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Model-independent determination of K-matrix poles and residues in the h, (1232) region
from the multipole data for pion photoproduction
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Using only the analytic structure of the E matrix and the assumption that the Compton-
scattering amplitude is small compared to strong and electrostrong amplitudes, we extract the pole
position and the residues for the resonant multipoles, in a model-independent and background-free
fashion, directly from the experimentally obtained multipole data base in the 5(1232) region, posing
a challenge for QCD-inspired hadron models.

I. INTRODUCTION

Feynman, ' in his widely admired Caltech lectures,
Photon-Hadron Interactions, puts the advantage of prob-
ing hadrons with photons in his opening sentence: "One
very powerful way of experimentally investigating the
strongly interacting particles (hadrons) is to look at them,
to probe them with a known particle; in particular the
photon (no other is known as well). " He then goes on to
contrast photons with hadronic probes, and his
enthusiasm in favor of photons becomes evident. In his
seventh lecture in this series, he is examining the
difficulty of analyzing the resonance excitation, and poses
the following question.

"How much is resonances and how much is back-
ground? Can the background below a resonance be sim-

ply tails of other resonances? . . . How big is the tail of a
resonance?" He adds as an answer to the last question:
"Impossible to answer except arbitrarily. " It is the first
of these questions that we shall be concerned with in this
paper. We shall try to answer it in one specific example,
that of exciting the b, (1232) resonance.

There is considerable topical interest in the existing
experimental data base on the photoproduction of
mesons from nucleons in the resonance region and ex-
traction of electromagnetic transition amplitudes for
various nucleon resonances, in the wake of its qualitative
improvements possible in newer accelerators under con-
struction, such as the Continuous Electron Beam Ac-
celerator Facility (CEBAF). The analyses of data are
most complete for the first resonance region, 6(1232),
and many multipole sets are available in this domain.

A fundamental issue connected with Feynman's earlier
cited question, which has not been addressed in the litera-
ture so far, is whether we can extract any model-
independent information from this vast electromagnetic
multipole data base, in contrast with the model-dependent

II. E-MATRIX FORMALISM

Consider the mX scattering and photoproduction of
pions in the b (1232) region. Let the scattering amplitude
be represented either by the E matrix or by the T matrix,
the subscripts of which indicate the process it is describ-
ing. Assuming the E matrix to have a rapidly varying
resonant piece and a smooth "background, " indicated
below by the first and second terms on the right-hand
side of Eqs. (la) and (lb), we have

K =- +D,C
M —W

(lb)

where 8' is the center-of-momentum (c.m. ) energy, M
gives the location of the K-matrix pole, and A, B,C,D are
smooth functions of W. Model dependence will arise in
determining A away from W=M, as is seen in Taylor ex-
panding A ( W) about M:

A (M) dA
M —W dW'

+B(M)+, (2)

separations of resonance and background contributions'
to the multipole amplitudes. It is this issue that we shall
address here. The central result of this paper is to show
that we can determine, from the available multipole data
base, obtained by the direct energy-independent analyses
of experiments on pion photoproduction on the nucleon
targets from threshold through the b, (1232) energy re-
gion, the K matrix -pole position and residues for the reso-
nant multipoles in a model independe-nt and background
free fashion. The only assumptions that need to be made
are on the analytic structure of the K matrix and the
smallness of the Compton-scattering amplitude compared
with strong and electrostrong amplitudes.
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so what we call "background" in this paper may also in-
clude "resonant" contributions, as it has been stressed. '

The T and K matrices are related to each other by

the K-matrix pole for the ym. reaction:

A
(ImT~ )„ C

(loa)

T =K(1 i—K) '=K(1+iT) . (3)

Thus, ignoring electromagnetic corrections, T „ is given
by (lb) and (3):

d ReT „
W=M

=A . (lob)

C+(M —W)D
M —W i —[C+(M —W)D)

So at the K-matrix pole of the resonance at %=M, we
obtain the results

ImT =i, (5a)

(ReT )= —1/C . (5b)

From the second of Eqs. (3), we can write an expression
for the pion-photoproduction T matrix:

(6)

Equations (10a) and (10b) are the central relations of this
paper, both of which are free from the effective back-
ground contributions 8 and D.

