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Stability of compactification during inflation
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The possibility that inflation may trigger an instability in compactification of extra spatial dimen-
sions is considered. In old, new, or extended inflation, the false-vacuum energy results in a semiclas-
sical instability in which the scalar field representing the radius of the extra dimensions may tunnel

through a potential barrier leading to an expansion of the internal space. In chaotic inflation, if the
initial value of the scalar field responsible for inflation is large enough, the internal space becomes
classically unstable to ever increasing expansion. Restrictions on inflationary models necessary to
keep the extra dimensions small are discussed.

I. INTRODUCTION

If the fundamental theory of nature is a "higher-
dimensional" one with extra spatial dimensions, it is
necessary to hide the extra dimensions. The usual mech-
anism for hiding the extra dimensions is to assume that
they form a compact internal space with a physical size
small enough to have escaped detection. For currently
available accelerator energies, this requires a size smaller
than the Fermi length, or about 10 ' cm. This would
not be surprising, since in almost all extra-dimensional
theories the fundamental length scale is set by the Planck
length, lp~=6& =1.616X10 cm. In the limit that
the physical size of the internal space is smaller than the
physical size of the external space, it is possible to dimen-
sionally reduce the system (integrate over the extra di-
mensions) and obtain an "effective" (3+1)-dimensional
theory.

The assumption that the extra dimensions form a com-
pact space is quite reasonable since if the Universe is
closed (0 & l) the three observed spatial dimensions form
a compact space (a three-sphere S ). The remarkable
thing is that there is such a disparity in the sizes: 10
cm for the internal space and more than 10 cm for the
external space. Theories with extra spatial dimensions
are many and varied. However, all have common
features of relevance for cosmology. In theories with ex-
tra dimensions the truly fundamental constants are the
ones in the higher-dimensional theory. The constants
that appear in the effective four-dimensional theory are
the result of integration over the extra dimensions. If the
volume of the extra dimensions would change, so would
the "observed" constants. This implies that the internal
dimensions must be static, or have changed very little

since the time of primordial nucleosynthesis. '

The curious cosmology that emerges is one that has
some dimensions large and expanding, and some dimen-
sions small and static. Since expansion (or contraction) is
the generic behavior expected, the challenge for cosmolo-
gists involves constructing models that have static extra
dimensions. The basic approach is to assume that the
higher-dimensional theory is that of gravity plus a
cosmological constant. The extra dimensions are held
static due to the interplay between the cosmological con-
stant and either classical or quantum fields. Although
the true mechanism in more complicated theories such as
superstring models might be more complex, there must
be some vacuum stress keeping the extra dimensions stat-
ic and the toy models studied here may very well be
relevant.

In the models that have been studied, the present
ground state is stable against small fluctuations of the size
of the internal space. Maeda claimed that it is also
stable against tunnehng under the potential barrier. In
Sec. II we show that when other fields are introduced, the
potential is changed in such a way that a semiclassical in-
stability appears and there is a nonzero probability for
the extra dimensions to tunnel out the potential keeping
them small. On the other hand, the presence of scalar
fields is required during the inflationary era so that their
effect on the dynamics of a multidimensional Universe
must be considered. In Sec. III we discuss the stability of
internal space when old, new, or extended inflation is
considered. In this case the problem has a semiclassical
nature: a calculation of transition rates is then per-
formed. In Sec. IV the analysis is extended to Linde's
model of chaotic inflation. Our results are summarized in
a concluding section.
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II. FROM %TO FOUR DIMENSIONS

%e will start with a theory of gravity in N=D+4 di-
mensions with a cosmological constant A and some
matter fields, for simplicity represented as a single scalar
field P. Upon dimensional reduction, the scalar field P
will give rise to a four-dimensional scalar field responsible
for inflaton (called the inflaton), and the degree of free-
dom corresponding to dilatations of the internal space
will give rise to a second four-dimensional scalar field

known as the dilaton. The action is

S=fd x+ —g — R 2A+—X(1t)+
16m 6

where G is the gravitational constant in D+4 dimensions,

related to Newton's constant 6& by G=GN VD with VD

the present volume of the internal space. The field P is
assumed to appear as a minimally coupled scalar field:

X(y) =-,'g a„ya„y—v(y) . (2)

Extra dimensions are assumed to be compactified to a D-
sphere of radius b, whose present value is bo. The metric
then reads

gM~ =diag[g„„(x);b (x)h,"(y)] .

