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The path integral for minisuperspace models of cosmology is defined as a sum over Lorentzian

geometries, and is a Green function for the Wheeler-DeWitt operator. It is shown to be a sym-

metric function of the initial and final configurations, and its real part is a solution to the Wheeler-

DeWitt equation. The Lorentzian path integral is computed explicitly for the de Sitter minisuper-

space model and is convergent. The resulting Green function is then related to the solutions of the

Wheeler-DeWitt equation known as the Hartle-Hawking and tunneling wave functions of the

Universe. The real part of this Green function is a product of Hartle-Hawking wave functions.

I. INTRODUCTION

To a large extent, the current wave of interest in quan-
tum cosmology is centered around the belief that the
wave function of the Universe can be written as a Eu-
clidean path integral. In particular, the boundary condi-
tions that single out the wave function proposed by Har-
tle and Hawking' are usually expressed as a restriction on
the geometries allowed in a Euclidean sum over histories.
Unfortunately, a Euclidean path integral for general rela-
tivity does not make sense mathematically, even at a
somewhat formal level, because the conformal factor in-
tegration diverges. Attempts to remedy this problem by
rotating the conformal mode integration contour in the
complex plane have not been satisfactory; at any rate,
such a path integral then would not be a sum over Eu-
clidean geometries, but rather a sum over some other set
of complex four-geometries.

Faced with the difFiculties inherent in defining a path
integral that is in some sense a sum over Euclidean
geometries, an obvious alternative is to revert to a
definition of the path integral as a sum over Lorentzian
geometries. ' In this paper, Lorentzian path integrals
are considered for minisuperspace models of cosmology.
We further define the sum over histories as including
four-geometries with positive spacetime volume only; as a
consequence, the path integral is a Green function for the
Wheeler-DeWitt operator, rather than a wave function.
We show that whenever the system is time reversal in-
variant in an appropriate sense, the Green function is
symmetric under interchange of its initial and final
configurations. In addition, the real part of the Green
function is a wave function in each argument.

The Lorentzian path integral is computed explicitly for
the simplest minisuperspace model of cosmology, the so-
called de Sitter model, in which the spatial sections are
three-spheres and only the spatial volume x is retained as
a degree of freedom. Denoting the initial three-volume
by x' and the final three-volume by x", the resulting
Green function is

G (x",x') =+T(x")+H(x')8(x"—x')

++T(x')VH(x")8(x' —x") .

Here, 8 is the usual step function, and VT(x) and +H(x)
are the solutions to the Wheeler-DeWitt equation known,
respectively, as the tunneling ' and Hartle-Hawking'
wave functions of the Universe. As a function of the final
three-volume x", and restricted to x")x', the Lorentzi-
an path integral G(x",x') is proportional to the tunnel-
ing wave function. This result is consistent with the
analysis of Vilenkin, although G(x",x') itself is not a
wave function. On the other hand, the real part of the
Green function is a wave function —specifically, we show
that ReG(x",x') is a product VH(x")VH(x') of Hartle-
Hawking wave functions.

There are several reasons why a Euclidean path in-

tegral is often promoted over the Lorentzian path in-
tegral, despite its mathematical inconsistency and in spite
of the fact that a sum over Lorentzian geometries is phys-
ically the natural choice. One reason stems from experi-
ence with field theory on a fixed background: if the back-
ground spacetime is Lorentzian, the integrand of the path
integral exhibits oscillatory behavior, while if the back-
ground is Euclidean, the integrand exhibits exponentially
damped behavior. However, this observation fails to be
entirely relevant on two counts. First, the integrand for
the Euclidean path integral is not exponentially damped
in quantum gravity, because as alluded to previously the
conformal mode contribution is exponentially divergent.
Second, the fact that the integrand for a Lorentzian path
integral is oscillatory does not necessarily imply that the
path integral diverges. Indeed, for a Lorentzian function-
al integral roughly considered to be an infinite product of
integrations, the prototype for each integral is the Fresnel
integral f dx exp(ix ), which is well defined as an im-

proper Riemann integral. While the Euclidean path in-
tegral for general relativity is certainly ill defined, the
Lorentzian path integral for general relativity might very
well be definable.
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A second reason for considering a Euclidean path in-

tegral in quantum cosmology is based on an analogy with
the free relativistic point particle. In this case, the Feyn-
man propagator can be written as a Euclidean path in-
tegral, ' where the process of passing from Lorentzian to
Euclidean involves two complex "rotations. *' One is the
change in the particle's proper time from timelike to
spacelike; in general relativity, the analogue is the change
from Lorentzian to Euclidean four-geometries. The oth-
er is the change in the particle s Minkowski time coordi-
nate from real to imaginary, so that the spacetime signa-
ture becomes effectively Euclidean; the analogue in gen-
eral relativity is a complex conformal rotation, so that
the signature of superspace becomes effectively positive
definite. This procedure works well for the free point
particle precisely because the free particle is so simple.
In particular, the Minkowski time coordinate only ap-
pears in the kinetic term of the particle action. In con-
trast, the conformal factor in general relativity not only
appears in the kinetic term of the action, but also in the
gravitational potential-type terms (the scalar three-
curvature) and the matter terms. A complex rotation of
the conformal factor spoils the simple form and conver-
gence properties of these nonkinetic terms. Similar
problems would also arise for a relativistic particle whose
mass squared has a nontrivial spacetime dependence.

Another motivation for defining the path integral as a
sum over Euclidean geometries is based on an analogy
with nonrelativistic mechanics, for which the usual path
integral is the transition amplitude for the system to
evolve from one configuration at time t& to another
configuration at time t2. It is well known ' that by
changing to imaginary time r=i(t~ r, ), then—as r~ ~
the ground-state wave function and energy can be ex-
tracted from the path integral. This fact suggests that an
"imaginary time" (Euclidean) path integral for cosmolo-

gy might be identified with the ground-state wave func-
tion of the Universe. ' However, the path integral for
quantum gravity is not analogous to a quantum-
mechanical amplitude because the proper time separation
between initial and final three-geometries is integrated,
not fixed. The path integral for gravity is instead analo-
gous to the path-integral representation of a Green func-
tion for the time-independent Schrodinger equation. "
For such a Green function, the above-mentioned tech-
nique for obtaining the ground-state wave function is
inapplicable; consequently, this motivation for focusing
on the Euclidean path integral appears misguided.