It is worth stressing the fact that strong-interaction
physics, represented here by the residue C, drops out in
the ratio of two electromagnetic multipole residues.
Thus, this ratio should have fundamental significance in
comparing with hadronic models, which, in most cases,
ignore the treatment of the final-state interaction of the
resonance, responsible for its width. Thus far, all analy-
ses of resonance multipoles are plagued by the model
dependence of the treatment of strong interaction. This
point is fundamental to the raison d' etre of this analysis.

where Kz is the Compton-scattering K matrix. For the
b, (1232) resonance, the additional channels indicated by
the ellipsis in Eq. (6} are absent. Neglecting the
Compton-scattering amplitude K, compared with
strong and electrostrong amplitudes, Eq. (6) simplifies to

Tr Kr (1+iT ) (7)

Denoting the denominator in the right-hand side of Eq.
(4) by E, we get the following expression for T

8T =—+(M —W) —.
P 7T (8)

We can now write down the expressions for the real and
imaginary parts of the T matrix:

ReT [ A +(M —W)B](M —W)

(M —W) +[C+(M —W)D]

[A +(M —W)B][C+(M—W}D]
(M —W} +[C+(M —W)D]

(9)

In terms of the m¹cattering partial-wave amplitudes,
fi+= T /q, and for the pion-photoproduction multipole
amplitude, we can write the relation T~ =&qkM~, q
and k being pion and photon c.m. momenta, Mz being
the y~ multipole amplitude. Additional angular momen-
tum factors are also present in the relation between T~„
and M, but are of no importance here. We shall in-

clude these factors when comparing with amplitudes
given by the Particle Data Group (PDG).

Let us now recall that ReT and ImT are given as
data bases from the analyses of many previous experi-
ments involving differential cross sections, photon asym-
metries, etc. Given these, what can we learn from them
in a model-independent background-free way? To answer
this basic question, the central objective of this paper, we
first note that the quantity ReT& vanishes at 8 =M,
while ImT cannot uanish at 8'=M, unless A =0. We,
thus, have the following two relations for the residue of

III. ANALYSIS OF DATA: PROCEDURE

In the 5(1232}resonance region, the multipoles of in-

terest are the E&+ and the M&+, both for isospin —,'. It
should now be easy to get the K-matrix residues for the
E&+ and M&+, using Eq. (10a). One merely determines

ImE, + and ImM, + at W=M, which according to (2) or
(Sa) is just the energy at which the P33 phase shift passes
through 90'. Recall that tan5=K„„, where 5 is the P»
phase shift. Our knowledge of the K-matrix residue is
currently limited by how well we can evaluate ImT&„or
(d/dW)ReT~ at W=M. We are tacitly assuming here
that we can neglect higher-order electromagnetic correc-
tions to (10a) and (10b).

There are, in practice, a few difficulties in using (10a)
or (10b) to get the K-matrix residues. First, the mul-

tipoles are not already available from experiments at
8'=M, and one must interpolate the data to 8'=M.
This introduces additional uncertainties in the determina-
tion of the residues. The second problem is that the ex-
tant multipole data sets are often in poor statistical
agreement with one another, making an estimate of the
error on the residues diScult. How we handle this prob-
lem will be discussed below.

We have used two different methods to analyze the
multipole data sets of Berends and Donnachie (BD),
Pfeil and Schwela (PS), Grushin et al. (GRU), Miroshni-
chenko et al. (MIR), Get'man et al. (GET), and Suzuki
et al. (SUZ). In the first method we use a Lagrange in-
terpolating function for both (10a) and (10b); in the
second method we assume some energy dependence for A

and B in (la) and do a two-parameter fit to the ReEi+
(ReM&+ } and to the ImE&+ (ImM&+ ), in separate fits.
Although the real and imaginary parts of the multipoles
are related by Watson's theorem, fits to the real and
imaginary parts will not necessarily give the same results,
since the errors are not related by Watson's theorem, as is
discussed below. We analyze BD's data that are in the
range 320 MeV ~KL ~ 360 MeV (5 points), KL being the
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photon laboratory energy. For all other data sets, we an-
alyze the data in the range 300~Fr 400 MeV (6 points
each for PS, MIR, and GET, and 5 points each for GRU
and SUZ).

As a rnatter of completeness, we recall that the
Lagrange interpolating function is an (N —1) degree po-
lynomial that passes through all N data points and has
the form

N N

L(W)= g L; g (W —WJ) g (W; —WJ)

and its derivative is

= gL; g g (W —WJ)
i =1 kAi jPiAk

ff (W; —WJ)
jul

(12)

Here L, is the data point at energy O', In addition to the errors arising from the interpolation function, the mul-
tipoles also have an error cr, from which we can estimate the error o r for L and o z ~ for dL Id W:

2

o z = g [L ( W) ]cr;
l

(13)

2 =gg)— 8
dL;

dL(W)
d8' (14)

Other choices of interpolating functions are of course possible, and this is the reason for our second method of
analyzing the data. If the E-matrix residue for the E,+ were zero, we find that (12) would not give zero, although it
would be zero within the quoted error. This is tested by taking in (la) some functions a ( W) and b ( W) that reproduce
the shape of ReE, +, but has a (M) =0. In units where the error obtained from (14) is -2, we find the residue obtained
from the slope of ReE&+ [Eq. (12)] to be —l. On the other hand, ImE&+ [Eq. (11)]gives -5 X 10 3 in the same units.