After dimensional reduction, fields do not depend on the
coordinates of the internal space (h;i is just the metric of
a D-sphere of unit radius}, so that an integration over
these coordinates yields only a numerical factor. Intro-
ducing the Newton constant Giv, the action (1}becomes

S= 4x —g
b D (D —1) B„bd„b

ho 16mgN

p ~@~b

16mGN ho
'D ~ i D

+ + VD [X(p)—2A+ ]
bo b 16m G~ bo

(4)

where dots stand for other fields needed to obtain compactification. The ordinary Einstein-Hilbert action may be
recovered after a conformal transformation of the four-dimensional metric:

g„„=exp( Do /o o)g-„„,
with the dilaton field defined by

b D(D+2)o= (6)

it has the ordinary field dimensions of (length} '. The desired final state is o =0, corresponding to b =bo, and d =0.
This corresponds to a static internal space. The final four-dimensional action is

T

S= fd x& g — — R + ,'r}„o8"—o—U, (o )+ ,'g""d„Qd,—Q exp( D—o /o 0) V(i—tr)
1

1V

where Ui(cr) and V(g) are specified below. In this last
expression for the action, the metric tensor g„„and not

g„, appears; furthermore we introduced the field
P=( VD)' g with canonical dimension (length) ' [in
the (D +4)-dimensional theory fr has dimensions
(length) ' ]. In this conformal frame, the gravita-
tional constant (the coefficient of the Ricci scalar) is con-
stant, but the mass scale associated with the inflaton is
not, due to the factor exp( Do /cro) in—front of V(1t).

The potential U, (cr) of Eq. (7) contains contribution
from (at least) three sources. The first source is the term
in Eq. (4) proportional to A. The second source is due to
the curvature of the internal space, which appears in Eq.
(4) as the term proportional to b . Finally there must
be some other source to give a stable ground state. %e
will consider a general model that encompasses two
compactification schemes, which we shall refer to as ei-
ther Casimir, where an extra potential is given by the
quantization of scalar fields in a compact space, ' or

monopole, ~here an extra vector field is considered for
which the well-known Freund-Rubin ansatz is taken.
Both cases are discussed in detail in Ref. 8. The point is
that the extra contribution is some (negative and D-
dependent) power of the radius of the internal space; thus
the curvature term can be balanced and a static solution
b =bo (i.e., cr =0) is allowed. Furthermore, this solution
has nonzero energy, so that the N-dimensional constant
A in the action (1) is tuned to ensure that an effective
four-dimensional cosmological constant does not appear.
The potential Ui (o ) shown in Fig. 1 for the Casimir case,
has the following expression:

—2(D +2)cr lo0 —Da IcJ0

D+2 +e

D +4 —(D+2)olo
e 0

D+2
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FIG. 1. Casimir potential U&(0 ). The points with 0.=0 cor-

respond to a stable compactification of the internal space when

the vacuum energy vanishes.

FIG. 2. Inflationary potential with phase transition. Notice
the ground state at g =

1( r.

where a=(D —1)oo/bo(D+4); in the monopole case it
looks very similar and has the same dynamical proper-
ties. When f is constant and has zero energy, the dilaton
field is trapped at the minimum of this potential and is
stable from the semiclassical point of view. On the other
hand we must introduce a g field in order to have
inflation. Thus the evolution of 0. will be governed by a
potential of the general form

2 2(D + 2)cr lcro Duino-
D+2

g) +4 —(D+2)a/pro

8+2
+e 'V(g), (9)

(10)

Here A, is the dimensionless ratio of the multidimensional
constant X [dimension (length) ] to the voluine of the
internal space VD. The potential V(f), shown in Fig. 2,
has a true vacuum at

P= Pr =go[3(1+e) +&1+9e(2+e)]/4

and a false-vacuum state at /=0 The constant . A in Eq.
(10) is now specified to be

where V(P) will be specified below for two different cases.
In any inflationary scenario with phase transitions, 1( is
initially in a false-vacuum state. The potential is of the
form

positive value, while leaving invariant the asymptotic be-
havior for large cr Since. U(cr =0,0) ) U(o = ~,0)=0,
the compactified vacuum is semiclassica11y unstable so
long as /Per There . are two ground states of the sys-

tem. The first ground state is P=ii'jr and o =0. This is

the desired ground state corresponding to a compactified
internal space. The other ground state is o.= ~, for any

This is the state to be avoided, corresponding to an

expanding internal space. In the second case, the scalar
ficld representing the radius of the extra dimensions tun-
nels through the barrier, and lowers the energy of the sys-
tem by ever increasing expansion.

