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Cosmic-string traveling waves
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We find the metric, scalar, and gauge fields for a traveling wave on a strongly gravitating cosmic
string. This solution is found by applying a transformation to the corresponding solution for a long
straight static string. Limiting cases of the solution are examined and found to agree with previous
results.

I. INTRODUCTION

In the cosmic-string scenario the strings are expected
to have a small thickness and are usually treated in the
zero-thickness approximation. ' The dynamics of a zero-
thickness string is found using the Nambu action, which
is simply the area of the string's world sheet. A finite-
thickness string is a configuration of self-interacting fields
and is thus more complicated than the zero-thickness
string. With the exception of Ref. 2 the work on finite-
thickness strings has treated only the simplest case: that
of a static straight string. In Ref. 2 field-theoretic solu-
tions were found for traveling waves on an infinite string.
In this paper we extend the result of Ref. 2 to include the
gravitational field of the string. We find solutions of
Einstein's equation (as well as the equations for the fields
making up the string) that describe a traveling wave on a
gravitating string.

In Sec. II we will introduce some notation and present
some facts about the results of Ref. 2. Section III con-
tains our method for finding solutions. The string travel-
ing wave solution and some limiting cases are examined
in Sec. IV and a discussion of the results is given in Sec.
V.

II. NOTATION

We consider strings made of a complex scalar field P
and a vector field A, with the usual Abelian Higgs La-
grangian

(2.1)

Here D, =—V, —I'e A, and F,b—:V, Ab —Vb A, . The equa-
tions for the fields are

usual Cartesian coordinates (t,x,y, z) the fields have the
form

/=4(x, y),

A, =A, (x,y)V, x+Az(x, y)V, y .

(2.4)

(2.5)

Define the coordinate u by

u=z —t (2.6)

and let f (u) and g (u } be arbitrary functions of u. Define
the coordinates X and Yby

X=x —f(u), (2.7)

Y—=y —g(u) . (2.8)

Then the surface X=Y=O is the world sheet of a zero-
thickness string traveling wave. Consider the fields P
and A, givenby

P—:4(X, Y),

A,:—A, (X, Y)V,X+ A2(X, Y)V', Y,

(2.9)

(2.10)

where the functions 4, A&, and A2 are the same as in

Eqs. (2.4) and (2.5) but their arguments are now X and Y
rather than x and y. It was shown in Ref. 2 that (P, A, }
is a solution of Eqs. (2.2) and (2.3). Thus (P, A, ) is the
solution for the scalar and gauge fields of a cosmic-string
traveling wave.

One way to verify that (P, A, ) is a solution is to explic-
itly evaluate Eqs. (2.2) and (2.3) using the transformations
given in Eqs. (2.6)—(2.8). We now present another
method which is more easily generalized to the case of
gravitating strings. First let g,b be the usual Minkowski
metric

(2.2) ri, b
= —V, tVbt+V, zVbz+V, xVbx+V, yVby . (2.11)

(2 3) Define the coordinate v by

First consider a nongravitating string, i.e., solutions of
Eqs. (2.2) and (2.3) in Minkowski spacetime. Let (P, A, )

be the fields of a straight static string. Then using the

v = ,'(t+z)+ fX+gY+—,' f (f +g—2)du, (2.12)

where a dot denotes derivative with respect to u. Then it
follows that
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ri, b
——q, b

2—(fX+g Y)V, u Vbu,

where

ab =2V(a u Vb)v +V,XVbX+ V, YVb Y .

(2.13}

(2.14}

III. GRAUITATING STRINGS

Note that g,b is also a fiat metric: one in which (X, Y}

play the role of (x,y) in ri, b It. then follows immediately
that ((})),A, ) is a solution of the field equations in the
metric g,b. In fact (p, A„ri,b) is just the usual static
straight-string solution written in unusual coordinates.
However, we wish to show that (P, A, ) is a solution in
the metric ri,b. From Eq. (2.13) it is straightforward to
evaluate the Christoffel symbols relating the derivative
operator of g,b to that of g,b. Then using the Christoffel
symbols and the fact that (p, A„ri,b) is a solution it is
straightforward to show that (p, A„ri,b) is also a solution
to Eqs. (2.2) and (2.3).

The solution (p, A„ri,b) represents a static string,
whereas (p, A„Fi,b) is a string traveling wave. Thus the
method of Ref. 2 for finding traveling wave solutions can
be viewed as taking the fields of a static string and then
finding a new metric in which these same fields describe a
cosmic-string traveling wave. This is the method that we
will generalize to gravitating strings.

k(, Vbk, )=0,
k'V, 4=0,
k'A, =0,
XbA, =O.