The explicit functional form for a ( W) and b ( W) that we have used is

+B cos5e'qk A i5

M —8' (15)

where Mz is the nucleon mass (938.9 MeV), g is either the M, + or the E,+, and A and B are to be determined from
minimizing the y . This form is particularly simple, and we may analytically solve for A and B that minimize the g; in
this case there is a unique minimum. Furthermore we may find analytic expressions for the g +K contours in the A, B
plane. Denoting

fz(W, )= cos 5I(M —W;), fz(W, )=
z

cos5sin5/(M —W, ),
N ~N

g~(W;)= cos 5, and gz= cos5sin5,
N N

we have, from the real part of the multipole,

A=

L;gq(W;)

g 2 X
l gl

g~(W;) L,f~(W;)
g 2

l

(16)

fz(W )g~(W;)
X ~ X

l +f l

f„(W;) L;g„(W;)
g2

l
(17)

where L; is the experimental multipole at energy W;, g; is the error, and

f~(W;)g~(W;)D=
g 2

gR(W)
X

l. gl

f~(W, )
(18)
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Similar expressions hold when evaluating the imaginary
part of the multipole with ftt ~f, and g~ ~g, .

Defining 6 A and 58 as the changes in A and B that
increase y from the minimum to y +1V, we find

X=6 A o A+20 ABAAEB+68 a~,
~here

(19)

and

~2B

+AB

f (W, )

0 2

g (W, )

0 2
l

f ( W;)g(W;}

g 2
l

(20)

(21)

(22)

g=Ne' (23)

Here, f and g refer to either fz and g„or ft and gt.
Having described our methods used to analyze data,

we now discuss the data we analyze. As we wish to ob-
tain a reasonable estimate of the errors of the residues, we
are faced with the problem that there is often poor sta-
tistical agreement among the multipole data sets. To give
an extreme example, consider the value of the real part of
the amplitude M &+ at KL =350 MeV: BD report
ReM&+ = —4.33+0.02, GET give ReM&+ =4-43+0.012,
and MIR have ReM&+ = —2.307+0.004. Some of this
discrepancy can be traced to the different sets of phase
shifts used by different authors.

The quantity that is normally fitted to the data is

where N is real, but can be positive or negative, since
Watsons's theorem only fixes the phase to within a multi-
ple of ~. Our assumption is that the listed values of the
errors, 5(ReM, + ) and 5(ReE,+ ), do not include any er-
ror from the phase shifts and thus b,(Re()=(bN}cos5.
Thus,

5(Re()
cos6

(24)

In our example above, we obtain, using the phase shifts in
Table I, %=35.7+0.2 for BD, %=33.401+0.09 for
GET, and N =33.92+0.06 for MIR, which are in better
agreement, in the sense defined below, than the corre-
sponding values for ReM, +. There is, however, still
large disagreement among these values.

Our strategy for dealing with the errors is the follow-
ing. We first obtain Nz and NM from (23) and b,NM from
(24). We then determine the scaling factors Sz and SM as
defined by the PDG (Ref. 10) (Appendix). The errors

KATE and ELM for all data sets" are then multiplied by
SE and SM, respectively. Finally, we obtain b,(Re) and
6(lm) by taking an error of one degree for the phase
shifts. Although this error is somewhat larger than er-
rors quoted in an individual phase-shift analysis, ' it is
somewhat smaller than the spread of phase shifts in Table
I. Thus, we have

b.(Re()=[(b,N) cos 5+N sin 5(65) ]'

b,(lmg)=[(EN) sin 5+N cos 5(b,5) ]'
(25)

(26)

where b,N includes the scaling factor and b,5=0.017 rad.
Note that in general b, (lmg)/5(Re()X(lmg)(Re(), and
thus fitting the real and imaginary parts will in general

TABLE I. Phase shifts used in this analysis for different data sets at various photon laboratory ener-

gies KL are given here. A blank entry means that the authors do not give the multipole at this energy.
GET have used the phase shifts of Ref. 5 and MIR and SUZ have used the phase shifts of Ref. 16. BD,
PS, and GRU provide either the phase shifts used in their analysis or both the real and imaginary parts
of the multipole. It should be stressed that consistency requires the use of phase shifts specific to each
data set, and not the latest phase shifts available.

(MeV)

300
310
320
325
330
340
350
355
360
370
375
380
390
400

BD

57.45
66.64
75.81

81.98
90.38
96.97

105.49
110.69

115.14
118.95
122.23

PS

56.49

73.12

96.00

103.72

114.78

122.34

GET
(Ref. 5)

56.70

74.51

97.62

103.7

113.5

120.7

MIR
(Ref. 16)

53.6

69.5

93.9

100.7

111.8

120.5

GRU
(Ref. 9)

62.91

75.51

97.76

107.29

123.30

SUZ
(Ref. 16)

53.6

74.6

97.3

109.5

120.5
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TABLE II. Weighted averages for the E,+ ( —' },N&, and the M 1+ { 2 ), N~, at different photon labora-

tory energies EL. S& and S~ are the scale factors defined in the Appendix. N& and N~ are in units of
10 'm ', m being the pion mass.