Compactification is not stable unless the inflationary
stage ends before the internal space can grow. For this to
occur, the inflaton must tunnel through the potential fas-
ter than the dilaton can tunnel through its own. The
four-dimensional appearance of the world is the result of
a competition between the two scalar fields won by the
inflaton. In the next section, we calculate the tunneling
rates in P and o directions and show that the first one is
larger than the second for reasonable choices of parame-
ters, so that corn pactification of internal space is
preserved in new or extended inflation.

We will also discuss stability in the context of I.inde's
chaotic inflation theory. ' In this case the dynamics is to-
tally classical, but the guidelines of the discussion are
similar to the previous case. Here the introduction of the
potential that drives inflation changes the dynamics of
the dilaton field in such a way that for very large values
of 1(, the barrier against evolution away from o =0 disap-
pears, leaving the dilaton free to evolve classically during
inflation. The potential assumed for chaotic inflation,
Fig. 3, is of the form

Vc(g) =
—,'A, Q (12)

in order to ensure that V(1(r)=0. It will serve as the
e6'ective four-dimensional cosmological constant to drive
the de Sitter phase during inflation when PWt/ir. For
/=0, the potential has the simple form U(o, 0)
= U, (o')+A exp( Do loo). The effect of the—new term
is to raise the energy of the minimum of the potential to a

The relevant potential for chaotic inflation is Uc(cr, g),
which is Eq. (9) with V(g) = Vc(f). Stability of
compactification in chaotic inflation is discussed in Sec.
IV.
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I
I

I (10) (Fig. 4). For a small e, the origin cr =0, /=0 is a
(metastable) vacuum state, with U(0, 0)=A. Let us call
this vacuum state Vo. The other (true) vacuum states lie
at (o.=0, f=gz), a.nd (for any g) at 0 =+ co(to be called
V, and V2, respectively). The Euclidean action for the
tunneling Vo —+V, is a well-known result, and in the
thin-wall limit (small e) it amounts to"

SE(g)=
48K.e

(15)

0 I I
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0/0'o
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FIG. 3. Quartic potential of chaotic model. Inflation occurs
when t( rolls down to zero.

The Euclidean action in the o direction can be evaluated
in the thin-wall approximation if A &( UM, where UM is
the maximum of U(cr, g=O). To first order in 1/D, i.e.,
when we may neglect the first term in Eq. (9), it is easy to
see that the maximum is attained at yM =(1 2!D)—, with
U~ =2a/(De ). Then the thin-wall condition is
equivalent to A/a «2/(De ) and is satisfied for

III. SEMICLASSICAL STABILITY D »47M eA, POGXbo (16)

Let us turn now to the evaluation of tunneling rates in
the two relevant alternative directions: toward an inner-
space explosion, or toward the compactified vacuum.
Only when the latter results to be much more likely than
the former, will the process match the actual observa-
tions of the inflated, four-dimensional universe. The
theory of vacuum decay in flat space is well known, and
in the thin-wall approximation gives a very simple result:
the probability of transition per unit time per unit volume
of a field P in a potential V(P) is I /V= A exp( —SE),
where Sz is the Euclidean action for P evaluated along
the "bounce" path of the field. The thin-wall approxima-
tion is realized when the ratio of the energy difference e
between the two vacuum states and the barrier height is
much smaller than one. In this case SE is simply

27m 2S',
SE=

2E
(13)

S~(o ) &&Ss(f) . (14)

Let us finally start with the calculations. The complete
potential for the two fields is Eq. (9}with V(P) as in Eq.

whereas S, = f dg[2V(P)]'~, and /=a, b are the two
vacuum states.