A claim that is often cited as a reason to favor a Eu-
clidean definition of the path integral for general relativi-
ty is that topology change can be described within a Eu-
clidean formalism, but not within a Lorentzian formal-
ism. We have no comment on this possibility. '

In view of the above observations, we feel that it is
more promising to adopt a Lorentzian definition of the
path integral for general relativity. In addition, we define
the path integral as including a sum over just positive
values of the proper time separation between initial and
final three-geometries, rather than both positive and neg-
ative values. This choice corresponds to Teitelboim's
causality condition, ' namely, that the histories included

in the functional integral are those for which the final
three-surface is located to the future of the initial three-
surface. In our minisuperspace models, the proper time
separation is measured by spacetime volume, so the
causality condition is the natural restriction to positive
spacetime volume. As mentioned previously, the path in-
tegral so defined is a Green function for the Wheeler-
DeWitt operator and its real part is a wave function in
each argum-nt. Notice that if one chooses to integrate in
the path integral only over negative values of spacetime
volume, the overall sign of the gravitational action is
changed; so, for example, in the de Sitter model the com-
plex conjugate 6 "(x",x') of the Green function is ob-
tained. Then because G (x",x')+ G'(x",x')
=2ReG(x",x')=2TH(x")+H(x'), the product of
Hartle-Hawking wave functions can be represented by a
path integral in which spacetime volume is integrated
over all real values. However, it is important to recog-
nize that such a path integral is not simply a sum over
four-geometries. Instead, it is a sum that includes each
four-geometry twice, once with positive four-volume and
once with negative four-volume, where the negative
volume histories are interpreted physically as having
their final three-geometry x" in the past of their initial
three-geometry x '.

The explicit computations in this paper are confined to
minisuperspace models. It appears doubtful that a quan-
tized minisuperspace model would be a good approxima-
tion to some quantized theory of gravity, ' in the sense of
yielding similar qualitative predictions. On the other
hand, minisuperspace models should be helpful in the
recognition and development of various formal relation-
ships. Furthermore, it seems unlikely that the technical
construction of the path integral can be accomplished for
the full field theory of general relativity if it cannot be
done properly for a vastly simplified minisuperspace
model. For these reasons, we feel that the minisuper-
space calculations considered here are worthwhile.

For some choices of initial and final three-volumes x'
and x" in the de Sitter model, there are no classical
Lorentzian four-geometries with these boundary data;
consequently there is no single geometry that dominates
the evaluation of the Green function G(x",x') as a
Lorentzian path integral. Instead, the geometries that
extremize the action lie off the real Lorentzian "axis" of
integration. In these cases, the Green function may be
evaluated approximately by employing the method of
steepest descents. Specifically, the contour of integration
for spacetime volume can be distorted in the complex
plane to pass through an appropriate saddle point. In
this way the path integral is approximated by the behav-
ior of the system near a complex four-geometry; for some
x' and x" that four-geometry can be vie~ed as having
Euclidean signature. (For other x', x", the signature of
the complex four-geometry is Euclidean in some regions
and Lorentzian in others. ) However this does not in any
sense mean that the path integral is a sum over Euclidean
geometries. The Euclidean geometry plays a role only
through the purely mathematical technique used to ob-
tain an approximation to the Lorentzian path integral.

The paper is organized as follows. Section II is devot-
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ed to the description of various properties of the Green
function for the Wheeler-DeWitt equation in minisuper-
space models, and its expression as a Lorentzian path in-
tegral. Specifically, it is shown that if the system is time-
reversal invariant, then the Green function will be sym-
metric under interchange of the initial and final
configurations, and that the real part of the Green func-
tion, as a function of either argument, is a wave function.
In Sec. III we concentrate on the de Sitter model of
cosmology. The path integral for the Green function is
evaluated semiclassically for all positive values of the ini-
tial and final three-volumes x' and x". The Hartle-
Hawking and tunneling wave functions are then defined
as appropriate semiclassical solutions to the Wheeler-
DeWitt equation. The Green function is related to these
wave functions as expressed in Eq. (1.1), and we argue
that this relationship is exact in spite of its semiclassical
derivation. Section IV contains a discussion of our re-
sults. Here, we also contrast our work with the related
work of Halliwell and Louko. ' The Appendix contains
an independent analysis indicating that the Lorentzian
path integral for the de Sitter model is well defined, in the
sense that it consists of an infinite product of convergent
integrals.

II. MINISUPERSPACE PATH INTEGRAL
IN GENERAL

For a finite-dimensional minisuperspace cosmological
model of general relativity coupled to nongauge matter
fields, ' the canonical form of the action is

S[x,p, N]= f dcr p,
L

—N&(x, p ) (2.1)

A(x,p) =H(x, p)+Aire, (2.2)

where the cosmological constant A appears explicitly as
an additive constant. (~ is 8m. times Newton's constant. )

The action (2.1) is the appropriate one for a variational
principle with fixed values x"—=x(cr") and x'=x(o') of
the variables x' at the initial and final surfaces cr' and o.".
It is moreover analogous to the Jacobi action for nonrela-
tivistic mechanics. ' In the latter, the physical time re-
quired for the system to evolve between initial and final
configurations is not fixed; instead the total energy is
fixed. Similarly, in (2.1) the spacetime volumeJ,N do.—which measures the separation between ini-
tial and final configurations —is not fixed; instead the

where x'(cr) and p, (a) are canonically conjugate vari-
ables depending only on the coordinate o. that labels the
(closed) spacelike surfaces. The Lagrange multiplier
N(cr) in Eq. (2.1) is a metric variable that measures the
proper time separation between successive surfaces. For
convenience, we will assume that X is derived through
the minisuperspace reduction from a spatial density of
weight 1; then N is a "lapse density" and X der is an in-
crement in spacetime volume. Correspondingly, the
Hamiltonian constraint Vf comes from a spatial scalar
and can be written as

cosmological constant is fixed. Because the action (2. 1)
has the same form as Jacobi's action, the construction of
the path integral for finite-dimensional minisuperspace
models is similar to the one for nonrelativistic mechanics
at constant energy. For such a system, the invariance of
the action under reparametrizations cr ~f ( o ) (with suit-
able restrictions on the function f) must be taken into ac-
count; histories that are related by a change in parame-
trization should not be included individually in the sum
over histories. The resulting path integral can be
obtained from a Becchi-Rouet-Stora-Tyutin (BRST)
analysis. It consists of a functional integral over all
canonical pairs x',p, along with an ordinary integral
over the spacetime volume between the fixed initial and
final configurations:

G(x",x')= f dT fXlx 2)p

X exp — dt p, x ' — x,p
0

Xexp
l 'dt p.x —H x,p

o

(2.4b)

and represents the transition amplitude for the system to
evolve between configurations x' and x" in a fixed total
"time" T. Notice that, at this level of formality, we have
not taken into consideration the ranges of integration for
the canonical variables x',p, . Some relevant comments
are made in Sec. III in the context of the de Sitter cosmo-
logical model.

As in nonrelativistic mechanics, the kernel (2.4b) can
be written as a matrix element

&(x",'rlx', 0)= &x"le '"'"lx'&, (2.5)

where H is the quantum Hamiltonian operator corre-
sponding to H(x, p), and spacetime volume T plays the
role of time. From the above expressions, it follows that
the kernel satisfies the "time-dependent Wheeler-DeWitt
equation"

(2.3)

Here dt =N der is an increment in spacetime volume and
T is the total spacetime volume. Also, the overdot
denotes differentiation with respect to t and 2)x 2)p is the
Liouville measure on phase space.

As discussed in the Introduction, we will choose to in-
tegrate in Eq. (2.3) only over positive values of spacetime
volume T. Then expressing the Hamiltonian constraint
as in Eq. (2.2), the path integral can be written as the in-

tegral transform

G(x",x')= f dT e ' r E(x",Tlx'0) (24a)
0

of a kernel K(x",Tlx', 0). The kernel is itself a function-
al integral given by

K (x",Tlx', 0)=—f 2)x 2)p
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+0 K(x",T(x', 0)=0, (2.6)
state ~x" ); since a position eigenstate is time-reversal in-
variant, ~x") is unchanged by the operator e. For the
state g~, choose e ' "~x'), and then Eq. (2.10) becomes

where 8 is now taken in the coordinate representation
acting on x". Furthermore, the full path integral (2.4) is
a Green function for the time-independent Wheeler-
DeWitt operator:

((x"ice ' '"ix'))*=(x"ie ' "ix') . (2.11)

Now assume time-reversal invariance for the system, so
that Be ' "=e+' "B.This leads to

(A/~+8)G(x", x') = i A—5(x",x') . (2.7) &x'ie '" '"ix"&=(x"ie
'" '"ix') (2.12)

Xe '""'" ""'"-"G(x"-x )7 (2.8)

and is a Green function for the time-independent
Wheeler-DeWitt operator:

(A/1~+8)G (p",p') = —i%5(p",p') . (2.9)

Here, 8 is iti the momentum representation acting on p".
The Green function G(x",x') for the time-

independent Wheeler-DeWitt operator is symmetric in its
two arguments provided the system is time-reversal in-
variant. (Again, the appropriate notion of time is space-
time volume. ) To our knowledge, this property has not
been previously recognized in the context of quantum
cosmology, so we will discuss it in some detail. The re-
sult actually stems from a more basic property, namely,
that the kernel K(x",T~x', 0) is symmetric in x' and x"
for a system with time-reversal invariance. This can be
shown by identifying the kernel with a transition ampli-
tude for a nonrelativistic quantum system as in Eq. (2.5).
First introduce the standard antiunitary time-reversal
operator B, satisfying

(ee2 eel) ( P2 el) (2.10)

where the parentheses denote the inner product. Next,
apply Eq. (2.10) where the state $2 is the position eigen-

The particular Green function defined by the path in-
tegral is the analogue of the Feynman Green function for
a free relativistic particle, and is the analogue of the
Fourier transform of the retarded Green function for the
time-dependent Schrodinger equation. The result (2.7) is
obtained by applying A/1~+8 to Eq. (2.4a) and using Eq.
(2.6). In this calculation, the term A/x is rewritten as a T
derivative acting on the exponential factor, and integra-
tion by parts generates an end-point term at T=O that
gives the 5 function on the right-hand side of Eq. (2.7).
For the end-point term at T = ~, the kernel is assumed
to vanish; for the model considered in the next section,
this is indeed the case. (Alternatively the cosmological
constant can be given a small negative imaginary part. )

Observe that path integrals involving fixed values of
momenta at one or both end points can be constructed in
a similar fashion. In these cases, the action functionals
differ from (2. 1) by the addition of boundary terms
x'p, ~~ or —x'p,

~

~ and the resulting path integrals are
related to G(x",x') by Fourier transforms in x' or x".
For example, the path integral with fixed mom enta
p(o')=p' and p(cr") =p" is given by

and says that the kernel K(x",T~x', 0) is symmetric in x'
and x".

It is perhaps worthwhile to give a more intuitive argu-
ment for this result, based on the path-integral represen-
tation (2.4b) for the kernel. For each history x(t),p(t)
of the system beginning at x (0)=x' and ending
at x(T)=x", consider the time-reversed history
x(t) =x ( T t), p(t—) = p( T—t) that —begins at
x(0)=x" and ends at x(T)=x'. Time-reversal invari-
ance says that the actions for these two histories are the
same. Then for each history x(t),p(t) that enters the
sum over histories for K( x", T~ x', 0), there is a corre-
sponding history x(t),p(t) that makes the same contribu-
tion to the sum over histories for K(x', T~x",0). There-
fore the kernel is symmetric:

K(x",Tix', 0)=K(x', T~x",0) . (2.13)

The symmetry of the Green function,

G (x",x') =G (x',x"), (2.14)

now follows directly from the symmetry of its integral
kernel.