KL
(MeV)

300
320
350
360
380
400

NE

—1.95010.035
—1.005+0.048
—0.21520.036
—0.026+0.042
+0.360%0.045
+0.63220.046

2.9
2.1

1.7
2.1

2.4
2.4

38.446+0.048
40.640+0.044
34.119+0.046
33.81420.048
29.107+0.051
25.646+0.042

2.1

9.1

9.7
8.3
3.5
3.8

IV. RESULTS OF OUR ANALYSIS

In Table III we give the results for yE and yM defined

d
yM = ReM, +dW w

(27a)

d
yE ReE, + (27b)

dW w

where g is in units of 10 MeV ' m „' (we use fi=c =1,
m =139.6 MeV), and WE(WM), in MeV, is the energy
at which ReE, + (ReM, + ) goes to zero according to the
interpolating function, Eq. (11). In principle we should
expect WE and WM to be the energy at which 5=90', and
therefore a comparison of WE and WM is a test of the ac-

give different results.
The values of SE and SM are given in Table II. We

have calculated S& and SM where the data sets overlap
the most. Thus, at EL =300 and 400 MeV, all data sets
have been used; at I(L =320, 350, and 380 MeV, all data
sets except SUZ have been used, and at It'I =360 MeV all
data sets except SUZ and GRU have been used. At other
energies we simply linearly interpolate the values of SE
and SM in Table II. It is worth pointing out that
SM=9.7 at EL =350 MeV, but calculating the scaling
factor for ReM&+ at EL =350 MeV gives 99.7.

curacy of the interpolating procedure. We find that WM

agrees with the resonant energy ( =energy at which
5=90') to within 0.5 MeV for all data sets except SUZ
~here the agreement is within 2 MeV. Also, WE and
8'M agree to within two MeV, except for GET and PS,
where there is a 5-MeV difference. Since
5 W/ W=0. 5%, we expect b, W to have a negligible efFect
on AyE and hyM, the errors of gE and yM, respectively.

In the tests we have done with the interpolating func-
tion, we have found that interpolating yE is accurate to
within 0.3X10 MeV m and yM is accurate to
within 0.02X10 MeV ' m '. In both cases these un-
certainties are small compared to the errors propagated
from the data via the error of the derivative in Eq. (14).
Thus the errors listed in Table III include only the error
propagated from the data. Except for the data set of
SUZ, the values of gM are in good agreement. The values
of yE obtained from the different data sets are also in

good agreement, but the errors are very large. We find

unweighted averages of yz =(7.85+2.55) X 10 and
yM= —0.743+0.037; if we exclude SUZ from the aver-
ages, we obtain yE =(6.88+2.68) X 10 and

gM = —0.667 0.047, all in units of 10 MeV ' m „'.
In Table IV we give our results obtained from the

imaginary part of the multipoles using (11) and (13).
ImE, + (M, + ), in units of 10 m, is evaluated at WE
( WM) taken from the appropriate row in Table III. We
also give the energy W (in MeV) at which ImE&+ is es-
timated to be zero. We always obtain W) Wz, suggest-

TABLE III. The slopes of El+, yE, and the Ml+, y, at the resonant energy in units of 10
MeV 'm '. These results are obtained from Eqs. (12) and (14). The data sets are designated in a

manner explained in the text. 8'E ( 8'~ ) is the energy at which ReE&+ (ReM&+ ) vanishes according to
the interpolating function.

Data set

BD
MIR
GET
PS
QRU
SUZ

yE (10 )

4.91+5.71
6.83+3.86
7.68+5.69
5.89+18.59

12.06+11.13
17.35+8.39

1232.58
1236.63
1237.51
1238.44
1233.77
1236.10

—0.667+0.084
—0.662+0. 100
—0.635+0.142
—0.693+0.090
—0.642+0. 147
—0.882+0.063

1232.49
1236.83
1232.63
1234.77
1231.49
1234.63
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TABLE IV. ImE, + and ImM, + at resonance in units of 10 'm ' for the various data sets as abbre-
viated in the text, obtained from Eqs. (11)and (13). %is the energy, in MeV, at which ImEi+ vanishes
according to the interpolating function.