(3.6}

(3.7)

(3.8}

(3.9)

k'V, F =0 . (3.10}

We now show that ((}),A, ) satisfy their field equations
in the metric g,b. The fields ((t), A, ) satisfy Eqs. (2.2) and
(2.3) in the metric g,b. The field equations in the metric

g, b consist of substituting in Eqs. (2.2) and (2.3) g,b for

g,b and V, for V, where V, is the derivative operator as-
sociated with g,b. From the properties of derivative
operators it follows that V, /=V, (}() and V(, Ab}=V(, Abl.
Thus V, (}) and F,b are unchanged by this substitution.
The inverse to g,b is given by

A11 these conditions are satisfied in the static string
spacetime. The first three equations say that k' is a null,
hypersurface orthogonal, Killing field. Note that these
equations imply that k' is tangent to a shear-free
congruence of null geodesics. Therefore the metric g,b is
in the class of generalized Kerr-Schild metrics. The last
three equations say that k' Lie derives P and A, and is
orthogonal to A, . We also impose the condition on F
that

We now consider gravitating strings. Thus there is a
metric g,b as well as the fields (p, A, ). In addition to
equations (2.2) and (2.3) we need to solve Einstein's equa-
tion

(g ')' =g' —Fk'k

It then follows from Eqs. (3.7) and (3.8) that

(3.11)

Rab 2Rgab 8WTab ~ (3.1}
(g ')' VbP=V'P,

(g ')' A =A'
(3.12)

(3.13)
where T,b is the stress energy tensor of the fields:

Tob (D( (}))(Db)P) +F Fb +Kg b ~ (3.2)
From Eqs. (3.8) and (3.9) it follows that k'F, b=0 and
therefore that

Let ((})),A„g,b) be the solution of Eqs. (2.2), (2.3), and
(3.1) for the straight, static gravitating string. In analogy
with the method for nongravitating traveling wave solu-
tions we seek a solution (p, A„g,b) where (p, A, ) are the
same fields as for the static string and g,b is given by

(g
—

)ac(g
—1 }bdF Fah (3.14)

Va COb Va COb Cab Q7~ (3.15}

Now consider the derivative operator V, . There is a
tensor C,'b such that

gab gab+F akb (3.3} for all co, . The tensor C,'b is given by

for some scalar F and vector k, . In what follows all in-
dices will be raised and lowered with the metric g,b.

We now consider what conditions to impose on k' and
F. In the case of nongravitating strings the vector field
V'u is null, covariantly constant and orthogonal to V, P
and A, . We would like to impose conditions similar to
this in the case of gravitating strings. Unfortunately, the
static string spacetime does not, in general, possess a co-
variantly constant vector field. However, it does have a
null Killing vector (essentially a linear combination of the
time translation and spatial translation Killing vectors).
We impose the following conditions on the vector field
k'.

C,'b= —,'(f ')' (V,gbd+Vbg d Vdg b) (3.16)

From Eqs. (3.5) and (3.6) it follows that there is a scalar
A such that

V, kb —ktb Va)A (3.17}

and k'V, A =0. We then find the following formula for
Cab-

C;b =k'(k(, Vb)F +Fk(, Vb) A ) ,'k, kb(V'F+2FV—'A—).

(3.18)

From this formula it follows that

kk=0
V(, kb) =0,

(3.4)

(3.5}

C' =0.cb (3.19)

It then follows that V, v'=V, v' for any vector v' and
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V, Q' =V, Q' for any antisymmetric tensor Q'. Then
using Eqs. (3.11)—(3.14) we find that (P, A, ) continues to
satisfy Eqs. (2.2) and (2.3) when g, b and V, are substitut-
ed for g,b and V'„respectively. Therefore (P, A, ) satisfy
the field equations in the metric g,b.

We now consider Einstein's equation. Let R,b be the
Ricci tensor of g,b. Then R,b is given by

2V[ C ]b+2Cb[ C ]d

It then follows from Eq. (3.18) that

R,b
—R,b+ V, C~b

=R,b
—,'k, kb—(V,V'F+2FV, V'A

(3.20)

+2V'FV, A +FV, A V'A ) . (3.21)

Since k' is a Killing vector it follows that

R,bk = —V"Vbk, = —
—,'k, V Vb A .

Therefore we find

(g ')"Rd, =R'b ,'k'kbe —"—V,V'(e "F) .

We now impose the condition on F that

V, V'(8 "F) =0 .

It then follows that

(g ')"R b=R'b .

(3.22)

(3.23)

(3.24)

(3.25)

Thus the Ricci tensor (with one index up and one down)
is unchanged under the substitution of g,b for g,b.
Therefore the Einstein tensor G'b is also unchanged.

Now using Eqs. (3.12)—(3.14) in Eqs. (3.2) and (2.1) it
follows that the stress energy tensor T'b is unchanged
when g,b is substituted for g,b. Thus Einstein's equation
is still satisfied after the substitution. Therefore
(P, A„g,b) is a solution of the Einstein-Abelian Higgs
equations.