Similar reasoning can be applied to the path integral
for quantum gravity in general, independent of any min-
isuperspace reduction. For example, consider the space-
time manifold to be R X X with X a compact orientable
three-manifold, although this may be unnecessary. If the
action is time-reversal invariant, that is, invariant under a
change of time orientation, then the path integral will be
symmetric under interchange of the initial and final
configurations. It is typical for the action to be indepen-
dent of time orientation. In particular, any terms in the
action that consist of the integral of a coordinate scalar
times the natural volume form d o&—g will have this
property, since the volume form itself is invariant under
changes of spacetime orientation. (The volume

f d o v' —g is a positive number, regardless of orienta-
tion. ) One example of a possible contribution to the ac-
tion that would not be independent of orientation is the
integral of an external four-form field —the overall sign
of such a term would depend on the orientation of the
four-manifold. An analogous situation arises in relativis-
tic particle mechanics, where coupling to an external
magnetic field breaks time-reversal invariance.

Next, we examine the complex conjugate of the Green
function, which can be written using Eq. (2.4) as

G*(x",x')= f dTe+' K(x', —T~x",0) .
0

(This assumes the cosmological constant is real. ) Here,
K (x', —T~x",0) is the complex conjugate of the kernel, a
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(A/x+8)G'(x", x)=+i fi5(x",x'), (2.17)

where the operator 8 acts on x". So for a system with
time-reversal invariance, the Green function equations
(2.7) and (2.17) imply that the real part of the Green func-
tion satisfies the Wheeler-DeWitt equation in the argu-
ment x":

(A/v+8)ReG (x",x') =0 . (2.18)

That is, ReG(x",x') is a wave function in x". In turn,

symmetry implies that ReG(x",x') is a wave function in
the argument x' as well. Also observe that the real part
of the Green function, expressed as an integral transform
of the kernel, is

ReG(x",x')= ,' f —dTe ' ~ K(x",T~x', 0) . (2.19)

With the kernel viewed as a path integral (2.4b),
ReG(x",x') becomes a functional integral based on the
action (2.1), where spacetime volume T is integrated over
both positive and negative values. However, as discussed
in the Introduction, we regard the path integral for the
full Green function G(x",x'), and not the path integral
for either G'(x",x') or ReG(x",x'), as the basic expres-
sion of a sum over four-geometries (and matter field his-
tories). We therefore base the analysis of the de Sitter
model in the following section on a calculation of
G (x",x') as a path integral.

III. PATH INTEGRAL FOR THE de SITTER MODEL

For the de Sitter minisuperspace model of cosmology,
the metric ansatz is taken to be

2

ds = — de +N 2 X

X 21T2

' 2/3

d03, (3.1)

where d Q3 is the metric for a unit three-sphere. The spa-
tial three-volume is denoted by

result that follows immediately from the expression of the
kernel as a matrix element (2.5). For time-reversal-
invariant systems, the configurations x' and x" can be in-

terchanged on the right-hand side of (2.15); then chang-
ing integration variables by T~—T, the complex-
conjugate Green function becomes

G'(x",x')= f dTe ' K(x",T~x', 0) .

Comparing this result to Eq. (2.4) shows that the path in-

tegrals for 6 and 6* differ only in the range of integra-
tion chosen for spacetime volume T.

Applying the Wheeler-DeWitt operator A/~+8 to
Eq. (2.16), and assuming that the kernel vanishes as
T~ —~, the conjugate Green function is seen to satisfy

and spacetime metrics, respectively. Integrating N along
o yields the total spacetime volume T=J,do N be-

tween the initial surface o' and the final surface o.".
The Einstein action for the metric (3.1) is

S[x,N]= —f do.
2 2/3

2

x

A—N
3

(3.4)

In Hamiltonian form, the action becomes

S [x,p, N] =f d o [p (Bx /Bo ) NA—],
tX

where the Hamiltonian constraint is given by
' 2/3

3K 2 3 2m' A
p 2+

4 K x K

(3.5)

(3.6)

This identification will be of considerable use in the
remainder of this section.

The Lorentzian path integral for the de Sitter model is
given by Eq. (2.4) applied to a single canonical pair x,p,
with

H(x, p) =—
2/3

3K 2 3 2'
4 K xp + (3.8)

In the Appendix, we argue that this path integral is well
defined in the sense that it consists of an infinite product
of convergent integrals. Here, the path integral will be
evaluated approximately using semiclassical methods;
this requires an understanding of the classical histories
for the system.

The momentum p = —2(Bx /Ba )/(3&N) = —2x /(3a. )

conjugate to the spatial volume x is (2/3a) times the
trace of the extrinsic curvature for the spatial surfaces
o. =const. Notice that the sign of the momentum p is op-
posite to the sign of the "velocity" x; that is, the spatial
volume is a negative mode.

As mentioned in the previous section, the action (3.5) is
in the form of Jacobi s action for nonrelativistic mechan-
ics. ' In Jacobi's action, the Hamiltonian constraint fixes
the kinetic plus potential energy of the system to a con-
stant E. Then comparing Eq. (3.6) with the Hamiltonian
constraint gf=p /2m+ V(x) —E for a nonrelativistic
particle it becomes apparent that, despite the overall sign
difference, the spatial volume x in the present model can
be viewed as the position coordinate for a particle of
"mass" 2/3z and total "energy" A/a moving in the one-
dimensional potential

2/3

V(x)=—3 2~'
(3.7)

x(o)= f d 0+ g (3.2)
A. Classical histories

and the lapse density is given by

N(cr)= f d 0+—g (3.3)

where g and g represent the determinants of the spatial

The classical histories extremize the phase in the path
integral, which is a functional of x(t) and p(t) and a
function of spacetime volume T. Varying the phase with
respect to x (t) and p (t) gives the canonical equations of
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motion associated with the Hamiltonian H of Eq. (3.8).
Varying the phase with respect to T implies that

r =0, where A=0+A/a is the Hamiltonian con-
straint. But H is a constant of motion by virtue of the
canonical equations, so the Hamiltonian constraint %
must in fact vanish for all t.