Data set

BD
MIR
GET
PS
GRU
SUZ

ImE i+

—0.219+0.328
—0.377+0. 162
—0.143+0.202
—0.166+0.243
—0.643+0. 155
—1.037+0.443

1238.2
1248.8
1253.9
1247.6
1257.8

& 1260

ImM l+

38.2+1.4
33.8+0.9
35.2+1.8
38.1+3.1

38.3+1.8
57.2+1.7

ing that ImE, +(Wz)%0. For some data sets, however,
ImE, +( Wz) has a big error, and is consistent with zero.
The values of ImE, + are in good agreement, but the er-
rors are large. We find that IMlf, + for SUZ is in
disagreement with the other data sets. Even if we ex-
clude SUZ, there is still some inconsistency among the
remaining data sets for both the ImE, + and Imllf, +.
Excluding SUZ, we obtain weighted averages
ImE]+ = 0.379+0.097 and ImM']+ =35 ~ 79+0.99
where the error on ImE, + has been scaled by 1.1 and the
error on ImM&+ scaled by 1.6. Including SUZ, we get
for ImE~+ 0.414+0.103, with a scaling factor of 1.2.
Our tests show that the interpolation of ImE, + is accu-
rate to within 10/o and ImM&+ is accurate to within
about l%%uo. %is accurate to within 0.5 MeV.

We now turn to our results of the fits using (15). In
Table V we show the results for Az (10 MeVm„')
and Bz (10 m '

), obtained by fitting the real and imag-
inary parts of the E,+. In Table VI the results for A~

and 8, obtained from the M&+, are given. Also given
in Tables V and VI are the parameters cr „(10
MeVm '), cr~ (10 m„'), and rr„~ (10 MeVm„),
which define the constant y contours in the A, B plane
[Eqs. (20)—(22)]. The additional scripts E or M denote the
results for the E,+ or M&+, respectively. O. „ is the
amount A needs to be changed in order to increase the y
from its minimum value, y;„, to g;„+1, while keeping
8 fixed, and is taken to be the error on A. The quantity
given in the last columns of Tables V and VI is the y per
degree of freedom, yD„.

The yDF in Table V are generally quite small indicating
that (15) is a good parametrization of the E,+ in this en-

ergy region. The results obtained by fitting ReE&+,
Table V (top), are very close to those obtained by fitting
ImEi+, Table V (bottom). From ReE, +, we get an aver-

age of Az, A = —504.7+89.8, where the error has been
scaled by 2.5, and the ImE, + gives Az = —515.9+92.0
(scaling factor S =2.7). The background parameter ob-

TABLE V. Results for the resonance parameter A& and the "background" BF for the El+ obtained
(a) by fitting ReE&+ and (b) by fitting ImE&+. Az and o.

& are in units of 10 ' MeVm ', Bz and ozE
are in units of 10 m ' and o &z is in units of 10 MeV m . o „,o z, and o &z define the g con-

E E E E
tours in the ( Az, 8& ) plane (see text). y» is the y per degree of freedom.

Data

BD
MIR
GET
PS
GRU
SUZ

Ag

—174.4
—468.8
—534.4
—267.9
—720.3

—1258.0

137.7
55.7
64.1

125.5
126.5
179.7

(a)
—33.4
—34.4
—32.6
—23.1

—26.3
—35.2

o'g
E

11.8
2.8
3.1

9.9
3.8
5.8

o' aaE

—4903
—438.7
—630.6

—2586
—575.8

1633

2
XDF

0.001
2.2
2.4
0.72
0.11
0.56

BD
MIR
GET
PS
GRU
SUZ

—177.1
—456.0
—546.6
—281.9
—797.5

—1138

126.7
52.3
66.6

109.2
95.9

157.5

(b)
—33.4
—34.3
—32.6
—23.3
—29.9
—38.3

11.8
2.8
3.1

9.5
3.6
5.6

—4893
—431.1
—757.5

—1993
—688.8

1772

0.002
2.4
2.4
0.69
0.77
0.81
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TABLE VI. (a) Results for the M&+ resonance, parameter and background, A and B~, respective-

ly, obtained by fitting ReM&+. Symbols are as in Table V, except they now refer to the M&+ multipole.
(b) Results for the Ml+ resonance parameter and background obtained by fitting ImM&+. Symbols as
in (a), but referring to the M, + multipole, hence M replacing E.

Data 2
XDF

BD
MIR
GET
PS
GRU
SUZ

33 150
32 930
34250
33 760
39 480
33 670

1 431
483
527

1 649
1 456

565

(a)
434.0
250.6
191.4
261.7
290.9
255.9

101.6
13.8
14.5
14.5
33.3
14.9

—361 500
—15 800
—15 170

—122 550
—53 160
—21 740

0.57
0.79
0.50
2.58
0.90
5.47

BD
MIR
GET
PS
GRUP
SUZ

32 570
31 810
34 100
33 200
37 060
36 350

534
168
206
300
582
270

(b)
367.5
237.9
197.1
257.8
150.8
293.1

48.3
6.0
6.5
8.8

30.2
17.1

—143 300
—1 728
—2 901
—4 727

—43 080
—5 273

5.85
12.9
4.37

12.4
7.4

74.9

E ( C}3g2 16Mq W

+E

1/2

(29)

also

1/2

M=i M (M)~C ™"
1+ (30)

1/2

(31)

and fina1ly

tained from ReE, + gives BE=—32.0%1.7 (S & I, all
data sets} and ImE, + gives BE= —32.9+1.7 (S & 1, all
data sets).

