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String propagation in exact plane-wave solutions (with nonzero axion and dilaton fields) is ana-

lyzed. In these backgrounds, strings can undergo transitions from one state to another. Selection
rules are derived which describe allowed and forbidden transitions of the string. It is shown that
singular plane waves result in infinitely excited strings. An example is given of a solution whose

singular properties are the opposite of an orbifold: it is geodesically complete, but still singular
from the standpoint of string theory. Some implications of these results are discussed.

I. INTRODUCTION

One of the key issues that a quantum theory of gravity
must address is the nature of the singularities predicted
by general relativity. In string theory, the classical equa-
tion of motion for the metric can be obtained by demand-
ing conformal invariance of a two-dimensional o model.
In terms of O. -model perturbation theory, this equation
takes the form of Einstein's equation with the addition of
an infinite number of higher-order terms involving higher
powers and derivatives of the curvature. The first step in
studying singularities in string theory is to look for solu-
tions to this equation with strong curvature. Recently it
has been shown that all solutions to Einstein's vacuum
field equation with a covariantly constant null vector are
also solutions to string theory. This consists of a large
class of time-dependent spacetimes which contain arbi-
trary functions. They are known as plane-fronted waves.
Furthermore, one can extend these solutions to include
the other massless fields of string theory: ' the dilaton,
antisymmetric tensor field (hereafter referred to as the ax-
ion field), and even the Yang-Mills field. This yields a
large class of solutions to investigate.

Many of these spacetimes are singular in the sense of
general relativity; i.e., they are geodesically incomplete.
Classical test particles cannot evolve for an infinite time.
It is not yet clear what the most appropriate generaliza-
tion of this definition is for string theory. If one simply
considers the motion of classical test strings and asks
whether they always have a well-defined evolution for all
time, then the answer will be no for any geodesically in-
complete spacetime. This is because if one chooses X" in-
dependent of 0., the equation for a classical string is pre-
cisely the {null) geodesic equation. However a definition
of singularity in terms of a first-quantized test string
would be more satisfactory. The example of orbifolds
shows that this can lead to differences with general rela-
tivity. Orbifolds are spaces which are locally flat but
have conical singularities. Although they are geodesical-
ly incomplete, it has been shown that a first-quantized
string is well defined on orbifolds. In general, if the ex-
pectation value of some physical observable associated
with a test string diverges, then the solution will be called
singular. Although this is the definition we will use here,

it should be noted that it has a limited range of applica-
bility. For a general time-dependent background, the
first-quantized description will not be useful due to the
string analog of particle creation. This "string creation"
must be discussed in the context of a second-quantized
theory. Fortunately, for the plane-fronted-wave solu-
tions, it has been shown that there is no particle creation
since the covariantly constant null vector leads to a
definition of frequency which is conserved. A similar ar-
gument shows that there will be no string creation so the
first-quantized description will be satisfactory.

Although there is no string creation, there is still
"mode creation" arising from the fact that positive fre-
quency is not conserved on the string world sheet. Thus
there can be transitions between different modes of the
string. We will derive selection rules governing which
transitions are allowed and which are forbidden. Of most
interest mill be how the total excitation of the string
behaves at late times when the background fields become
large.

One reason that there has not been much attention
given to the general definition of a singularity in string
theory was the widespread belief that it would not be
necessary. Since orbifolds were the first known geodesi-
cally incomplete solution to string theory, it was thought
(or perhaps hoped) that similar results would hold for
other solutions. If all solutions to string theory allowed
well-behaved propagation of test strings, then the singu-
larity problem of general relativity would be removed in
string theory at the classical level. However we will show
that this is not the case. A string which tries to propa-
gate through a class of singular plane-fronted waves be-
comes infinitely excited. (A summary of some of these re-
sults was given in Ref. 4. In a recent paper, de Vega and
Sanchez have done a similar calculation for a different
background, the Aichelburg-Sexi spacetime, ' and found
that the string excitation remains finite. ) One can under-
stand physically why the string becomes infinitely excited
in the singular plane waves as follows. A string propaga-
ting in a curved spacetime experiences gravitational tidal
forces and becomes excited. If the curvature diverges,
then in general these tidal forces diverge and the string
becomes infinitely excited. From this viewpoint it is clear
why orbifold singularities do not cause any problems for
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the propagation of strings. Since the metric is locally flat,
there are simply no tidal forces.

Since the criterion for a singularity in string theory is
quite different from general relativity, one may ask if
there are spacetimes which are singular in the sense of
string theory, but nonsingular in the sense of general rela-
tivity, i.e., the opposite of an orbifold. We will show that
the answer is yes. One example involves a background
axion field which is bounded but discontinuous. Since the
curvature is bounded and test particles do not couple to
the antisymmetric axion field, this spacetime is geodesi-
cally complete. However strings do couple to this field,
and we will show that the discontinuity causes enough
excitation of the higher modes that the mass squared of
the final string state diverges. Although this example
may seem unphysical, it illustrates the type of behavior
which is possible without some restrictions on classical
solutions.

One might expect that the study of a string in a highly
curved time-dependent background would be diScult.
Even classically, the equations of motion for the string
are nonlinear. However, we will see that for plane-
fronted waves the analysis simplifies in light-cone gauge.
This gauge cannot be imposed for a string in a general
curved spacetime. In fact we will show that the standard
light-cone gauge is consistent in curved spacetime only
for plane-fronted waves. For a certain class of plane-
fronted waves (called exact plane waves) the uncon-
strained degrees of freedom satisfy linear equations.
Thus, like orbifolds, these backgrounds are simple soluble
models of string propagation in nontrivial backgrounds.