For a one-dimensional system such as the one con-
sidered here, the Hamiltonian constraint completely
characterizes the classical dynamics. In terms of the ve-
locity x, the Hamiltonian constraint becomes

(x )/(3~)+ V(x) =A/a. , (3.9)

+ dx
v'3m[A/x —V(x)]

(3.10}

and integrating to obtain the spatial volume x as a func-
tion of spacetime volume t. The plus or minus sign in Eq.
(3.10) is determined physically according to whether
three-volume x is expanding or contracting. The
geometry of this solution is obtained from Eqs. (3.10) and
(3.1), giving the de Sitter metric

2/3

d, 2= dx' + x dn2
3ax [A/v —V(x)] 2m

(3.11)

[For x ~xo, metric (3.11) covers only the expanding or
contracting half of the full de Sitter geometry. ]

For the purpose of extremizing the phase in the path
integral (2.4), the relevant histories have definite end
points x' and x". If the initial and final three-volumes x'

where V(x) is the potential (3.7) shown in Fig. 1. Experi-
ence with the nonrelativistic mechanics of a particle mov-
ing in a one-dimensional potential reveals the nature of
the classical motion x(t). For any positive value of the
cosmological constant A/K, there exists a turning point
at xo =2m (3/A) . Then for motion in the classically al-
lowed "over-barrier" region, space contracts from infinite
volume to a minimum volume xo, reflects off the poten-
tial barrier, and expands once again to infinite volume.
The classical motion just described is, of course, the de
Sitter spacetime solution. Mathematically it is expressed
by writing Eq. (3.9) as

and x" are chosen in the over-barrier region as in Fig. 1,
there are clearly two classical histories with these initial
and final data, each just portions of de Sitter spacetime.
For one history, three-space evolves directly from x' to
x", for the other history, three-space first contracts from
x' to the minimum volume xo, reflects off the potential
barrier, and expands to the final volume x". (See Fig. 2.)

The total spacetime volume for each of these classical his-
tories is obtained by integrating Eq. (3.10), giving

dx
I'k(x)

where we have defined

k (x):—+v'31r[A/tc V—(x)] .

(3.12)

(3.13)

In Eq. (3.12},the integration path P runs directly from x'
to x" for the "direct" classical history, while for the
"reflected" classical history the path runs from x' to xo
and then to x". By the Hamiltonian constraint (3.9),
k(x) is just the velocity x so the sign in Eq. (3.13} is
chosen positive when three-space is expanding and nega-
tive when three-space is contracting.

If one of the end points, say x', has a value less than
that of the turning point xo, then there is a single com-

plex history that satisfies the classical equations of
motion and thereby extremizes the phase in the path in-

tegral. The geometry for this history is described by the
metric (3.11) with x'&x &x". It is Euclidean in the
under-barrier region x (xo and Lorentzian in the over-
barrier region x &xo. The four-geometry is regular at
the interface between the Euclidean and Lorentzian re-
gions. The spacetime volume T is given by Eq. (3.12)
where the path P runs directly from x' to x". T is com-
plex in this case because k(x) is imaginary for x smaller
than xo. Whether k (x) is taken to be positive or negative
imaginary for x (xo will be determined later.

If both end points x' and x" have values less than xo,
then there are two complex classical histories. In one,
three-space evolves directly from x ' to x" and in the oth-
er, three-space first expands from x' to a maximum size

xo, reflects from the potential barrier, then contracts to
x". The geometries for these histories are portions of the

V,

X

FIG. 1. The potential V that governs the motion of three-
space, as a function of spatial volume x. When the initial and
final three-volumes x' and x" are greater than the classical turn-
ing point xo, there are two classical solutions corresponding to
direct and reflected paths.

(a) (b)

FIG. 2. The direct (a) and reflected (b) classical histories, for
the case xo (x (x", represented as shaded portions of the de
Sitter hyperboloid.
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Euclidean de Sitter space, which is a four-sphere with
metric given by Eq. (3.11). The four-volume for each his-

tory is purely imaginary, and is given by Eq. (3.12) where
the path P is either "direct" or "refiected. " [Here again,
the sign of Imk (x) is to be determined .]

KsH(x", T~x', 0)=
1/2

a'S(x",T~x', 0)
2~% Bx 'Bx "

The semiclassical contribution to the kernel from a single
classical history can be written as'

B. Single-history contribution to 6 (x",x')

The semiclassical approximation to the path integral
for G(x",x') is obtained by adding contributions associ-
ated with each of the classical histories discussed above.
The contributions from these classical histories have a
common form —they differ only by overall complex fac-
tors associated with reflections from the potential barrier,
and by the phase appropriate for k (x). We will first con-
struct a "single-history" contribution GsH(x", x') to the
Green function that is common to all the classical his-
tories. We will then derive the rules for adding together
the single-history terms to obtain the full Green function
G(x",x'). This will be done by studying a simpler sys-
tem with the same qualitative features, namely, the sys-
tem obtained by replacing the potential V(x) in Eq. (3.7)
with a potential that is linear in x.

The single-history part GsH(x", x') of the Green func-
tion is the integral transform of a single-history kernel
J:sH(x", T~x', 0). This kernel is the semiclassical contri-
bution to the path integral (2.4b) from a history that ex-
tremizes the phase in that path integral. Such a history
satisfies the canonical equations of motion generated by
the Hamiltonian (3.8). Unlike the classical histories for
the Green function, the extrernal histories for the kernel
have spacetime volume T fixed while the value of the
Hamiltonian is not constrained to equal —A/~. Yet the
Hamiltonian H is a constant of motion —denoting its
constant value by —A/a, the classical histories for the
kernel satisfy x =k (x) and

Xexp —S (x ",T~x ', 0)+
4

(3.17}

The preexponential factor is proportional to the square
root of the Van Vleck —Morette determinant, and can be
written using Eq. (3.14) as

a's( ",T~ ', 0}
ak(x')klx") aT

(3.18}

X exp —S( T)+l l 7T

4
(3.19)

where the phase 4'( T) is defined by

4'(T):—S(x",Tix', 0) AT/Ir . — (3.20)

The overall factors in Eq. (3.17} are chosen to give the
correct result for a "direct" classical history x' to x". In
this case, the Van Vleck-Morette determinant is positive
and the square root in Eq. (3.17) is defined as the positive
root. That the Van Vleck-Morette determinant is posi-
tive for a direct history follows from Eq. (3.18) and the
facts that the "energy" A decreases with increasing
"time" T, and k(x) must be real for real T.