In Table VI (top}, we see that yD„ is less than one ex-
cept for the data of SUZ and PS, casting doubt on the use
of (15} for fitting ReM, + with these data sets. There is
no conflict with the fact that (15) does not give a low yDF
to the ReM&+', the relative errors are larger for ReM&+
than for ImM&+. The fits to ReM&+ give the averages
Ast =33 786+570 (S =2) and Bst =243.2%14.4 (S =2),
where all data sets have been included. Despite the large
yDF, the results in the lower part of Table VI are general-

ly in good agreement with the corresponding results in
the upper part of Table VI. The averages in the lower
part of Table VI, including all data sets, are
3~=33 442+762 (S =7.2) and B~=229.8+13.8
(S =3.6).

In Table VII we give a summary of our results in a
form that makes a comparison of the different methods
easier. %e first define

1/2

( ~)3/2 I 6Mq tr
+M

16m.q Mk

3M~
(32)

1

&c
16mq Mk

3M~
(33)

The values we use for C are obtained by using (12) to
evaluate (5b) for each set of phase shifts. We find
C =57. 17 for BD, C =57.67 for MIR and SUZ,
C=59.13 for GET, C=54. 12 for PS, and C=61.24 for
GRU, all in MeV '. The uncertainty in C, which from
the spread of these numbers is about 5%o, has not been in-
cluded in the errors listed in Table VII. This additional
error would have negligible effects on the results for E,
and would have a small effect on the error of M except in
those cases where the error is on the order of 5%. In
those cases the error would increase roughly a factor of
v2.

The values of E and M are in units of 10 GeV
and E/M=EMR is given in percent. The EMR is in-
dependent of C. This is a very important point: the un-
certainties of the strong interaction in the pion nucleon-
Jinal state, arising from the Is, decay, drop out of the EMR,
a situation unique to this analysis, as we mentioned ear-
lier. The rows in Table VII are labeled according to the
method of analysis used, interpolation (Int) or fitting
(Fit), and whether the real (R) or imaginary (I) part of
the multipole has been analyzed. In most cases the errors
and E and M have been scaled by the appropriate factors
discussed above. In particular, for E, the scaling factors
are 1.2 for (Int, I), 2.5 for (Fit,R ), and 2.7 for (Fit,I}. For
M, the scaling factors are 1.6 for (Int, I), 2 for (Fit,R ), and
7.2 for (Fit,I). The scaling factor is 1 for (Int, R), and
SUZ has been excluded in calculating the scaling factor
for (Int, I).
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TABLE VII. Results for M and E [Eqs. (28)—(33)] in units of 10 ' GeV '~', and the ratio E/M,
EMR. The results are classified first by author, then by the extraction method, interpolating (Int) or
fitting (Fit), and finally by whether the real (R) or imaginary (I) part of the multipole was analyzed.

Data

BD

Method

Int
Int
Fit
Fit

RorI
R
I
R
I

—2.11+2.46
—1.65+2.96
—1.53+3.03
—1.56+3.00

287+36
288+17
291+25
286+34

EMR (%)

—0.74+0.87
—0.57+ 1.02
—0.53+ 1.98
—0.55+ 1.06

MIR Int
Int
Fit
Fit

R
I
R
I

—2.97+1.69
—2.86k 1.48
—4.17+1.25
—4.06+ 1.27

290+44
256+11
293+9
283+11

—1.02+0.60
—1.12+0.58
—1.42+0.43
—1.43+0.45

GET

PS

Int
Int
Fit
Fit
Int
Int
Fit
Fit

R
I
R
I
R
I
R
I

—3.49%2.58
—1.10+1.86
—4.84+1.45
—4.95+1.62
—2.34+7.38
—1.22+2. 14
—2.53+2.95
—2.66+2.78

288+64
270+22
300+9
299+13
275+36
280+36
310+30
305+20

—1.21+0.93
—0.41+0.69
—1.61+0.48
—1.66+0.54
—0.85+2.68
—0.44+0.77
—0.82+0.95
—0.87+0.91

GRU Int
Int
Fit
Fit

R
I
R
I

—5.76%5.27
—5.02+1.45
—6.17+2.70
—6.83+2.21

306+70
299+22
333+24
312+35

—1.88+ 1.77
—1.67+0.49
—1.85+0.82
—2.19+0.75

SUZ Int
Int
Fit
Fit

R
I
R
I

—7.57+3.66
—7.85+3.35

—11.31+4.05
—10.23+3.83

385+28
433+21
299+10
333+17

—1.97+0.96
—1.81+0.78
—3.78+1.36
—3.07+1.16

A3~2=( —254+11)X10 GeV'~, in good agreement
with those entries. Note, however, that the entries in the
PDG listing are not necessarily the same as A&&2 and

A3&2 defined here. Also, the results in the PDG (Ref. 6)
listings for A, &2 and A3/p are from energy-dependent
multipole analyses, whereas A, &2 and A3/2 obtained here
are from an analysis of the energy independent -multipole
analyses.

