
PHYSICAL REVIEW D VOLUME 42, NUMBER 6 15 SEPTEMBER 1990

Quantum field in q-g spacetime
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A new spacetime, ri-g spacetime, is constructed. The quantum field in 71-g spacetime is discussed.
It is shown that the vacuum state of quantum field in g-g spacetime is a thermal state for an inertial

observer in Minkowski spacetime, and the vacuum Green's functions in rl-g spacetime are just the

thermal Green's functions in usual statistical mechanics.

I. INTRODUCTION

In the rniddle cf the 1970s two important new theories
were put forth. One of them is the Hawking radiation
theory of a black hole, ' which told us that when quan-
tum effects are considered, pair creation in the gravita-
tional field of a black hole formed by a gravitational col-
lapse leads to a steady emission of particles to infinity; the
emitted particles have a thermal spectrum corresponding
to a temperature TaH=tr/2nE, where n is the surface
gravity on the horizon of a black hole. In particular,
choosing the suitable boundary conditions, we can find
the vacuum in a black-hole spacetime (Hartle-Hawking
vacuum) is a thermal state for a static observer in

Schwarzschild spacetime. The importance of this
Hawking-Unruh effect is that it provides a connection be-
tween gravity, quantum mechanics, and thermodynamics.

The other is thermo-field dynamics ' (TFD) proposed
by Takahashi and Umezawa, which is based on the idea
of augmenting the physical Fock space 7 by a fictitious
dual space X We can define a thermal vacuum state
~0(p) ) on the double Fock space 9 7 with the property
that the vacuum expectation value of any physical opera-
tor agrees with its statistical average for an ensemble in

thermal equilibrium. As a dynamical theory, TFD starts
from the Hamiltonian A'=H H, where H is—the Hamil-
tonian in the usual quantum field in Minkowski space-
time, and H is the tilde conjugate of H. The importance
of TFD is that it not only provides a field-theory method
for calculations of statis(ical system, but also points out
that the unification of all the fundamental interactions on
the basis of the concept of a "field" should include
thermal physics on the basis of the concept of "quantum
fields. "

The TFD formalism has been used by Israel in his

derivation of Hawking s result. It is interesting that, for-

mally, the Hartle-Hawking vacuum in black-hole theory
and the thermal vacuum state ~0(p) ) in TFD have exact-

ly the same expressions, although they have different

physical meanings. The Hartle-Hawking vacuum is a
thermal state for a static observer outside the black hole
who is not an inertial observer. ~0(p)) in TFD is a
thermal state for an inertial observer in Minkowski
spacetime. We need to construct a new spacetime to be

regarded as a geometrical background directly for TFD.
ri-g spacetime ' provides a geometrical background for

TFD. The vacuum of quantum fields in rl-g spacetitne is
just the thermal state for an inertial observer in Min-
kowski spacetime. The tilde conjugate field in TFD can
be regarded as the field distributed in the mirror universe
in rl-g spacetime, which is in principle unmeasurable by
an observer in Minkowski spacetime. When any observ-
able is measured, the information about the tilde field will
be lost. The loss of the information corresponds to gen-
erating entropy, and leads to the change from a pure state
in the double Fock space VV to the mixed states. In
Ref. 7, only the massless scalar field in two-dimensional
ri-g spacetirne was discussed, which may be instructive,
but is too special because of its conformal invariant. In
this paper, we generalize the discussion to an interacting
scalar field in four-dimensional ri-g spacetime and show
the relation between quantum field theory in rl-g space-
time and equilibrium statistical mechanics.

This paper is organized as follows. ri-g spacetime and
its properties are discussed in Sec. II. In Sec. III, a
canonical form of quantum field in rl-g spacetime is
presented. Here the key point is that when choosing a
suitable time coordinate, we can get a time-independent
Hamiltonian, which directly relates the quantum field in
rl-g spacetime with TFD. Section IV shows that the vac-
uum Green's function in rl-g spacetime is equal to a
thermal Green's function in usual statistical mechanics
by path-integral method. The Euclidean path-integral
method used in Sec. IV exposes the character of ri-g
spacetime quite well, but this proof may be somewhat
formal. To make the meaning of quantum field in ri-g
spacetime clearer, in Sec. V, we directly discuss the quan-
tum field in Lorentzian section of rl-g spacetime, and con-
clude that the vacuum in rl-g spacetime is just the
thermal vacuum state in TFD, i.e., a thermal state for an
inertial observer. In Table I, the distinctions between the
Rindler space and q-g space are listed.