This paper is organized as follows. In the next section
we review the plane-fronted-wave solutions and discuss
classical string propagation in these backgrounds. It is
shown that a straightforward imposition of light-cone
gauge is possible in curved spacetime only for this class of
solutions. In Sec. III we restrict attention to exact plane
waves (with nonzero dilaton and axion) and discuss the
propagation of a first-quantized string. We first compute
the expectation value of the mass squared at late times
for a string initially in its ground state. We show that as
the background fields diverge, so does the mass of the
string. We also discuss the example of a spacetime with
bounded curvature such that (M ) diverges at late time.
Finally, for nonsingular backgrounds, selection rules are
derived governing transitions between initial and final
string states. Section IV contains some discussion of
these results. This includes implications for the idea that
there is a minimum observable length in string theory,
and the possible effect on singularities of quantum string
corrections to the equations of motion.

II. PLANE-FRONTED WAVES AND LIGHT-CONE
GAUGE

form when F =0 (with U = T —Z, V= T+Z). Since the
metric is independent of V, there is a null Killing vector
field l„=B„U. One can easily verify that this vector is in
fact covariantly constant:

V„l'=0 . (2.2)

The Riemann curvature tensor is

R„„=21(„B„)B(Fl
l

and the Ricci tensor is

(2.3)

R„„= ,'(d —F—)t„l„, (2.4)

where the Laplacian is on the transverse coordinates
only, since F is independent of V. The metric (2.1) is thus
a solution to the vacuum Einstein field equations if and
only if BTF=0. The dependence of F on U is completely
arbitrary. In four dimensions, (2.1) is the most general
solution to Einstein s equation with a covariantly con-
stant null vector. " These solutions are known as plane-
fronted waves, ' and in the particular case when F is
quadratic in X',

F( U, X')= W)( U)X'X', (2.5)

H„„=A; ( U)l(„V+'Vp)X', (2.6)

where A; = A ~, j and a dilaton 4 that depends only on
U; Then the metric, axion, and dilaton satisfy the string
equations to all orders if and only if '

8 F+ —,', A A' +124"=0 . (2.7)

One can also extend these solutions to include nontrivial
Yang-Mills fields but this will not be considered here.

Before discussing the motion of strings in these back-
grounds, we briefly consider the motion of point parti-
cles. The equations for a geodesic in a plane-fronted-
wave solution are

they are called exact plane waves. [A linear contribution
F(U,X')= V, (U)X'+M(U) does not aff'ect the curvature
(2.3) and can be removed by a coordinate transforma-
tion. ]

It has been shown ' ' that plane-fronted waves are also
solutions to the classical string equations of motion to all
orders in o -model perturbation theory. This is essentially
due to the fact that the curvature is null, so all powers of
it vanish. ' For the case of plane waves (with W,, bound-
ed) it has been shown that they are exact conformal field
theories and hence solutions even nonperturbatively in
the cr model.

One can also find solution, s with the axion and dilaton
fields nonzero as well. Consider an axion field strength of
the form

Consider a D-dimensional spacetime with metric of the
form

U=O,

X, ——,'F, U =0,
(2.8a)

(2.8b)

ds = —d U d V+ dX'dX;+F ( U, X')d U (2.1) V —F ~U —2F;X'U=O, (2.8c)

for some function F. The X' are D —2 transverse coordi-
nates. This metric reduces to the standard fiat-space

where an overdot denotes derivative with respect to the
aSne parameter. These equations can be interpreted as
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follows. The first shows that P=Uis conserved. This is
simply the inner product between the tangent vector to
the geodesic and the null Killing vector I". Equation
(2.8b) shows that the transverse components of the geo-
desic feel an effective force which is —,'F;P . The final

equation (2.8c) can be viewed as enforcing the constraint
—UV+X'X, +FU =const. If PWO, one can determine
V in terms of U and X' by solving this constraint.

The local tidal forces are, of course, described by the
equation for geodesic deviation. The transverse com-
ponents of this equation are

rj' ——,'P O'8 Frtj=O, (2.9)

where g' is the transverse separation between nearby geo-
desics (with the same value of P). We will see in the next
section that there is a qualitative difference in the behav-
ior of a string depending on whether these tidal forces are
attractive or repulsive. For a purely gravitational plane
wave, the tidal force is attractive in some directions and
repulsive in others. For a source with positive energy
density such as the axion, BTF &0, and the tidal force is
attractive in all directions. Note that the tidal forces de-
pend not on F alone, but the combination FP . Since one
has the freedom to go to a boosted frame U=A, U,
V=A, 'V, the magnitude of F is coordinate dependent.
However under this transformation P=A,P and so the
combination FP is invariant.