Using Eqs. (3.14}—(3.18) for the kernel, the single-
history contribution to the Green function becomes

1 /2
00 1 aA

GsH (x
2mB k(x')k(x") aT

dx
P k(x)

where

(3.14}
The integral over T in Eq. (3.19) will be evaluated semi-
classically. For this purpose, observe first that

aS(x",Tix', 0)
T

=A Ir;

k(x)—:++3a[A/a. —V(x)] . (3.15)

These equations are identical in form to Eqs.
(3.12)—(3.13), but in this case they are to be solved in
principle for A as a function of T and the end-point
values x' and x".

The action associated with the phase of the path in-
tegral (2.4b) for the kernel, evaluated along an extremal
history, is

it follows that the phase 4( T) is extremized for any value

To of spacetime volume which satisfies A
~
z. =A. The

0

phase can now be expanded as

S( T)= — f dx k (x)+ ( T —To)'+2 & aw
3K 2K BT T

(3.22)

S(x",T~x', 0)—:— f dx k(x)+AT/x .
3K P

(3.16)
where k(x) r =k(x) according to definitions (3.13) and

(3.15). Combining these results gives

GsH(x", x') = aw
2vrfix. k(x')k (x") aT r,

1/2
0

exp f dx k(x)+
3K%

X f d(T —To)exp (T —To)
2fuc BT T,

(3.23)
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Xexp f dx k(x)2l

3&%
(3.24)

for the semiclassical contribution to the Green function
6 (x",x') associated with a single-classical history.

C. Phase rules

The next task is to obtain a set of rules that dictate
how the single-history Green function obtained above
should be modified for classical paths that are not direct
and over barrier. For the most part, this simply amounts
to determining in Eq. (3.24) the overall phase, and the
phase in the argument of the exponential. This is accom-
plished by considering the x ~ potential in Eq. (3.7) to
be replaced by a potential that is linear in x, with nega-
tive slope. With either potential, the full Green function
(2.4) in the semiclassical approximation receives contri-
butions from direct and reflected classical histories, as de-
scribed in Sec. III A. But the linear potential is easier to
compute, because in that case the kernel (2.4b) is built
from a single semiclassical term —that is, there is a
unique history with boundary data x', x",T that extrem-
izes the phase of the kernel. The same is not true for the
x potential, which may have one or two histories, or
even no histories extremizing the phase of the kernel, de-
pending on the end-point values x', x", and T.

Since there is only one semiclassical contribution to the
kernel when the potential is linear, the full kernel is given
by the single-history expression (3.14)—(3.18). (Further-
more, this result is exact, a fact that will not be important
for what follows. ) Equations (3.14) and (3.15) show that
for T smaller than a specific value, the "energy" A/a. de-
creases with increasing T, "dA/dT &0, and that the path
P is direct. Then k(x) is positive if x"&x' or negative if
x"&x'. For T larger than the specific value, Eqs. (3.14}
and (3.15) show that r}A/dT )0 and that the path P is
reflected. The sign of k(x) depends on whether x is in-
creasing or decreasing, so that k(x') is negative and
k(x") is positive. In each of these cases, the Van
Vleck —Morette determinant (3.18) is positive and the
preexponential factor in the kernel (3.17}is unambiguous-
ly defined using the positive square root. The exponential
factor (3.16) is also precisely defined using the known in-
tegration path P and the appropriate signs for k(x).
Thus, for a linear potential, Eq. (3.17) is an unambiguous
expression for the kernel for all end-point data x', x",T.

As usual, the Green function 6 (x",x') is computed as
the integral transform (2.4a) of the kernel. For the linear
potential, the semiclassical evaluation of this integral has
been carried out by McLaughlin in the context of non-
relativistic particle mechanics. The present situation
differs in that the coordinate x represents a conformal
mode, and therefore extra minus signs are introduced
into the formulas. We will briefly describe the main

Assuming the history is direct and over barrier, k (x')
and k (x") are real and have the same sign, and dA/dT is

negative. Then the integral in Eq. (3.23) can be evalu-

ated, leading to the final expression

6 (x",x')=lk(x )k(x"}l

features and results of the calculation.
The integral over T in Eq. (2.4) is dominated by sta-

tionary points To, and just as in the formal analysis of the
previous subsection, these values of T satisfy A~ z- =A. If

0
x' and x" are greater than the turning point xo of the po-
tential, there are two such stationary points correspond-
ing to direct and reflected classical paths. The direct
path makes a semiclassical contribution precisely as in
the single-history Green function (3.24). For the reflected
path, expression (3.23) is still valid, but now k(x') and
dA/r}T have changed signs. Upon integrating over
T —To, these sign differences introduce an extra phase
factor e™/2into the single-history contribution to the
Green function. So for x')xo and x"&xo, the full
Green function is a sum of terms: 6sH(x", x') for the
direct path and i6sH(x", x') for the reflected path.

Next, consider end points satisfying x'(xo &x", so
that x' is under the potential barrier and x" is over the
potential barrier, and return to Eq. (3.19) for the single-
history contribution to the Green function. In this case
the stationary points for the T integral are complex, satis-
fying Eq. (3.12) with the path P running directly from x'
to x". There are four such stationary values, as shown in
Fig. 3, corresponding to the distinct ways in which the
overall signs can be chosen for k (x) in the under-barrier
and over-barrier regions. Each of these stationary points
corresponds to the single complex classical history that
was discussed previously. In order to evaluate the T in-
tegral, the contour can be distorted from the positive real
axis to pass through appropriate stationary points in the
complex plane. Explicit calculation shows that the con-
tour can be distorted as in Fig. 3, to run along a steepest-
descent path from the origin to the stationary point in the
first quadrant of the complex T plane, then out parallel to
the real axis. The stationary point that dominates this
integral corresponds to k(x) positive real in the over-
barrier region and negative imaginary in the under-

Im T

Re T

FIG. 3. The complex T plane for the case x'(xp &x". The
heavy dots are stationary points and the solid lines are curves of
constant imaginary part of iS(T). The arrows show the direc-
tion of increasing real part of iS( T). The integration contour is
distorted first to coincide with the steepest-descent contour be-
tween the origin and the stationary point in the first quadrant,
and then to run parallel to the real axis along the dashed line.