II. rl-( SPACETIME

g-g spacetime is a four-complex-dimensional manifold
C (which also may be viewed as an eight-real-
dimensional manifold) with complex metric g,s defined
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ds = ( d ri +dg )+dy +dz1

ds = 1
(do +dg )+dy +dz

a2( f2 +o 2
)

(2.2)

where g=io. . This submanifold is referred to as a Eu-
clidean section of (C,g,b ) and is called the Euclidean ri-g
spacetime.

Under coordinate transformation

where a is a constant. It is interesting for us to discuss
its Euclidean section and Lorentzian section. By restrict-
ing g,y, z to be real but rI to be pure imaginary, we obtain
a four-real-dimensional submanifold with a real Euclide-
an metric:

the metric (2.2) becomes

ds =dr +dx +dy +dz (2.4)

K'=a(go' erg);— (2.5)

this is Euclidean Aat metric. The coordinate transforma-
tion (2.3) means that the ~ coordinate is periodically
identified such that a~-a~+2~. In fact, a strip with
width of 2m/a in the direction r in the Euclidean flat
space (2.4) is mapped into a real Euclidean plane
o +g =r; here, r =( I/a)e™.In the cr g-plane, e=ar
plays the role of a polar angle with period 2' (Fig. 1).

The Euclidean r)-g spacetime possesses the Killing field

1
& =—e sina~,a

QXec—osar,
a

(2.3)

the orbits of E' are simply circles around the origin with
radius r =e "/a.

By restricting to real values of ri, g,y, z, we obtain a
Lorentzian section of the complex manifold (C,g,b ) with
the metric

Transformation
and metric

TABLE I. The distinction between Rindler space and rt-g space.

Rindler space (w, R)

e'"sinha ~
x =a 'e'"coshav

dS'=e""(—dH+dR')

t)-g space (g-g)

g =a 'e'"sinhat
/=a 'e'"coshat

dg ~ = ( dr)2+ d—g~ )
1

a 2(g2 ~2)

Spacetime
diagram

L ~

Q ~

Remarks (1) The coordinates (~,R) (i.e.,
Rindler Wedge) cover only a
quadrant (region I) of Min-
kowski space.
(2) The hyperbolae H
(R =const) correspond to the
world line of a uniformly ac-
celerating observer.
(3) In particular, the Min-
kowski vacuum ~OM) is a
thermal state for a uniformly
accelerating observer, but the
converse is not true; i.e., the
Rindler vacuum ~0„) is not a
thermal state for an inertial
observer. This is the reason
why we try to construct the
new space: r)-g space.

(i) The coordinates (t,x) (i.e.,
Minkowski space) cover only a
quadrant (region I') of g-(
space.
(ii) The hyperbolae H'
(x =const) correspond to the
world line of an inertial ob-
server.
{iii) The t)-( vacuum ~0„&) (or
~0(P))) is a thermal state for
an inertial observer.
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1g= —e sinhat,a
1f=—e "coshat;
a

then (2.6) becomes

(2.7)

FIG. l. Euclidean q-g spacetime. In the cr (plan-e, Euclide-
an time av plays the role of a polar angle with period 2m.

d$
1

( —d2) +dg )+dy +dz
a2( g2 ~2 )

dUdV+d 2+d 2

a UV
(2.6)

here we introduce the null coordinates U = rt —g, V

=rt+g.
The metric (2.6} is singular on the hypersurfaces

g
—ri =0, and g

—g =0 divides the Lorentzian section
into four disjointed parts I, II, III, IV (Fig. 2), each of
which is identified with a Minkowski spacetime. To see
this, we introduce a coordinate transformation in region I

ds = dt —+dx +dy +dz

which is the Minkowski metric. Be careful, the coordi-
nate transformation (2.7} looks like a Rindler coordinate
transformation, but, in fact, is not (Table I). In the rt-g
plane, the entire Minkowski spacetime —00 (t ( 00 and
—oo (x ( Oo covers only the quarter g& ~g~ &0 (region
I, our Universe). In region I (and II), the Minkowski
time coordinates t =const are straight lines through the
origin; space coordinates x =const are hyperbolae

e "=const2 2 1 2 (2.8)
a 2

with null asymptotes U =0, V =0.
For other three regions, the transformation takes the

following forms:

ax

region II ("mirror" universe},= —a e "coshat

g=a e "coshat
region III,

g =a 'e'"sinhat

g= —a 'e "coshat
region IV .g= —a e "sinhat

(2.9)

