver-
age number is N( T) and whose mass is M„„„ is

S [ T']f
t T] ™srlng (6.5) N( T)M, t„,„

Pstring V
(6.12)

It follows from (6.5} and (6.3) that the free energy of a
dilute gas of strings [VF = —T in(ZIZ~)] will be given

by

Since N(T) is given by '

Zs
N(T)=

Zv
(6.13)' 3/2

T]fstring [ T] ™stringF= —Te
2m'

(6.6)

Although we have made use of the nonrelativistic ap-
proximation one can show that the relevant term
(TM„„„s) can be obtained without resorting to this ap-
proximation. In field theory it follows by just taking into
account the zero modes. This is shown in Appendix B.

By making use of our first hypothesis one can state that
strings of length L, in the dilute-gas approximation, have
a free energy whose expression is

' 3/2

F= —T 8 (6.7}
2m

L t TtF—
t Tt)T

L (T)M, . (6.14)

For the most favored strings, those obeying (6.9), one
gets

3M
' 5/2

T s T
Pstring 2 F(T) (6.15)

Expressions (6.9) and (6.15) are the main results of this
section.

In the high-temperature limit, as we have argued in
Sec. III, and given examples in Secs. III and IV, one can
compute L and p„„;„gexplicitly. We can write, on general
grounds,

The length L is a parameter as yet unknown. However
L can be determined by remembering that, for each tem-
perature, there will be a length L favored by statistical ar-
guments. This length L is the one that minimizes the free
energy. The system produces strings whose size can be
determined from the condition T2

F,(T)=M, BT =M,—1—
C

(6.16)

dF d F
0

dL
(6.8)

where

One can write from (6.12) and (6.13), for a dilute gas of
strings of length L,

It follows then, from (6.7), that the length of a string as
a function of temperature will be

M,
Tc 0 (6.17)

=3 T
2 F, (T)

(6.9)
Where, for the Nielsen-01esen strings, one gets, from
(4.23),

At this point we would like to comment on our expres-
sion (6.9) for the length of strings produced as a result of
thermal fluctuation. In the first place the length of these
strings tends to zero as T goes to zero. This follows from
(6.9) and expression (6.2). This is also expected on physi-
cal grounds. Finally, one can see from this expression
that at the critical temperature, for which F, ( T, ) =0,
strings of infinite length are favored. In our scheme the
critical temperature T, defined by (6.2) is the same as the
critical temperature defined by (4.2). Both schemes are,
then, totally compatible.

Let us turn now to the computation of the contrast
density due to string production as a result of thermal
fluctuations. The contrast density associated with any
type of defect is defined through the expression

For F, ( T) given by (6.16) one gets

L(T)=—3 T
2 T2

M 1—
S

C

with T, defined in (6.17) and

=3 3
pstring( T}=

2 4~8

3/2
T4

T2 '"
I—

T2
C

B = n J r dr [/V p(r)] —.
6 o

(6.18)

(6.19)

(6.20)

6P Pdefect

P Ptotal

Pdefect

Pdefect Pelem part
(6.10}

Since the contribution of the elementary particles can
be written in terms of the number of degrees of freedom
fermionic (NF) and bosonic (Ns) as

For strings one then has

6p Pstring

P Pstring Pe]em part
(6.11)

petem ptttt ( Na + ,
' N„)T—

30

The contrast density will be given as

(6.21)
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5p

P 2 5/2

1+ (N+'N ) 1—
0 '

7 C

' 3/2

(6.22)

For T below T, and for NB+ —', Xz))1 the contrast
density is small and can be approximated by

2
' 5/2

(N+ N) 1
T 2 4me

30 ' T 3 3
C

' 3/2

5/2

9(Ns+ ', NF ) 1——
T,'

(6.23)

For the SO(10) model one can write (for T & T, ), tak-
ing the effective degrees of freedom of the minimal SU(5)
model,

NB+ 8N~=160. 75 .

So that for T- —,
' T, one gets

(6.24)

-6X10 4. (6.25)

This result is compatible with the bounds imposed by
the anisotropy of the background radiation.

Another interesting result of this section is that 5plp is
almost independent of temperature for T & T, and can be

approximated by

p
p 9(Ns+ ', NF)— (6.26)

VII. CONCLUSIONS

In this way we showed that the density contrast is the
scale-invariant (Zel'dovich) spectrum.