In four dimensions, the plane-wave solutions involve
four arbitrary functions of U: the two traceless com-
ponents of W; corresponding to the amplitudes for the
two polarizations for the gravitational wave, the one
component of A; corresponding to the amplitude for the
axion, and the dilaton. Generically, if any of these func-
tions diverge at, say, U=O, then by the field equation
(2.7), some component of W; will also diverge. Since
general relativity (as it is usually formulated) requires a
smooth metric, the spacetime only exists for U(0.
Every timelike geodesic has U =Ps with PAO, and thus
reaches U=O in a finite proper time. The solution is
therefore geodesically incomplete and hence singular
from the standpoint of general relativity. Since all time-
like geodesics are incomplete, this spacetime is analogous
to one with a cosmological singularity. One can also
show that the components of the curvature in a parallel
propagated frame diverge as U~O along an incomplete
geodesic. However, if A; A'+364"=0, then W; can
remain bounded (or even zero) while the axion and dila-
ton both diverge. (This is possible since the dilaton does
not satisfy a local energy condition unless the metric is
suitably rescaled. ) Should this solution still be considered
singular in general relativity? The answer is yes. This is
because one should consider the motion of test particles.
When the dilaton is not constant, test particles no longer
follow geodesics. They feel a force due to the dilaton
which depends on their composition. If the dilaton
diverges, this force will diverge for some test particles
and the solution will be singular. We conclude that
whenever one of the free functions in the plane-wave
solutions diverge, the solution is singular from the stand-
point of general relativity.

(2.10)

where X"=X"(o,r) is the embedding of the world sheet
in spacetime, h, b is the two-dimensional world-sheet
metric, R' ' is the two-dimensional scalar curvature, and
o.' is the inverse string tension. The axion field strength is

Hp p 3V[p8 p] For the remainder of this section we
consider a purely classical string. Since the dilaton term
is multiplied by a', it is a quantum correction and does
not directly affect the motion of a classical string. [It will
have an indirect effect through the field equation (2.7)
which relates g„, and 8„ to 4.j Thus the equations of
motion are obtained by extremizing the first two terms in
(2.10) with respect to X" and h, b. In the conformal
gauge h,„=e g,b, these are

a.a'X~+r~ a,x'a'X~ ,'H~, a.X—'a—„x~e'"=0

and

(2.1 1)

T,b =B,X"BbX "g„, ,'rt, bB,X"O'—X—'g„„=O. (2.12)

Equation (2.12) is the usual reparametrization constraint.
If it is satisfied at one titne and X" satisfies (2.11), then it
is satisfied at all times.

In the conformal gauge, there remains the freedom to
change o and ~ by solutions to the two-dimensional wave
equation. For the trivial flat background (or more gen-
erally a product space which includes a two-dimensional
Minkowski spacetime) this residual gauge freedom can be
fixed by imposing light-cone gauge. ' We now show that
plane fronted iuaues are t-he on1y curued spacetimes for
which light-cone gauge can be implemented. ' To impose
light-cone gauge, one needs a null coordinate U on space-
time which satisfies the two-dimensional wave equation
for all classical string solutions. This imposes restrictions
on the background fields. To illustrate this, consider first
the analogous results for geodesics. Suppose there is a
function T such that d T/di, =0 along all geodesics
(where A, is the affine parameter). Then

= d'T=0=, =j"V„(j"VT)=g"PV„V T, (2.13)

where P is the tangent vector to the geodesic and we
have used the geodesic equation in the second step. Since
this holds for all P we conclude V„V T=0. In other
words, the spacetime admits a covariantly constant vec-

Of course if the spacetime only exists for U (0 it is not
possible to ask whether a test string has a well-behaved
evolution "through the singularity" to U) 0. The ap-
proach we will adopt is to consider the propagation of
strings in nonsingular solutions and then take the limit as
the curvature and other background fields diverge. We
will investigate whether the propagation of the string
remains well behaved in this limit. This approach is pos-
sible since the solutions depend on arbitrary functions.

We now consider the motion of strings. The coupling
of a string to a general metric, axion, and dilaton back-
ground is given by the action

S=—,(h'bg „a.x&a,X"+a „a.x~a,X e"1
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tor V„T.
We now derive a similar result for strings. If there is a

function U such that 0 U=O for all classical string solu-
tions, then

O=a'U= U „a'X~+U„.a.x~a'X . (2.14)

+ ,
' A,,Xja.V-a„X'e"), (2.16)

where we have set a'=
—,
' and imposed conformal gauge.

Extremizing with respect to V yields i3 U =0, and we fix
the remaining gauge invariance by setting U =P~. The
equations of motion for the transverse X' are

B,B'X, + ,'8;FP ,'PA—; X' =—0—.

The two components of the constraint T,b
=0 are

PV=(X') +(X") +FP
PV'=2X 'X" .

(2.17)

(2.18a)

(2.18b)

It is easily verified that the integrability condition
(V)'=(V') is satisfied whenever X' satisfies its equation
of motion (2.17). So provided PPO, V is uniquely deter-
mined up to an arbitrary zero mode Vo. As for strings in
flat spacetime, the X' are not completely independent.
Integrating (2.18b) over o, one gets the usual constraint

fX'X"do =0 which enforces invariance under shifting
0. by a constant.

The light-cone gauge Hamiltonian can be obtained as
follows. Setting U =Ps in the action (2.16) yields

S= —PV+X 'X, —X"X,'2'

Now using the equation of motion (2.11) we get

(V„V„U)B,X"d'X'+ ,'V —UH „„B,X"r) X"e'"=0 . (2.15)

Since the string equation of motion is second order, at
any point we can choose the ~ and 0 derivatives of X",
X"and X'", arbitrarily up to the constraints X +X' =0
and XI'X„'=0. Geometrically these constraints imply
that B,X4'X' is the metric on a timelike two plane and
e' B,x"Bbx" is the volume two-form. Since the timelike
plane can be varied continuously, the only way (2.15) can
be satisfied is if the coefficients vanish: V„V',U=0 and
V'HUH „„=O. Therefore light-cone gauge can be imposed
in curved spacetime only if there is a covariantly constant
null vector V„U, i.e., only for the plane-fronted waves.