In our case we have two fields, the dilaton o (represent-
ing the inner-space dynainical variable) and the inflaton

g, and, in general, several vacuum states. Assuming for
g the potential Eq. (10), as required for the phase transi-
tions occurring in the old, new, and extended inflationary
models, ' we have in fact three vacuum states (one of
which is metastable), as previously shown. It is obvious
that the tunneling can occur along any path linking the
vacuum states, but in Eq. (13) we need taking into ac-
count only the least-action path. In the same thin-wall
approximation we can see that the only possible direc-
tions of tunneling are froin /=0 to Q=QT along o =0
with bounce action S(P) (the desired tunneling) or from
o =0 to cr = oo along /=0 with bounce action Sz(cr } (the
one to be avoided). We may then state that the infiaton
tunneling overrides the dilaton tunneling if

We will comment later on this inequality.
The calculation of Sz(cr) involves the integral

S, = f dcr[2U(o, l(t=O}]'~

that can be recast in the form (neglecting A/a)
r

S, =crcV 2a dy y
' +"

o D+2
' 1/2

D 2 D+4

(17)

(18)

D
16mG~bo

The parameter A can be expanded in a power series in e,

do

Casimir (D=6)

a= 1 P =1 @=0.05

FIG. 4. Total potential of Eq. (9) in old, new, or extended
inflation. The Universe may tunnel from the origin toward two
ground states. The most likely event is the one in which the
internal space remains compactified.

where we have defined y =exp( —cr/ao). Again, to first
order in 1/D, we have S, =ooFv a/D, where F is a
geometric dimensionless factor of order unity, with a
very mild dependence on D. When D=6, for example, a
numerical integration gives F=0.966, while for D=20 we
get F=0.57. Equation (13) now reads

27 F 4

Ss(a )= (19)
A
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and at lowest order is A=@A,QO/2. Putting everything to-
gether, the inequality of Eq. (14) gives

3
D m~GbA, '3F (20}

where we introduced the P mass, m &=A,QO/2. The con-
stants appearing in Eq. (20) are all free parameters of the
theorv (except of course GN}, but they are in principle ob-
servable quantities.

Notice that although we assumed that /=const=0, we
do not expect the calculation to be changed much if P is
slowly rolling as in new inflation. In particular, a suc-
cessful new inflation, i.e., one which does not violate the
constraint on the production of primordial fluctuations,
either in the form of gravitational waves or scalar pertur-
bations, must have very small m& and A, . For example, in

Planck units, it is often assumed m
&
—10 and

A, -10 ' . The natural, yet unknown, value for bo is the
Planck length, so that Eq. (20) is expected to be satisfied
even for D= 1. Moreover, one can see that Eq. (16) is
consistent with Eq. (20) when the same values as above
are assumed, rendering inflation a good mechanism for
having dimensional stability, at least in the thin-wall lim-
it.

D+4
D+2 (21)

with W(g)=A/ /4a. It is not difficult to show that U,

Casimir (D=6)

a=1 X=0.3

FIG. 5. Potential of Eq. (9) in chaotic inflation. The barrier
against evolution in the o. direction is seen to disappear for large

IV. CLASSICAL STABILITY

In Linde's chaotic inflation, ' the field 1( need not have
a potential of the form Eq. (10). Indeed, it is possible to
have inflation for any g field evolving classically to zero
starting from an initial value of a few Planck units (at
least three Planck masses for producing 70 e-folds of
inflation). From the modified potential for the dilaton
field cr in Eq. (9) [coupled now with Eq. (12)—see Fig. 5],
one sees that, for large g, the potential barrier that makes
0 =0 a stable solution could disappear. Including the f
dependent term, the total potential assumes the form

U (cr, f)=a y ' + '+[1+W(g)]y
2

D+2

has either two local extrema (a minimum and a max-
imum, as in Fig. 1) or no local extrema at all, depending
on the value of W(P). This can be seen most easily by
splitting the derivative U'=BU&/By into two functions
of y, U,'(y) =ay '[f, (y) —fz(y)], where f, =4y
and f2=(D+4)y D—(1+W). It is clear that f2(y)
crosses f & (y } at most two times (for y )0), and there
must exist some W„and hence some P„ for which f2 is
tangent to f&. The value f=f, signals that the barrier
has vanished, and that starting from P above this critical
value the classical evolution will be toward cr=+~
(which we want to avoid). The critical value g, can be
determined exactly by solving the system in y and g:

f'i=f2 f&=fi (22)

From the 6rst equation we learn that the barrier disap-
pears when y =y, =2 ' ' + ', and from the second one
that this happens when W(g) has the value

2=y 1+——1 . (23)

(25)

where lp& is the Planck length. If one considers that the
experimental upper bound on bp is not better than
6p & 10' 1p] the purely theoretical speculations lead to an
improvement of more than ten orders of magnitude. No-
tice that most theoretical bounds on the inner dimensions
deal only with the rate of change of the inner radius, i.e.,
with b/b or with some compactifica&'on ratio b/bo (see,
for example, upper bounds from nucleosynthesis' or mi-
crowave background anisotropy' ). Here, in contrast, the
very existence of a point (o„,l(, ) at which the barrier
disappears allows a direct upper bound on the absolute
value of the present inner radius bo. A similar constraint
can be derived from Eq. (20), but there it rests on the hy-
pothesis of thin-wall bubbles, and it is a less stringent
bound.