Because Minkowski spacetime is complete, the Lorentzi-
an section (2.6) of r}-g spacetime is geodetically complete;
i.e., all geodesics on the Lorentzian section are complete.
The singularity of the metric (2.6) at g —ri =0 means
that the four parts I, II, III, IV are not connected on the
Lorentzian section. If we only stay on the Lorentzian
section, it is not easy to find out the connection between
the four parts. But if we extend it to a complex manifold,
we can find that the four parts of Lorentzian section can
be connected via complex path (Fig. 3). If we add a small

Lorentzian Sectian

Camplex manifold (C, g~)
4

FIG. 2. g-g spacetime (Lorentzian section). The hypersur-
face UV =g' —g'=0 divide the Lorentzian section into four dis-

jointed parts I, II, III, IV; each part of them is identified to a
Minkowski spacetime. In region I, t =const is a straight line
through the origin, and the world line (x =const) of a static ob-
server in Minkowski spacetime is a hyperbola with null asymp-
totes U=Oand V=O.

FIG. 3. The Lorentzian section on the complex manifold
«' g.b ~.
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imaginary i o to real time ri, then metric (2.6) will not be
singular again provided crAO .Hereafter, we will regard
the Lorentzian section given by (2.6) as the limit when we
restrict g,y, z as real and let the imaginary part i o of time
in the complexified metric (2.1) approach zero, and call
the Lorentzian section ri-g spacetime also (although it, in
fact, is not a connected spacetime, but rather a piecing
together of four Minkowski spacetimes).

i)-g spacetime possesses Killing fields which are time-
like in regions I or II. In terms of ri-g coordinates
ri, g,y, z, the Killing field can be written as

=a(nn'+8'} .a
(3.4)

The Jacobian of this transformation is

a(n, g) &a2(g2 2) &
2ax

a(i,x)

transformation (i),g)~(A, ,X), where X is given by the
vector field

b'= a( grt'+ rid), (2.10)

III. CANONICAL FORM OF QUANTUM
FIELD IN v]-g SPACETIME

Let us start by considering a scalar field theory with an
action

S= x — ——'V —V4 1 a4 i 2

2 at
(3.1)

where a is a constant. The orbit of b' coincides with the
world line of a static observer in Minkowski spacetime.

Formally, we can call the hypersurfaces g
—ri =0

"horizons" only in the sense that an inertial observer in
region I cannot accept any signal sent from U =0, and
cannot send any signal to V=O. So the hypersurface
U =0 or V=O can be formally called a "future horizon"
%+ or "past horizon" gf for an inertial observer in re-
gion I, although they are not the horizons in the usual
sense.

Then the action (3.2) becomes

S"=f dA, dX dxiX",

where
'2 '2

(3.5}

X~=E ' 82ax1

2
ae aS
a~ ag

—
—,
' Vig —V(P)

(3.6)

az'
a

g &+„&
aq ag

(3.7)

in (3.6} ri and g are the functions of A, and X, the integral
(3.5) runs over whole 21-g spacetime.