The action for a string in a plane-fronted-wave back-
ground is

s= f—, '( a. va v—+a.x'a x, +Fa.va v

terms are the same as a string moving in flat spacetime.
The next two describe the interaction with the spacetime
curvature and axion field, respectively. Note that the
background fields give rise to time-dependent potentials
for the X'.

III. SINGULARITIES

A. Constant polarization gravitational wave

Consider first the solution describing a gravitational
wave with constant polarization and no axion or dilaton.
This is given by

F(U,X, F)=W(U)(x —Y ) . (3.1)

We will assume that 8'=0 for U &0 and U & T for some
time T. Let us decompose Xand Yinto modes:

X(o,r) =g X„(r)e'" (3.2a)

In this section we restrict our attention to exact plane-
wave solutions and consider the propagation of a first-
quantized string. As discussed in the previous section we
will adopt a light-cone gauge quantization, which has the
advantage of being manifestly unitary. It will be con-
venient to consider spacetimes that are sandwich waves,
i.e., no curvature, axion, or dilaton for U &0 and U & T,
so that asymptotically we have the usual free string
states. Quantum mechanically, a string which begins in
one state at U &0 has some amplitude to be in various
states after propagating through the curvature. Since we
are considering exact plane waves, the transverse modes
satisfy a linear equation with time-dependent coefficients.
One can thus calculate transition amplitudes by relating
the in-oscillator modes of the string to the out-oscillator
modes by a Bogoliubov transformation as is done in
curved-space quantum-field-theory calculations. ' One
should note, however, that here we are dealing with a
two-dimensional quantum-field-theory problem on a flat
world sheet with an effective time-dependent potential
which arises from the ambient background fields, and not
a quantum field theory on curved spacetime.

This section is divided into four parts. In the first, we
consider the total excitation at late time of a string mov-
ing in a background consisting of a gravitational wave
with one polarization. Next we consider the general
background with axion and dilaton included. Third, we
discuss the example of a solution which is singular in
string theory but not general relativity. Finally, we dis-
cuss selection rules governing string transitions between
low mass states.

I"(o, r) =g I'„(r)e'" (3.2b)

+FP + g X'XJ
3 IJ (2.19)

H=f"
2m

n2P'P, +X"X,' FP —A,"X"XJ—, (2.2—0)

where P; is the momentum conjugate to X'. The first two

Constructing the canonical Hamiltonian in the usual way
we obtain

X„+n X„—O'P X„=O,
Y +n Y +8'P Y„=O .

(3.3a)

(3.3b)

Note that in this case not only are modes of different n

where X „=X„*,Y „=Y„*. Since the field equation
(2.17) is now linear, we obtain
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decoupled, but X„and Y„are also decoupled. Coupling
between X„and Y, will arise when we include both po-
larizations for the gravitational wave or the axion back-
ground. Equations (3.3) are just a collection of harmonic
oscillators with time-dependent frequencies.

As mentioned earlier, a linear contribution to
F(U, X, Y) is pure gauge and should not affect the physi-
cal propagation of a string. Indeed, the addition of a
linear term to F will only add a source term to the equa-
tion of motion (2.17}which will not affect the mode equa-
tions (3.3) for n%0. For n =0, these equations will
change reflecting the description of the center-of-mass
motion in the new coordinates. Note that when n =0,
Eqs. (3.3) are identical to the geodesic equations (2.8b). '

Writing each mode in terms of right and left oscilla-
tors, we have (for n & 0)

l

2 n
(3.4)

where u„, u„are solutions to (3.3a) which have the form

ln 7

n e ln7
n (3.5}

for U(0, and similarly for Yn. Imposing the standard
canonical commutation relations leads to the usual inter-
pretation of a and a as annihilation and creation opera-
tors. These are the in oscillators. The string can be simi-
larly decomposed into out modes v and out oscillators b,
where the U satisfy (3.3a) but have simple exponential
form for U) T. Since this equation is linear, the u s and
v's are linearly related, and one obtains a linear transfor-
mation between the in and out oscillators:

bx g ax Begxf bx g ax B tax
n n n n n ~ n n n n n (3.6)

This is the Bogoliubov transformation. Since (3.3) has
real coefficients, we have A „=A „and Bn =Bn. Since in-

terchanging X and Y is equivalent to W~ —W, the
coefficients for bn can be obtained from A„and Bn by re-
placing W with —W.

The mass-squared operator in the region U & 0 is

n=1
(3.7)

(o ix"'"'io )=(o ib"'b"[0 )=is i' (3.8)

where the —8 is the standard normal-ordering constant.
This is usually fixed in light-cone gauge by demanding
Lorentz invariance. Since our solutions are fat for U & 0,
the usual arguments can be applied in this region to show
that the normal-ordering constant is the same. For
U ) T, the mass squared is given by a similar expression
with a„',a '„replaced by b„',b '„. In general, the full space-
time has only a five-parameter group of symmetries. It
turns out that the generators of these symmetries do not
involve V. Thus the algebra of the quantum operators is
identical to that of the classical generators, and there is
no anomaly.