This method of generating solutions should work on a
wide class of Lagrangians other than the Abelian Higgs
model. However, the method is somewhat limited, since
it requires that the background metric g,b possess a null,
hypersurface orthogonal Killing vector.

IV. STRING TRAVELING WAVES

Bv
(4.2)

Here A is the same as in Eq. (3.17) and A and S are func-
tions of X and Y. Since k'V, F =0 it follows that F is a
function of u, X, and Y. The equation (3.24) for F be-
comes

We now consider, in more detail, traveling waves on a
cosmic string. The metric g,b of the straight static string
is

g,b =2e "V(,u Vb)v+S (V,XVqX+V, YVb Y) (4.1)

and the null Killing vector k' is
a

BX BX
e" (e F) + e" (e F) =0.

BY
(4.3)

Far from the string the static string metric approaches
Minkowski spacetime minus a wedge whose angular size
we denote hP. The asymptotic form of A and S is
A ~ao, S~so(X + Y )

~~ where ao and so are con-
stants. Thus, far from the string F approaches a solution
of the two-dimensional Laplace equation. A solution to
Eq. (4.3) is determined by the asymptotic values of F. We
choose F so that its asymptotic form is

F~ 2(fX+—gY), (4.4)

V. DISCUSSION

We now consider some possible extensions of the re-
sults of this paper. In Ref. 2 traveling waves on global
strings and domain walls were treated in addition to
those on gauge strings. Can our method be used to treat
self-gravitating global strings and domain walls? The
static straight global string has a null Killing vector; so
our method can certainly produce solutions for gravitat-
ing traveling waves on such strings. However, the
asymptotic properties of the static global string metric
are far more pathological than those of the gauge string.
Therefore it is not clear what boundary conditions to
place on the function F; so there may not be a particular
string traveling wave solution that is preferred. The self-
gravitating domain wall does not have a null Killing vec-
tor; so our method cannot be used to find gravitating
domain wall traveling waves. It may be that self-gravity
prevents domain walls from having traveling waves. Al-
ternatively, a different method might be used to find trav-
eling waves on domain walls.

Though in our solution the traveling wave does not dis-

where f and g are arbitrary functions of u. This form is
chosen to agree with the nongravitating string in the lim-
it of weak gravity. Taking the limit as the strength of the
string's gravitational field vanishes the metric becomes
fiat and the fields (P, A, ) approach the values of Ref. 2.
One can choose a different solution of Eq. (4.3) for F, one
where F grows faster than linearly with X and Y at large
X and Y. Linear growth corresponds to a string traveling
wave. Faster growth corresponds to an additional gravi-
tational wave traveling along with the cosmic-string trav-
eling wave.

The asymptotic form of the traveling wave metric
agrees with the metric of Ref. 5 for a traveling wave on a
zero-thickness cosmic string. Furthermore, taking the
zero-thickness limit of our solution produces the solution
of Ref. 5. Thus the metric of Ref. 5 is also the exterior
(i.e., outside the core region) metric of a finite-thickness
cosmic-string traveling wave.

There is one case where the equation for F can be
solved in closed form. As shown by Linet when the
Abelian Higgs coupling constants satisfy the relation
e =k the scalar A vanishes. In this case F is simply a
solution of the two-dimensional Laplace equation and has
the form given in Eq. (4.4) everywhere.
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sipate, there remains the possibility that cosmic-string
traveling waves might dissipate through quantum
creation of particles. However, it has been shown that
there is no particle production in the plane-wave solu-
tions of Einstein's equation. It is likely that this result
can be extended to a large class of spacetimes with a null

Killing vector, probably including ours. Therefore we ex-
pect that cosmic-string traveling waves produce no parti-
cles.

The static cosmic string has two null Killing vectors
corresponding to the two directions of translation along
the string. Thus our method can produce solutions corre-
sponding to left-moving traveling waves or right-moving
traveling waves. The method can even be used to find
two oppositely directed traveling waves. Consider a
metric of the form

(P, A„g,b) is a solution of the Einstein-Abelian Higgs
equations representing two oppositely directed traveling
waves on a cosmic string. Since we consider only that re-
gion where the supports of F and G do not intersect, we
have a solution for the spacetime before the two traveling
waves collide. After the waves collide the spacetime will,
in general, have no symmetries and we do not expect to
be able to find a solution in this region. The oppositely
directed traveling waves can be constructed so that they
carry a large amount of energy in a small volume. If the
energy is sufficiently large and the ~aves are sufficiently
well aligned, one might expect that their collision will
form a black hole. It would be interesting to see whether
this and other properties of colliding traveling waves
could be deduced from an examination of the solution
describing the waves before collision.

g b g b+Fk kb+61 Ib (5.1) ACKNOWLEDGMENTS
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