LORENTZIAN PATH INTEGRAL FOR MINISUPERSPACE COSMOLOGY 1939

barrier region. The integral for the Green function is
now formally the same as in Eq. (3.23), but k (x') is nega-
tive imaginary and dA/dT is complex; these diff'erences

result in an extra phase factor e™/4.Thus, the full Green
function for x'&xo &x" equals e™/4GsH(x",x') where
k (x) is positive real or negative imaginary.

Now consider the situation in which both end points
are under the potential barrier, x'&x" &xo. There are
four stationary points for the T integral in Eq. (3.19), all

lying along the imaginary axis. The two stationary points
nearest the real axis correspond to the direct classical
path and the two ways of choosing signs for k (x); the
stationary points farthest from the real axis correspond
to the reflected classical path. As shown in Fig. 4, the
contour of integration for T can be distorted to pass up
the imaginary axis to the second turning point, then out
along a path of steepest descent. The contribution to
the integral from the part of the contour that runs up the
imaginary axis is formally given by Eq. (3.23), and is
dominated by the first stationary point. But now k (x) is
negative imaginary, and this leads to an extra overall
phase e™/2in the single-history Green function. The
remaining portion of the contour, from the second sta-
tionary point to infinity along the steepest-descent path,
is dominated by the half Gaussian near that stationary
point. It is characterized by k (x) negative imaginary as
x runs from x' to xo, and positive imaginary as x runs
from xo to x". So in this case k(x')k(x") is real and
there are no extra phase factors entering the single-
history contribution to the Green function. But because
the integral is only a half Gaussian, there is an extra fac-
tor of —,

' in the expression for GsH(x", x'). The result is

that for x' &x"&xo, the full Green function is a sum of
terms, iGsH(x", x') for the direct path and —,'GsH(x", x')

Re T

FIG. 4. The complex T plane for the case x'&x" &xp. The
integration contour is distorted to run first up the imaginary
axis to the second stationary point, and then along the steepest-
descent contour in the first quadrant.

for the reflected path, where the correct signs for Imk (x)
are indicated above.

D. Green functions and ~ave functions

In the preceding discussions we have indicated how the
semiclassical approximation to the Green function for the
linear potential is obtained by summing single-history
contributions. The same phase rules apply to the x
potential, since the classical histories that dominate the
path integral for the Green function are qualitatively the
same in both cases. Using these established rules, the
Green function for the de Sitter model of cosmology can
be written down directly. For end-point values satisfying
xp &x & x ", the result is [recall definition (3.13)]

G(x",x') = [3K[A/K V(x )]) [3&[A/& V(x )] j

—2l
X . exp f dxv'3s[A/a V(x)]-

3~6' x'

+i exp f dx&3a[A/~ —V(x)]+f dx&3a[A/v —V(x)]
3gA xp Xp

(3.25)

For end-point values satisfying x' & xo & x", the result is

G (x",x') =e™/4I3x'[A/a.—V(x")]) '
I 3a[ V(x') —A/z]I

I 0
X exp f dx &3m[A/x V(x)]—i f —dx &3K'[ V(x) —A/v]

3gg xp I
(3.26)

For end-point values satisfying x' &x"&xo, the result is

G(x",x')= (3m[V(x")—A/v]i ' [3m[V(x') —A/a]]

X
X i exp f dx&3a[V(x) —AA]

3~% x'

X() Xp+ —,'exp f dx/3m[V(x) —A/v]+ f dxv'3m[V(x) —A/v]
3aR . x' X

(3.27)
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All roots in the previous equations are real and by
definition positive. Recalling from Sec. II that G(x",x')
is symmetric in its two arguments, Eqs. (3.25) —(3.27)
yield the Green function for all positive values of x' and
x". Also observe that the integrals in these expressions
can be evaluated explicitly for the potential (3.7).

The Green function (3.25) —(3.27) was obtained without
taking into account the fact that the variable x represents
spatial volume, and should be integrated over only posi-
tive values. However, none of the classical histories
used to construct G(x",x') probe the region x &0. So
the semiclassical contributions associated with these clas-
sical histories should be insensitive to whether or not the
x (t) integration is restricted to positive values. Of
course, there may be other single-history contributions to
G(x",x') that we have failed to include, namely, those
corresponding to classical histories that reAeet off the
"boundary" at x =0. But such histories tunnel far into
the potential barrier, and would make contributions to
G (x",x') that are exponentially small compared to the
single-history contributions already included in Eqs.
(3.25)—(3.27). In the de Sitter model, the x ~ potential
naturally isolates the origin x =0, so that in the semiclas-
sical approximation the problem of constructing a path
integra1 on the half-line can be sidestepped.