A Legendre transformation of the action yields the
momentum II& canonically conjugate to P in A,-X coordi-
nates,

in Minkowski spacetime with coordinates (x,y, z, t),
where V(P) is a function of P. Taking transformation
(2.7) and extending the domain of integration to whole
ri-g spacetime, we get a new action called the action in
ri-g spacetime:

fdr dgdX e
—2ax e2ax1

J.

a2

H =f dXdx, e
CT 2

ap + ap
a +"ag

2

2

and the Hamiltonian which is independent of the time A.:

,'(Vig)' V—(—P) ', —(3.2)

+—,'(Vip) + V(P) ', (3.8}

=@a((i)'+i)P), (3.3)

where x i denotes y, z coordinates, e "=a (g —ri ).
To get a canonical form of the quantum field in ri-g

spacetime, it is important to choose a suitable time vari-
ate. We define a Killing parameter A. by the Killing fields

where cr is a spacelike surface (such as A, =const).
A, ,X are coincided with t, x and —t, +x in regions I and

II, respectively, where t and x are related to ri, g by (2.7)
and (2.9). If using coordinates t, x, then we have

which are timelike in regions I and II. Here
H=H +H =H —H,I » (3.9)

1 in region I, III
—1 in region II, IV .

[Israel suggests adding the factor e in (3.3) to ensure that
the light cones in both regions I and II have the same
direction ]It is nat.ural to choose the Killing parameter
A, given by (3.3) as the time coordinate. We make the

where H» is defined on the hypersurface A, =const, and H
is defined on the hypersurface t =const (both are in re-
gion II}. The presence of the sign change of the second
term can be regarded as due to the opposite out-normal
direction of the hypersurfaces t =const and A. =const.
Equation (3.9) directly relates the quantum field in ri-g
spacetime with TFD.
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IV. GREEN'S FUNCTION IN il-g SPACETIME

In this section we shall show that a thermal Green's
function in usual statistical mechanics is just the vacuum
Green's function in rt-g spacetime.

Z(P)= Tr(e ) (4.1)

for arbitrary P. The functional-integral form for z is

given by'

Now we consider the partition function in Minkowski
spacetime:

Z(p)=N0 f [dII]f [dp]exp f dr f d3x i II —&(II,Q) (4.2)

where r =it, &(II,P) = II /2+ —,'(VP) + V(P). The II integral is Gaussian; then we have
'2

Z (P)=N, f [dP]exp —f dr f d x — + —,'(VP) + V(P)
P(r——0)=P(~=P) 0 2 dr

(4.3)

We now perform the change of variables (2.3) from (x, r) to (g, cr ). We must emphasize that this is simply a change of
integral variables and not to be interpreted as a change of coordinates. If we want the transformation to be single
valued, we must have Pa ~2m For.a given P, we can choose a proper a so that Pa=2m, then the periodic boundary
conditions become consistency condition at a~=2m, and we have

2 ' '2

Z(P) =N, f [dP)exp —f der dgdxi e " —e
-2 12

N, f [dP—]exp( —SP)=WP,

ay ay
a ag

+ —,'(Vip} + V(P) .

(4.4)

where e "=1/a (g +o ), SP is the action in Euclidean rt (spacet-ime, IV/ is just the Euclidean generating function-
al for the theory in il-g spacetime.

Now we shall show that the thermal Green's function in Minkowski spacetime is equal to the vacuum Green's func-
tion in rt-g spacetime. We assume that the Green s function defined by the Euclidean generating functional in ri-g
spacetime and analytically continued back to real values of the coordinates gives the correct vacuum Green's function
in the Lorentzian section of rt-g spacetime. The definition of the vacuum in 71-g spacetime will be discussed in the next
section. Consider first

K =Tr[e ~ P(x„ti) . . P( „x, t„)] .

Following the steps leading to (4.3), for t i & t2 » t„we find
'2

(4.5)

5nK=N f [dP]exp —f

deaf

d x — + —,'(VP) +V((t) —JP5J(xi, ti ) ' ' ' 5J(x„,t„) periodic 0 2 J=O
(4.6)

We now perform the change of variable (2.3) with Pa =2m; then

K=N f [dP]exp —f der dgdxie5J xi, t, 5J x„,t„

e 2ax1

2

2 '2

+—,'(Vip) + V(P) J$ . —
J=0

5J(x„t, ) . 5J(x„,t„) Ivg[J]
J=0

(4.7)

Translate (o,g) to (A.,X) which are defined by

=a(go' —o P}, (4.8)