TABLE VIII. Final estimates of F, M, the EMR, and the
weighted average (SUZ has not been included in the average for
M and the EMR). E and M are in units of 10 ' GCV

EMR (%)Data

—0.59+1.01
—1.04+0.58
—0.80+0.98
—0.79+ 1.08
—1.88+0.88
—2.25+ 1.02

289+26
280+30
286+30
278+38
313+30
409+35

—1.7+2.9
—2.9+1.6

BD
MIR
GET
PS
GRU
SUZ

—2.3+2.8
—2.2+3.0
—5.9+2.7
—9.2+4. 1Aiy2= &(M+3E)q A3yp= (M E) . (34)—

2

The results obtained for E and M using the different
methods on a given data set generally agree within the er-
ror bars. The notable exception is the M obtained from
SUZ's data. We see that the interpolation gives quite
different results than the fitting procedure; however, the

yD„ is large for the fits. All data sets give E & 0, although
the E's obtained from BD and PS are consistent with
zero. If we had not scaled EN+, the error on E would be
roughly a factor of 2 smaller. For M, the error would
have been 3—6 times smaller depending on the data set.

In Table VIII we summarize the results of Table VII
and provide final estimates of E and M for each data set,
as well as some final average E and M. We take the un-
weighted average of the values within a given data set,
but do not include the fitted results if yD„~ 1. (See Tables
V and VI.) The average is weighted and the average M
(and hence EMR) does not include the data of SUZ. Our
final results are E=(—3.2+1.0)X10 GeV '~, M
=(290+13)X 10 GeV ' EMR=( —1.07+0.37)%%uo.

We may also make a comparison with the PDG listings
by defining

We obtain A, zz =( —140+7)X 10 GeV '~~ and Average —3.2+1.0 290+13 —1.07+0.37
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V. SUMMARY AND CONCLUSIONS

E =( —3.2+1.0) X 10 GeV

M =(290+13)X 10 GeV

and

EMR = ( 1 07+0.37)%%uo (35)

The most important point of this analysis is the elimina
tion of the uncertainties coming from the theoretical at
tempts to model the contributions of the background, thus
at least partially answering one of Feynman's questions'
that we quoted at the onset for one specific case. At the
K matrix pole, th-e residues shown in (35) are independent
of the uncertainties coming fram the effective "back
ground, " contributions B,D in Eq. (1), and thus contain
information on properties of the three-point function in-
volving the photon, nucleon, and the resonance. The ra-
tio, called EMR in (35), is independent of the physics of
the strong interaction in the final state into which the res-
onance can decay. Thus, the uncertainties coming from
the treatment of the final-state interaction, which results
in the extraction of the EMR, are avoided. The negative
value of the ratio is predicted in a variety of models. ' In
quark model, this arises as the nucleon and the delta pick
up "deformed" configurations. It remains to be under-
stood if the conventional hadron models actually predict
the K-matrix residues.

We can use Eq. (15) and extrapolate it to obtain the T-
matrix residues. This can be done using the parameters

In summary we have extracted in a model-independent
fashion the K-matrix residues for the @%~re reaction
in the b, (1232) resonance. We have tried to take into ac-
count the inconsistencies among the energy-independent
multiple data sets, and have obtained results that are in
good agreement with the energy-dependent results listed
in the PDG review. We have taken care to examine the
compatibility of different sets of data when comparing
different sets.

The results obtained for E and M using different
methods of analysis on a given data set generally agree
within the estimated errors. The notable exception is the
value of M obtained from the data set SUZ. All data sets
give together E & 0, although the values of E obtained
from BD and PS are consistent with zero. Note that if
we had not scaled the quantity AN+, the error on E
would be roughly a factor of 2 smaller. For M, the error
would have been 3—6 times smaller depending on the data
set.

In Table VIII we provide the summary of estimates of
E and M for each data set, as well as averages of E and
M. We take the average (not weighted) of the values
within a given data set, but do not include the fitted re-
sults if X2o„~ l. (See Tables V and VI.) The average is
weighted and the average M (and hence EMR) does not
include the data of SUZ. Our final results are
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APPENDIX

The scaling factor' discussed in the text is determined
in the following manner. First, we find the weighted
mean using

X~= gX /u; 2+W ~ (A 1)

where I /cr tr = g; 1/0;. Second, we calculate:—g, (X~—X, ) /0;. The scaling factor is

(A2)

If S ) 1 the data are inconsistent; we assume conserva-
tively that all authors of the data base we are using have
underestimated their errors by the same large factor. If
S ) 1, the errors are not scaled. The procedure adopted
here follows the method described by the Particle Data
Group.

of Tables V and VI, and extrapolating Eq. (15) to the T
matrix pole in the complex F plane. The E-matrix pa-
rameters, obtained in this paper, have the advantage over
the T-matrix residues in that they are obtainable directly
from the data, with no need for extrapolation. The ques-
tion now arises if the K-matrix residues are simply related
to the decay widths calculated in a hadron model. Such a
comparison requires solving a scattering problem, to be
examined in a forthcoming paper. It is interesting that
many hadron models' predict electromagnetic nucleon-
delta transition amplitudes numerically close to E and M
obtained in this work.