From the Bogoliubov transformations, one can find the
excitation level in the out region of the nth right and left
modes of a string that was initially in the ground state of
this mode:

and similarly

(3.9)

The particular values of A„and B„ for a given W can
be found by solving (3.3a). Note that if we replace X„by
g and r by x, this equation takes the form of a one-
dimensional Schrodinger equation for a particle of energy
n moving in a potential WP . To find the coefficients

B„, we start with a positive-frequency solution e '"' at
early times and ask for the coefficient of the negative-
frequency solution at late times. In the quantum-
mechanical analogy, this is equivalent to fixing the ampli-
tude of the transmitted wave to be one and asking for the
coefficient for the reflected wave.

We now consider three limiting cases. First suppose W
is bounded and consider the limit of large mode numbers
n »max~ W~P In t. his limit the coefficients can be
found by treating the last term in (3.3a) as a perturbation.
(This is essentially the Born approximation. } In the ab-
sence of this term, the solution is simply X„=e
Thus expanding to first order about this solution,
X„=e '"'+5X„,we obtain

(5X )+n 5X = WP e (3.10)

For r & T/P, corresponding to flat spacetime, the
coefficient of e'"' in the solution turns out to be
@'(2n/P)P/2in, where k is the Fourier transform of W
with respect to U. Thus

n n
4 2

(3.11)

The second limit we wish to consider is the case of
large repulsive tidal forces. For Eq. (3.3a) this corre-
sponds to n «max(WP ). In the quantum-mechanical
analog, this is the case where the energy is much less than
the height of the potential. For a wide class of back-
grounds W, one can use the standard WKB approxima-
tion to show that'

8„=exp I &WdU
0

(3.12)

Thus (N„")= ~B„~ grows exponentially as W increases.
This is exactly what one should expect physically. In this
limit, the repulsive tidal forces are much stronger than
the string tension. Even a classical string will have the
mode X„ increase exponentially, driving up its energy. It
is perhaps worth pointing out that the WKB approxima-
tion does not require W to be approximately constant,
but only slowly varying over one "exponential time" of
the solution. This is satisfied, e.g. , if W=U ' for m ) 2
and small U.

The third limit is the case of large attractive tidal
forces. If n «max(WP ) as above, this is the case for
Eq. (3.3b). In the quantum-mechanical analog, this cor-
responds to a particle in a very deep well. Since the only
difference between (3.3a) and (3.3b) is the sign in front of
W one can estimate ( X» ) by simply replacing W with
—W in (3.12) to obtain (N») =1. However, if W in-
cludes a transition region where the WKB approximation
breaks down, one can use connection formulas to calcu-
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late the coefficient in front of this order-one term. For
very deep wells, one finds that this coefficient typically
grows with the depth of the well. In these cases the exci-
tation of these modes will again diverge as the strength of
the gravitational wave increases, although not as fast as
the modes with repulsive forces. This is again what one
would expect from the behavior of a classical string.

Let us now consider (M ) =4 gn (N„' ) —8. The con-
vergence of this sum is determined by its behavior for
large n. If W is a C" function of compact support, then
its Fourier transform W will vanish for a large argument
faster than any polynomial. Thus, by (3.11), (M ) will

always be finite at late times. However in the limit that
Jov'WdU diverges, corresponding to a singular space-
time in general relativity, (X„) also diverges for each n.
Thus the limiting spacetime is also singular in the sense
of string theory.

B. General plane-wave solution

We now consider the case of a general plane wave with
all background fields nonzero. Let W;(U) be the ampli-
tudes for the two polarizations of the gravitational wave,
A ( U) = A |2( U) be the amplitude for the axion, and 4( U)
be the dilaton. We again assume that these fields vanish
for U (0 and U) T. Since the string equation of motion
(2.17) is still linear, the different modes again decouple al-
though the two transverse components are now coupled.
Expanding X'(o, ~) in modes as in (3.2) we obtain

X'+n X' +Q' X~=0

and (, )e'"'. The string-mode decomposition becomes (for
n)0)

u„=

X—u n

—inr
0 e

1
inr

0

uy

uy

0 —inre

0
in 7

1

(3.17)

Let v'„be the out modes, which are solutions to (3.13),
that have the simple exponential behavior for ~) T/P.
Writing u'„ in terms of out modes,

u„= A„v'„+B„vy +C„v"„+D„vy, (3.18)

where these coefficients depend on P„Pz, p, and I,. The
corresponding expression for uy can be obtained from
Eq. (3.18) by interchanging both the X and Y com-
ponents, and P, and $2, as well as taking At-~ —

A, . Simi-
larly, 6"„can be obtained from (3.18) by taking the com-
plex conjugate and replacing A. with —

A, . The Bogo-
liubov coefficients relating the a and b oscillators can
then be found:

b„"=A„($„$2,p, A, )a„"+B„(g~,g„p, —l)a~

X„= —(a„u'„+a~u„—a '„u"„—a „u„), (3.16)
n

where X=(r), a„', a '„are the right and left in-mode an-
nihilation operators. The u„are the in-mode solutions to
(3.13) which have the following form for w (0:

where the matrix Q,' takes the form

p+ink

p ink,

with

(3.14)

—C„*($„1)}z,p, —A. )12 '„D„*($2,$—„p,A. )a ~ . (3.19)