=a(o o'+gP), (4.9)

where (8/r}A, )' is a Killing field for Euclidean rt gspacetime [not-e that we retain the same symbols A, and X with (3.3)
and (3.4)]. Because all points (x„t), . . . , (x„,t„}are to lie within region I, then we have
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5J(x„t, ) 5J(x„,t„) 5J(X„A,, ) -. 5J(X„,A,„) 5J(X, ) . . 5J(X„)

whereX;=(X, ,y, ,z, ),X, =(X;,A, ;). So
2 2

& =N I [dP)exp —JdkdX dx, —a g c—r + —a o +g
6" ay a((} 1 , ay ay

5J(X, ). 5J(X„) 2 OCT 8 2 dCT

+—,'(V~$) + V(P) —JP
J=0

5J(X) ) 5J(X„) J=O
(4.10)

WE~ J
W@[J] 5J (Xi ) 5J (X„)

—=6"(Xi', . . . ', X„),

Dividing (4.5) by Tre ~ and (4.10) by Wz, we conclude that

Tr[e ~ [P(x,, t, ) P(x„,t„)],I 5

Tr(e ~ ) J=O

(4.11)

where ( ), in the left of (4.11} denote t ordering,
6"(X&, . . . , X„)is the Green's function in rt-g spacetime.
This is just what we want to prove.

It is convenient to use ri-g coordinates instead of A,-X
coordinates in Eq. (4.10). Note that

5 B(g) 5 z 5 5

5J(X) B(X) 5J(g) 5J(g) 5J(g)

where g=(g, g), g'=(g, y, z),J—:e "J. The points (x, t)
are restricted in region I so (x, t)=(X,A, ), and we have

WE[J)= WP[J] by comparing (4.7) with (4.10). Then we
have

5J(X) 5J(g)
WE[J]= Wg[J],

and the Green's functions (4.11) in ri-g spacetime can be
expressed as

6"(X„.. . , X„)=
5"Wg[J]

~P[J) 5J(F» 5J(k. } J=o

(4.12)

Here we use g ordering instead of the A, ordering, because
both q and k increase everywhere within the future, null
cone of any point, as long as we restrict all points to lie
within region I, g ordering and A, ordering will be the
same, and the point (X; ) = ( g; ).

We have shown (although somewhat formally) that the
thermal Green's function in usual statistical mechanics is
just equal to the vacuum Green's function in ri-g space-
time. It is interesting to compare (4.11) and (4.12) with
the result" by Unruh and Weiss.

V. QUANTUM FIELD IN g-g SPACETIME

Now we will discuss the quantum field in the Lorentzi-
an section of ri-g spacetime. The first question we meet is
the following: what is the meaning of the quantum fields

in rt-g spacetime? We have known that the Lorentzian
section consists of four disjoint parts. How can we talk
about the quantum fields on the Lorentzian section? The
answer is that, mathematically, we can find out the solu-
tions of the equations of motion which are analytic on the
"horizons" and can be extended to whole ri-g spacetime.

The scalar wave equation is given by

(0—p )/=0 . (5.1)

In region I or II, let f„(t,x,y, z) ~ exp( i cot) be en—ergy
eigenfunctions of Eq. (5.1) as registered by the static ob-
servers in Minkowski space. On the "horizons" &*, the
asymptotic form of wave packets which are regular there
is a superposition of modes

f (t, ,xyz)~&~=exp( ia 'ht—oln~U +—~)P(y, z), (5.2)

where b, =+1, U —=a(ri+g), P(y, z) is a regular analytic
function.

Since regions I and II are causally disjoint, we can as-
sociate with any given eigenfunction f (t, x,y, z) two
"Minkowski modes" '+ 'f and ' 'f which are given by

f„(t,x,y, z) region I,
(+)g

0 region II,
0 region I,

( —)f f (t,x,y, z) region II .

Then the two linear combinations

'+'F„=cosh8 '+'f +sinh8 ' 'f
'F =cosh8 ' 'f +sinh8 '+'f (5.5)

will be analytic in U and V on the "horizons" provided

tanh8 =exp( —m.co/a) . (5.6}

Both '+'F and ' 'F are regular in the lower halves of
the complex U and V planes; their spectra therefore con-



YUAN-XING GUI

tain only positive frequencies with respect to U and V
(called rt-g modes}.