Our analysis ignores the Compton contributions.
There are reasons to believe that this is an excellent ap-
proximation, ' but this point remains to be firmly estab-
lished. Finally, our work here does not eliminate the
need of the model-dependent analyses of the pion pho-
toproduction from threshold through the resonance peak,
as only these analyses have the ability to disentangle the
complex interplay of diverse background mechanisms
and the excitation of the resonance itself. Indeed, we are
continuing to emphasize the importance of those analy-
ses' to understand the rich physics content of the pho-
toproduction of mesons. That richness also remains to be
understood from the QCD standpoint.



42 MODEL-INDEPENDENT DETERMINATION OF E-MATRIX. . . 29

'Present address: Institut fur Theoretische Physik III,
Universitat Erlangen-Niirnberg, D-8520 Erlangen, Federal
Republic of Germany.

~R. P. Feynman, Photon-Hadron Interactions (Benjamin, Read-

ing, Mass. , 1972).
~N. C. Mukhopadhyay, in Excited Baryons, proceedings of the

Topical Workshop, Troy, New York, 1988, edited by G.
Adams, N. C. Mukhopadhyay, and P. Stoler (World
Scientific, Singapore, 1989), p. 205; F. Close, ibid. , p. 67.

W. Pfeil and D. Schwela, Nucl. Phys. B45, 379 (1971); F. A.
Berends and A. Donnachie, ibid. B84, 342 (1975); S. Suzuki,
S. Kurokawa, and K. Kondo, ibid. B68, 413 (1974); I. I.
Miroshnichenko et al. , Yad. Fiz. 32, 659 (1980) [Sov. J. Nucl.
Phys. 32, 339 (1980)]; V. A. Get'man et al. , ibid 3$, 3. 85
(1983) [38, 230 (1983)]; V. F. Grushin et al. , ibid 38, .1448
(1983) [38, 881 (1983)].

4B. H. Bransden and R. G. Moorhouse, The Pion-Nucleon Sys-

tem (Princeton University Press, Princeton, NJ, 1972), Chap.
5.

5V. S. Zidell, R. A. Amdt, and L. D. Roper, Phys. Rev. D 21,
1255 {1980}.

Particle Data Group, G. P. Yost et al. , Phys. Lett. B 204, 1

(1988).
~J. Stroer and R. Bulirsch, Introduction to Numerical Analysis

(Springer, New York, 1980), p. 39.
3K. M. Watson, Phys. Rev. 95, 228 (1954).
Grushin et al. (see Ref. 3) have not used the mN phase shifts in

their analysis. The phase shift we use in Eq. (15) is the aver-

age phase of the E&+ and M]+.
'OFor a discussion, see Particle Data Group, Rev. Mod. Phys.

42, 87 C1970).
' We have to treat the data of Grushin et al. somewhat

differently. For their data we have E=+[(Re)'+(Im)']'~
and for the E,+ we scale both errors of the real and imagi-
nary parts by S&. For the ReM&+, the errors are already very
large and are not scaled. The errors on the imaginary part
are scaled only if N does not overlap with the weighted mean.

' J. R. Carter, D. V. Bugg, and A. A. Carter, Nucl. Phys. B58,
370 {1973). See also Ref. 5, and R. A. Amdt (private com-
munication).
See, for example, N. Isgur, G. Karl, and R. Koniuk, Phys.
Rev. D 25, 2396 (1982); G. Kalbermann and J. M. Eisenberg,
ibid. 28, 71 (1983};G. S. Adkins, C. R. Nappi, and E. Witten,
Nucl. Phys. B228, 552 (1983); M. Bourdeau and N. C. Mu-

khopadhyay, Phys. Rev. Lett. 58, 976 (1987); A. Wirzba and
W. Weise, Phys. Lett. B 188, 6 (1987); N. C. Mukhopadhyay
and L. Zhang (unpublished).

' M. Benmmerrouche and N. C. Mukhopadhyay, contribution
to the CEBAF Summer School, 1988 (unpublished); M.
Benmmerrouche, R. Davidson, and N. C. Mukhopadhyay
(unpublished).

' See, for example, R. Davidson, N. C. Mukhopadhyay, and R.
Wittman, Phys, Rev. Lett. 56, 804 (1986); R. Davidson, N. C.
Mukhopadhyay, and R. Wittman (unpublished).
Particle Data Group, UCRL Report No. UCRL-20030, p. 79.