The other coefficients can be found using the same argu-
ments as above. As discussed earlier, from these Bogo-
liubov coefficients one can calculate the expectation value
of the out-number operator in the in vacuum to be

(3.15a
(X;, ) = ~C„(g, , gz, p, —A. )~ + ~D„(gz, g„p, A. )~ (3.20)

(3.15b)

and similarly for the other modes.
We now consider the same limiting cases we con-

sidered earlier. For n much greater than all background
fields, we have

p=W, P', (3.15c)

(3.15d)

1
e in 7+ QX n

J

(3.21)

and we have used the field equation (2.7}. Note that the
dilaton only enters the equation for the string evolution
through its effect on the metric via this field equation.
Since (2.7) involves two derivatives of 4, it follows that a
background dilaton of the form 4=EU has no effect on
the propagation of a string. This is consistent with ear-
lier discussions of a linear dilaton background in flat
spacetimes. It was shown' that if 4= V„X" for some
constant vector V„, then the only effect is that the critical
dimension and mass levels are both shifted by an amount
proportional to V„V". When V" is null, there is no
effect.

Now an incoming wave (r}=(0)e '"' will at late times
be some linear combination of (o)e '"', (&)e '"', (o)e'"',

and expanding to first order, we obtain

1
5X„+n'5X„=—

Q 0 e (3.22)

For ~) T/P, the coefficient of e"' in the solution is

i p(2n IP) A,(2n IP)
2nP 2nP 2P

iQ(2n IP)
2nP

where Q is the Fourier transform of the matrix Q with
respect to U. Thus,
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which implies

+P + ~~~ +I
2p2 4p2 2 p2

(3.25)

0+
2

where

+ iS+
e

+iS
(3.27)

P, +(t2 [(P, P~) —+4p +4An]',
2 2

(3.28)

are the eigenvalues of the matrix Q and where Q „Qz can
be obtained by expanding (3.13) to next order in the
WKB approximation. If WKB is not valid near the tran-
sition regions, one can use one of the standard methods
to find the connection formulas which link the solutions
in (O, T/P) to those outside the region. Independent of
the particular form for the connection coefficients, the
solution for r& T/P will be a linear combination of the
v„'s with coefficients involving

r

exp +i S d~
0

T

exp +i S dv.
0

(3.29)

So, as long as S &0 the excitation of some modes will

be exponentially large. Which particular modes of the
asymptotic string get excited will generally depend on the
behavior near w=O, T/P as well. Let us now reexpress
S in terms of our original fields and see under what
conditions it will be negative. Using (3.15) and (3.28), one
obtains

36 2

' 1/2

p 2 +72 + A@2 +
9p

(3.30)
We see that large gravitational-wave amplitudes 8' will
cause S (0 and hence exponential excitation. A large
axionic field, however, will keep both S+ &0. This is a
result of the fact that for large axion fields, the tidal
forces are all attractive. The excitation in this case will
depend on the coefficient in front of the exponential.
However as discussed in Sec. IIIA, in many cases this
will grow with the strength of the axion field.

Thus if W, ~ ao, (N„) diverges exponentially for each
n and the limiting spacetime is again singular in the sense
of string theory. If A ~~ while 8'; remains finite, then
it depends on the detailed form of A ( U). In many cases
(N„) will again diverge. However, it is possible that

where all the Fourier transforms are evaluated at 2n /P.
We now look at the other limit of n much less than at

least one of the background fields. This corresponds to
large tidal forces (of either sign). We assume that the
WKB approximation is valid (at least away from ~=0
and r= T/P). Taking as our ansatz

iS
ex= s (3.26)
e

one obtains, as the fundamental set of four solutions,

there exist certain choices of A ( U) such that A ~~
does not result in infinite mass. If all physical observ-
ables have finite expectation values, then these spacetimes
would be analogous to orbifolds: They would be singular
in general relativity but not string theory.

C. Solution which is singular only in string theory

We can now describe our example of a solution which
is nonsingular in the sense of general relativity, but never-
theless singular in the sense of string theory. For simpli-
city we set 8', =0 and 4=0. Let the axion amplitude
A ( U) be bounded everywhere but discontinuous at some
value of U. From Eq. (2.6) its clear that in this case both

H„, and B„,are discontinuous and not 5 functions. The
Fourier transform of A will fall off like 1/n for large n.
From (3.15) and (3.25) we see that (N„) —1/n for large
n and hence (M ) diverges. The discontinuity in the ax-
ion field results in enough excitation of the high modes of
the string to cause the mass to diverge. So this solution is
singular in string theory. However, geodesics do not cou-
ple to the axion field. From Eqs. (2.5) and (2.7), W will
be discontinuous but the geodesic equations (2.8) still
have unique (continuous) solutions for all time. So the
spacetime is geodesically complete.

Note that the divergence of (M ) is a purely quantum
effect. For a classical string, if a mode is not oscillating
initially, it will not oscillate at any later time (since the
modes decouple). Hence the mass will remain finite.

A purely gravitational analog of this solution can be
obtained by considering an impulsive gravitational plane
wave with constant polarization, i.e., metric (2.1) with
F =5( U)(X —Y ). Then it has been shown' that
(N„)—1/n so (M ) again diverges even though the
spacetime is geodesically complete. (Although the geo-
desics are not continuous in this case. ) Note that this be-
havior of (N„) is what one would expect from (3.11)
even though strictly speaking the derivation of (3.11) is
not valid for a 5 function. The key point is that, for
plane waves, the coupling of the string to the axion is
through the derivative of X', whereas the coupling to the
metric is proportional to X. So a milder axion back-
ground will produce the same excitation of the string as a
5 function in the metric.