Let us conclude this section observing that the shrink-

Then, we may state that the condition for the existence of
a barrier between the compactified Universe (cr =0) and
the unfolded one (a = + Do } is, for large D,

v(q)=-'A, y ~ —'A, q = D

8mG&bo

The last term in Eq. (24) is of order unity in Planck units
if bo is close to the Planck length. In this case, the condi-
tion Eq. (24} is similar to the "quantum-boundary" con-
straint V(1( ) & M p~ and both inequalities may be satisfied
assuming a very weakly coupled inflaton, as usually done
in current inflationary scenarios.

Equation (24) has another, very interesting, implica-
tion. In Linde s chaotic inflation the initial value g; of
the field and its self-coupling constant A, are given a lower
bound from the requirement of sufficient inflation
(g; ~3Mp, ), and of enough initial seed fluctuations to
drive the subsequent large-scale structure formation' '
(A, ~ 10 ' ). In this case, Eq. (24) implies tha&.
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ing of the barrier is a quite general feature, provided the
self-coupling potential for g is monotonically growing,
and that the shape of U(o, /=0) for cr is as in Fig. l.

We also remark that similar conclusions about the clas-
sical stability of compactification in a dift'erent model
(monopole plus cosmological constant in six dimensions)
were reached by Linde and Zelnikov. ' This suggests
that the features are general, and not restricted to any
particular model.

V. CONCLUSIONS

In multidimensional theories, there exists an internal
space of radius bo that is assumed to be very small and
static. This configuration is made stable —both classical-
ly and semiclassically —by an appropriate potential.
However, in any inflationary scenario this potential is
modified so that an instability appears. Is, then, multidi-
mensional cosmology incompatible with inflation

We took into consideration old, new, and extended
inflation on one hand and chaotic inflation on the other.
In the first case the problem turns out to be of a semiclas-
sical nature: stability is preserved if the probability for
the dilaton to tunnel through its potential is smaller than
that for the inflaton to do the same under its own. A cal-
culation of the transition rates in the thin-wall limit
shows that this is actually the case; reasonable choices of
the mass of the inflaton and of its self-coupling constant
do not give rise to instability for any number of internal
dimensions. In chaotic inflation, the problem is totally
classical; for very large values of the inflaton field P, the
potential barrier disappears and the internal space can
grow without limit. Nevertheless, the initial conditions
and the parameters of the model adjust themselves natu-
rally in such a way as to allow for a successful inflation,
and at the same time to meet the conditions for the bar-
rier to exist. For both cases, the result is then that the

internal space remains stable duri ng in+ation
Extensions of Linde's model' predict that there are re-

gions of the Universe in an eternal inflationary stage.
This happens when, in one of the causally disconnected
"miniuniverses, " the scalar field f is initially greater than'i Mpi. In this case ltd grows larger and larger climb-
ing the potential in Fig. 3 rather than rolling down to
zero. However, the maximum value that P can reach is

QQti: A Mpi at which its growth becomes
suppressed. ' In our multidimensional environment, this
could imply that eventually P becomes larger than g,
where the compactification breaks. Now, we see from
Eq. (24) that f, =(D/biiMp, )' g&ti, then, depending on
the values of bo and D, f, lies either in the classical or in
the quantum region. In the latter case g never reaches

g, where the barrier disappears, and we may conclude
that in eternally inflating domains internal dimensions
cannot be unfolded; in the former case, on the contrary,
unfolding takes place, with the consequence that most
part of the physical volume of the Universe lives in a
multidimensional state. Of course one must have in mind
that these considerations hold true only for
compactification schemes of the kind we discussed in Sec.
II, and that chaoticity allows in principle all kinds of di-
mensional dynamics in different multiuniverses.

One last result is worthy of mention. The knowledge
of the physical point in the (a, P) plane at which the bar-
rier disappears allows a direct bound on the present radius
of the internal space bo & D X 10' l p&, while, usually, only
limits on the value of the ratio b/bo are given.
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