That '+'F and ' 'F„are analytic in real U and Von
the "horizons" &'*' ( U =0 or V =0) does not contradict
the fact that the metric (2.6) of the Lorentzian section on
the "horizons" %'*' is singular. To see this, we can write
(5.5) in rt g-null coordinates which near the horizons
%'*' approaches

V
—i(cu/a)P

(

operators. We can define the ri-g vacuum (thermal
ground state}

b., lo(p) ) =b., lo(p) ) =0 v~, j . (5.14)

By equating the two expressions (5.10) and (5.13) for p,
we obtain in the usual manner the Bogoliubov transfor-
mation relating the Minkowski and rt-g annihilation and
creation operators. We find

b . =a„,cosh8 —8 sinh8

and (5.7)
b =a„cosh8„—a t sinh8„.

(5.15)

U" "Z(V,z),
respectively, for all U and V in region —ao to ao (i.e., in
both regions I and II); they are clearly analytic across
U=Oand V=O.

A complete set of eigenfunctions f leads .to sets
'*'f„j,'*'F, which are complete over region IUII and

which satisfy orthonormality conditions xg exp( n—neo/a)ln )la„,. ),
CdJ

(5.16)

The Bogoliubov transformation (5.15) provides the re-
quired relation between the thermal ground state (g-(
vacuum) and the Minkowski vacuum:

10(P) & =g (1-.-'" '}'"
Cd, J

=e5,~5,, 5(to td') —(td & 0)

with respect to the Klein-Gordon inner product

&y/ y2)=
2 I [y]~gy2 (~gy) }(I}z]n'd& '

(5.8)

(5.9)

where ln, ) denotes the state with n„j quanta in region I
(our Universe), lit ) denotes the state with n, quanta in
region II ("mirror" universe). The latter are in principle
unobservable by an observer in region I. By "tracing
out" over the degrees of freedom associated with region
II, we obtain the density matrix p for region I given by

Cd, J

'f ' +it, ' 'f, region II,
Cd, J

(5.10}

where the annihilation and creation operators satisfy the
commutation relations

the integral is to be taken over a complete Cauchy slice
with a consistent choice of future-directed normal n ' [the
factor e in (5.8} arises from the contraposition of n' and
t' in region II].

To quantize a real Klein-Gordon field (t}(x) in terms of
the set of Minkowski modes ' +'f„~ (id & 0), we -expand

CdJ n

—f3E„

ln, )&n„,l,—PE
e

m=0

(5.17)

—PE„

&0(p)IAI0(p)&=g g &n„, lAln. , ) —PE
eCdJ

with E„=neo,p=2n/a This is p. recisely a thermal den-

sity matrix. Thus, we find that the r)-g vacuum corre-
sponds to a thermal state at temperature KT =a/2m for
an inertial observer in Minkowski spacetime. When this
observer measures an observable A (a functional of
a i,a„j only), the result is

[a„,at„.;]=[n„,, n ~ ']=5,, 5(td —td'} (5.11)

(other commutators vanish). The summation over co in
(5.10) symbolizes the integral f o dao. Define

a„,l0) =0
(5.12)

tt„j 0 =0

where l0) is the Minkowski vacuum in our Universe and
l0) is the Minkowski vacuum in the "mirror*' universe.

On the other hand, we obtain an alternative expansion
of P(x) in terms of g-g modes

CdJ

(5.13)

The operators b„-,b„also satisfy the commutation rela-
tion (5.11) and are called thermal particle annihilation

=tr(Ap); (5.18)

where Y'=(8/BV)', U'=(8!BU)'. On the "horizons"

i.e., an expectation value of A in the pure state l0(p))
coincides with the statistical average of A in usual statis-
tical mechanics.

Finally, we need to show that the rt-g vacuum defined
by (5.14) is just the vacuum of Green's function G
defined by (4.11). From Sec. IV we have known that G
is defined in terms of the time A. , so the vacuum in 6
should be the vacuum defined by positive-frequency
modes with respect to the time A.. These can be written
as exp( —iroA. ), where A, is defined by (3.3). If using the
null coordinates U, V, we can rewrite (3.3) as

a

=Ea(grt'+ gP) =ea( VV' —UU'),
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&—(i.e., U =0 or V =0), the positive-frequency A, modes
exp( —i coA) . approach exp( —i b,a 'co ln~ U+—

~ ), just ac-
cording to which we defined the g-( vacuum in Sec. V.
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