H =Ho+H

where

(3.31)

Ho= ,'POPO;+Q; XOXO+ —g n(a„' a„'+a '„a '„)
n =1

(3.32)

and

D. Selection rules

We now derive selection rules governing transitions be-
tween in- and out-string states for the case of nonsingular
plane-wave backgrounds. The light-cone gauge Hamil-
tonian is given in Eq. (2.20). Reexpressing this in terms
of the creation and annihilation operators for the indivi-
dual modes yields
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HJ= g (a„' a~+a '„a ~ —a '„a~ —a„'a ~ )+H. c. ,
n=1

(3.33)

where Q, is given in terms of the two polarizations for
the gravitational wave W;, the amplitude for the axion A,
and the dilation 4 in (3.14) and (3.15).

Using Dyson's formula one can calculate transition
amplitudes perturbatively. It is clear from the structure
of Hz that transitions which do not preserve X=N are
forbidden. For some forms of the background fields, it is
possible to show that certain transitions are forbidden to
arbitrary order in the interaction Hamiltonian. We now
derive these selection rules for transitions from the initial
tachyon state to a final massless level state as well as tran-
sitions between massless states. The massless states are
proportional to

P; a', a~i ~0), (3.34)

0 1

0 1

1 0

0 —1

0 —1

1 0

(3.35)

We note that a transition from the vacuum to a final
massless state with polarization P; will involve arbitrary
powers of Hi, i.e., of the matrix Q; . Upon performing all

the contractions of the oscillators, the amplitude will

clearly be a sum of terms involving

TrPQ" (3.36)

as well as traces over some products of Q's as well. Simi-
larly for a transition from a massless state with polariza-
tion P to a massless state with polarization P', the ampli-
tude will have terms involving a trace over P, P', and ar-
bitrary powers of Q. Knowing this alone one can derive
certain selection rules. We consider the following four
classes of plane-wave solutions.

(1) 4%0, W; = A =0. In this case Q is proportional to
the identity. This implies that only transitions to a dila-
ton from an initial ground state are allowed since only
the dilaton polarization has a nonzero trace. Similarly,
transitions between distinct massless states are forbidden
since the product of any two distinct polarizations is
traceless.

(2) 4%0, W, WO, Wz = A =0. In this case Q is diago-
nal. Since such matrices are closed under multiplication
only transitions to a dilaton or X —Y graviton are al-
lowed. Only transitions between a dilaton and X —Y
graviton or between an XY graviton and an axion are al-
lowed.

(3) 4%0, WzWO, 8'i = A =0. In this case Q is sym-
metric with equal diagonal elements. Since such matrices
are closed under multiplication, only transitions to a dila-
ton or XY graviton are allowed. Only transitions between
a dilaton and an XY graviton or between an X —Y

where i runs over X and Y. The form of P, - for the dila-
ton, X —Y polarized graviton, XY polarized graviton,
and axion are, respectively,

1 0 1 0

graviton and an axion are allowed.
(4) iIi&0, AWO, W;=0. In this case Q has equal diago-

nal elements and off diagonal elements of opposite sign.
Since such matrices are closed under multiplication, only
transitions to a dilaton or axion are allowed. Only transi-
tions between a dilaton and an axion or between two
gravitons are allowed.

One should note that a massless state can be excited
from the ground state even if the corresponding back-
ground field is zero. For example, in case (4), transitions
to a dilaton are possible even when 4=0.

IV. DISCUSSION

We have shown the existence of singular solutions to
classical string theory. We now discuss several issues
which are raised by this investigation.

It has been shown that plane-fronted waves are solu-
tions to all orders in cr-model perturbation theory. How-
ever, this series is often assumed to be valid only when
(a'R) « 1, where R is a measure of the spacetime curva-
ture. Since this inequality is clearly violated for the
singular plane waves, is it justified to continue to use this
expansion? The answer is yes. The above inequality is
usually assumed in order to ensure some form of conver-
gence of the perturbation series. However for plane-
fronted waves, this series always converges since all the
higher-order terms vanish. So no restriction is necessary.

We have considered test strings in the singular plane-
wave backgrounds. Since we find that (M ) diverges,
one might ask whether it is consistent to ignore the back
reaction. The analysis certainly is consistent in the sense
that the backgrounds have been shown to be classical
solutions to all orders in 0-model perturbation theory.
The first-quantized strings are introduced simply to test
whether these solutions are singular, and we find that
they are.

However since test strings can be viewed as small per-
turbations, one can ask whether the fact that ( M )
diverges means that the solutions are unstable. They are
clearly stable under a class of perturbations which main-
tain the plane-wave form. However for more general per-
turbations this is a di%cult question to answer. Even if it
were known that generic perturbations became large near
the singularity it would not be clear whether or not near-
by solutions were singular. In general relativity we know
that singularities are stable precisely because of the singu-
larity theorems. Unfortunately, there is no analog of
these powerful results for string theory. However in our
view, stability is not a crucial issue. These solutions are
not of direct physical interest due to the existence of the
null translational symmetry. The singular solutions are
singular for all time and not the result of evolution from
nonsingular initial conditions. Nevertheless they are of
interest since they are the first examples of singular solu-
tions in string theory.