The effect of topological defects on phase transitions in
the early Universe have been analyzed also by Copeland,
Haws, and Rivers. Their approach for getting the sta-
tistical properties of a gas of strings is different from ours.

ical temperature.
The temperature for which the free energy of the string

becomes zero is critical. At this temperature there is
condensation of strings since the cost in energy for intro-
ducing such an object is zero. The condensation is en-
terely due to thermal effects. Thermal fluctuations can-
not be ignored in any string-driven mechanism responsi-
ble for the large-scale structure of the Universe. We have
developed a very precise scheme for determining the free
energy of topological defects and applied this scheme to
the computation of the critical temperature in the high-
ternperature limit. The critical temperature is relevant
because, in our picture, at this temperature, large
(infinite) strings break down into smaller ones.

Within the dilute-gas approximation one can get ex-
tremely simple expressions for the length of strings and
their density as a function of the free energy per unit
length.

In temperatures just below critical, one gets very sim-
ple expressions for their lengths and for the density con-
trast. In particular we get, for any renormalizable model,
within the semiclassical approximation the result

5p 1

2 5/2
' ' 3/2

1+ (N +'N ) 1—
30 B g F T2 3 3

C
L

This expression is the main result of our paper. In the
first place because it shows practically no dependence
with temperature (or time). That is, for T (T, one can
write

p
p 9(Ns+ ', NF)—

One gets in this way not only the scale-independent
Zel'dovich spectrum but also a totally compatible density
contrast for models for which NB+ —8N+) 100, that is, a
Zel'dovich spectrum with the proper order of magnitude.
This is the case of the SO(10) model.
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In this paper we have developed further an alternative
method to the study of phase transitions in field theory at
finite temperatures. The distinction from the usual ap-
proach, based on the effective potential, is that we deal
with space-time field-theoretical configurations. Our
analysis is based on the free energy associated with topo-
logical defects. In this context, the critical temperature is
the one for which the free energy goes to zero.

Up to the one-loop level and in the high-temperature
limit, one can easily compute the leading contribution to
the free energy of strings. In the one-loop approximation
only graphs with superficial degree of freedom of order 2
contribute. There are only a few of them in this approxi-
mation. We have illustrated how to compute the free en-
ergy of the Nielsen-Olesen string and the strings of the
SO(10) model. We give an explicit expression for the crit-

APPENDIX A: GENERATOR OF SO(10)

For the SO(10) model the 45 generators are given by

~'~= —(r'r~ —r~r') .
1

21
(Al)

I-, =o, x~, x1X1xo, ,

I 2=o, Xo2X1Xo3Xo2,

r3 cT] Xo'J X1Xo2X(73,

r,=~, x~, x 1 x~2X1,
I 5

—oIXo)X1Xo2Xo)
(A2)

1 ' are the generalized Dirac matrices constructed from
the Pauli matrices o. I, o.2, o.3.
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I 7=cri Xo3Xcri X1X1,
r, =, x&3XO2X1X1,

I 9=0
&
Xa3X03X1X1,

Zi
Z =Z "exp

p
(81)

free energy of closed strings with radius R. By making
use of the dilute-gas approximation, the partition func-
tion is given by

Fip02X1X1X1X1 ~

I, obey the Clifford algebra

l, r, +r, r, =2s,, t,j =1, . . . , 10 .

where

Z'=e ' det '"[—V'+ V"(P )]

(A3) and

(82)

[ v ki] —'(&k&jl+~il&;k —~;i~,~ —~)k~;i) (A4)

APPENDIX 8: ZERO-MODE CONTRIBUTION

We will develop in this appendix an alternative way to
obtain expression (6.6). We will make use of the semiclas-
sical expansion as an approximative method to obtain the

I

The commutations relations of the 45 generators of
SO(10) are given by

Z 1 ~Did t
—I/2[ P + V«(y )] (83)

VF= —Tln Z
Zp

(84)

and treating separately the zero eigenvalues, one obtains,
from (81)—(83),

In Eq. (82) pv is the vacuum of the theory, and $D, in

(83), is a field-theoretical configuration describing a topo-
logical defect at rest.

Letting

S($D) det'[ —t)' + V"(pD)]F Tz+1
2m det[ —V + V"(4v)]

[S(pD ) —S(QV)]D (85)

S(pD)F= —T'+' exp( 13fD ), —
2' (86)

where S(PD) is the classical action associated with the
topological defect and fD the free energy of one defect.

where the prime indicates that the zero eigenvalues of
—V + V"(PD) must be omitted from the determinant
and z is the number of these eigenvalues, which in this
paper is three (we are working with tridimensional
theories).

From (6.6) and (6.7) we obtain, in the high-temperature
limit,

M„„„gS [li)s] =

For finite strings z=3 since we have three translational
zero modes. From (86) one gets

3/2

F
TM$ fstringe
277

(87)

That is another way to derive (6.6).

Within the finite-temperature scheme and for the
string,
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