In Sec. III we only considered strings in plane-wave
solutions. More general plane-fronted waves contain
singularities (in the sense of general relativity) which are
more analogous to gravitational collapse than a cosmo-
logical singularity. Some timelike geodesics are complete
and others are not. String propagation in these back-
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grounds can also be analyzed in the light-cone gauge.
However now the equations for the transverse modes are
nonlinear and more difficult to analyze near the singulari-
ty. Since the tidal forces again diverge, one expects that
strings will again become infinitely excited showing that
these solutions are also singular in the sense of string
theory.

Over the past few years a number of arguments have
been given to support the idea that there is a minimum
observable length in classical string theory. These were
often viewed as giving further evidence (in addition to or-
bifolds) that string theory should not have singularities.
In light of the results presented here, the range of validity
of these arguments needs to be reexamined. One argu-
ment applies to backgrounds of the form M XI( „, where
M is Minkowski spacetime and E„ is a compact internal
space with characteristic radius r. For a variety of
different choices for K„, it has been shown ' that string
propagation on this background is equivalent to string
propagation on M XE l. So a small internal space is in-

distinguishable from a large one. This is referred to as
"spacetime duality. " A second argument comes from
high-energy (fixed-angle) string scattering in flat space-
time. As one increases the center-of-mass energy s, one
probes shorter distances until one reaches the Planck
scale. At higher energies it has been shown that the
dominant contribution to tree-level scattering comes
from world sheets which grow in size like v's. Thus at
higher energies one does not probe arbitrarily short dis-
tances.

Neither of these arguments apply directly here, and
indeed the results we find are qualitatively different.
%'hen the curvature becomes large, the strings do not
behave as if the curvature is becoming small. Thus one
must be careful in applying spacetime duality in areas
where it has not been explicitly demonstrated. In partic-
ular, there seems to be little justification for assuming
that some form of spacetime duality holds in the early
Universe in string cosmology.

With regard to the second argument, although the in-
teraction of a string with a singular gravitational wave is
in some sense a "high-energy" collision, the string is
strongly affected by the singularity. It is difficult to
directly compare the calculations here with the flat-space
scattering analysis, but the following comments can be
made. A nonsingular gravitational wave can presumably
be viewed as a collection of gravitons. The conserved
component of the momentum P can be viewed as a mea-
sure of the speed at which the string is approaching the
gravitational wave. Thus the limit as P~~ should be
analogous to a high-energy collision between the string
and the gravitons. In Sec. III A it was shown that for a
gravitational wave with amplitude 8'(U) and constant
polarization, and for modes satisfying n «mx(a8' P),

the excitation at late times is given by

(X„)= exp I v WdU (4.1)
L

Two points should be noted about this formula. First,
the string responds to an integral of the gravitational-
wave amplitude, which is consistent with the idea that

strings are not probing arbitrarily short distances.
Second, (X„) is independent of P. Thus as P gets
large, the excitation of each mode remains finite, but the
number of excited modes increases with P. This implies
that (M ) increases with P. This should be compared
with the fact that the fiat-space (fixed-angle) elastic
scattering amplitudes vanish exponentially fast with
center-of-mass energy. The implication is not that string
interactions become weak at high energy, but rather that
the result of high-energy collisions is likely to be highly
excited strings. Since the number of states of a string in-

creases exponentially with mass, one might expect an ex-
ponential decrease in the (fixed-angle) elastic scattering
amplitudes. Finally we remark that a different high-

energy limit of flat-space scattering amplitudes (with t
fixed) has been shown ' to be related to the
Aichelburg-Sexi geometry' which is just a special case of
the plane-fronted waves, with the metric function
F( U, X')=5( U)ln(X'X; ).

We have considered backgrounds which satisfy the
classical equations of motion for string theory. In Ref. 4
two arguments were given for why these backgrounds are
likely to remain solutions to the field equations which in-
clude perturbative quantum corrections. The first was
that any local correction term constructed from the back-
ground fields and their derivatives will vanish. The
second was the fact that these spacetimes have some un-
broken supersymmetry, so perhaps a nonrenormalization
theorem could be established.

However even if there is a nonzero quantum correc-
tion, one can still argue that some singular solutions
should exist in the quantum theory as follows. In at-
tempts to quantize general relativity directly, the effective
dimensionless coupling constant is GR, where G is
Newton's constant and R is a measure of the curvature.
Thus strong curvature automatically corresponds to
strong coupling and one expects quantum effects will be
important. In string theory the situation is different.
The dimensionless coupling constant is the dilaton. The
field equation for the dilaton takes the form of a wave
equation with sources which are powers of the curvature
and other background fields. One expects that in regions
of large curvature, the dilaton will become large and
quantum effects will again be important. However
plane-fronted waves have the property that the source
term for the dilaton vanishes. Thus 4=const is an exact
solution even when the curvature diverges. So one can
consider a singular plane wave with constant dilaton. By
setting the dilaton to correspond to arbitrarily small cou-
pling, one can reduce the size of perturbative quantum
corrections. If one makes the reasonable assumption that
nonperturbative quantum effects also go to zero as the
coupling tends to zero, one is led to the possibility that
there exists a consistent weak-coupling regime in the full
string theory which contains spacetime singularities.
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