For x "Wx', the Green function G(x",x') is a solution
to the Wheeler-DeWitt equation in each argument. It is
therefore possible to identify G(x",x') with a wave func-
tion in either x' or x" when the initial and Anal three-
volumes are restricted by, say, x")x'. In this case,
G(x",x') can be viewed as a wave function in the larger
argument x", and it is clear from the semiclassical

analysis above that for x" in the classically allo~ed over-
barrier region, G(x",x') contains only outgoing WKB
components. But this is precisely the identifying charac-
teristic of the tunneling wave function +T in the con-
text of the de Sitter minisuperspace model. Likewise,
viewed as a wave function in the smaller argument x',
G(x",x') is exponentially increasing with increasing x'
in the classically forbidden under-barrier region. But this
is an identifying feature of the Hartle-Hawking wave
function 4'0 for the de Sitter model. '

The conclusion of the above observations is that
G(x",x') behaves like the tunneling wave function in its
larger argument, and like the Hartle-Hawking wave func-
tion in its smaller argument. Therefore the Green func-
tion and wave functions should be related by

G (x",x') =+T(x")+H(x')8(x"—x')

+VT(x')+H(x")8(x' —x") . (3.28)

This prediction can be verified explicitly. Consider the
Wheeler-DeWitt equation

a2—(3~A' /4) + V(x) —(A/a) %(x)=0, (3.29)
Bx

which follows from the Hamiltonian constraint (3.6) us-
ing the "natural" factor ordering p ~p = fi d'Idx-
This has the form of the time-independent Schrodinger
equation, so that standard WKB formulas apply. These
yield two independent solutions (with overall constants
chosen for simplicity):

VH(x) = .

xo
—,
'

I 31~[V(x)—A/~]/4] ' exp — f dz&3a[V(z) —A/a], x &x
3K@' x 0

I 3m[A/& —V(x)]/4] ' cos f dz&3a[Alx V(z)] ———
, x &x,3gg x() 4 & 0

(3.30)

and

+(x)= .

X()—I3a[V(x)—A/~]/4( ' exp f dz&3a[V(z) —A/1~], x &x
3aR x 0

I 3~[A/~ —V(x)]/4) ' sin f "dz&3~'[A/a —V(z)] ——,xo &x .
3~A -~() 4

(3.31)

The WKB solution 40 is real and exponentially increas-
ing in the region x (x0; it is identified as the semiclassi-
cal Hartle-Hawking wave function. The semiclassical
tunneling wave function is the linear combination

+T(x)= OH(x) —i %(x), (3.32)

which contains only an outgoing wave in the region
x0&x. Using these semiclassical wave functions, the
right-hand side of Eq. (3.28) can be constructed, yielding

precisely expressions (3.25)—(3.27) for the semiclassical
Green function derived from a Lorentzian path integral.

The result (3.28) is evidently valid beyond the semiclas-
sical approximation, and is in fact exact in the following
sense. The WKB solutions to the Wheeler-DeWitt equa-
tion (3.29) are most accurate for large x, and become ex-
act as x —~~. Also, exact solutions to the Wheeler-
DeWitt equation can be chosen to be real. (This is anoth-
er consequence of time-reversal invariance. ) Then let us
define the Hartle-Hawking wave function of the Universe
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4'& as the real exact solution which approaches the WKB
solution (3.30) asymptotically. Likewise, let 4 be the real
exact solution with asymptotic form (3.31), and define the
tunneling wave function of the Universe by Eq. (3.32). It
is now straightforward to verify that the right-hand side
of Eq. (3.28) is an exact Green function: Applying the
Wheeler-DeWitt operator yields

(3.33)

The term in large parentheses is a constant in x', as
shown by differentiation; its value is determined to be—4i/(3aA) from the asymptotic forms for 4~ and %r.
So the Wheeler-DeWitt operator acting on the right-hand
side of Eq. (3.28) gives i%5—(x",x'), showing that it is
indeed a Green function. Furthermore, this Green func-
tion is the same Green function as defined by the path in-
tegral, since the two agree asymptotically.

Finally, observe that by Eq. (3.32) the real part of the
tunneling wave function equals the Hartle-Hawking wave
function, Re%'z. =%'&. Then the real part of the Green
function is

ReG (x",x') =%'z(x" )0'&(x'),

a product of Hartle-Hawking wave functions.

(3.34)

IV. DISCUSSION

The Lorentzian path integral for quantum cosmology
does not suffer from any obvious divergences, as does a
sum over Euclidean geometries. For this reason, and be-
cause the physical Universe is apparently Lorentzian, we
have advocated a definition of the path integral as a sum
over Lorentzian geometries. A further consequence of
defining the path integral as a sum over just four-
geometries —that is, histories with only positive proper
time separation between initial and final
configurations —is that the path integral is a Green func-
tion for the Wheeler-DeWitt operator, not a wave func-
tion. We have shown in general that for time-reversal-
invariant systems, this Green function is symmetric in
two arguments, and that its real part is a wave function
in each argument. As an example, the Lorentzian path
integral for the de Sitter model of cosmology was com-
puted explicitly, and shown to be related to the Hartle-
Hawking and tunneling wave functions of the Universe
according to Eqs. (3.28) and (3.34). Here, the Hartle-
Hawking and tunneling wave functions were defined as
solutions to the Wheeler-DeWitt equation with appropri-
ate semiclassical behavior.

The de Sitter minisuperspace model of cosmology has
been previously studied by Halliwell and Louko. ' There
are numerous technical differences between our analysis
and theirs. For example, Halliwell and Louko choose a
metric ansatz that differs from our Eq. (3.1), and this
leads to a different factor ordering in the Wheeler-DeWitt
operator and corresponding differences in the wave func-
tions and Green functions. Also, they obtain solutions
and Green functions that are exact to within multiplica-

tive constants, while our explicit calculations are restrict-
ed to a semiclassical approximation. Although exact re-
sults are always nice, the semiclassical approach does
have certain conceptual advantages, and has allowed us
to recognize the exact relationships (3.28) and (3.34).

The most important difference between the present
work and the work of Halliwell and Louko is the treat-
ment of integration contours. Following a suggestion
made by Hartle, Halliwell and Louko propose to define
the path integral as a sum over complex metrics (and
complex matter fields), where the contour is taken along
a steepest-descent path. Although their motivation for
choosing a complex contour is to obtain a convergent
path integral, such an approach is perhaps
unnecessary —we find no mathematical difFiculty or in-
consistency in defining the path integral for the de Sitter
model as a sum over Lorentzian four-geometries. Anoth-
er consequence of using complex contours is that every
physical system would have its own individual set of
steepest-descent paths, so there could be no general
definition of the path integral as a sum over some specific
class of geometries. In contrast, we believe a reasonable
approach is to work towards a more general definition of
the path integral, preferably as a sum over Lorentzian
geometries (and real matter fields). The advantage is that
integration contours are uniquely and physically deter-
mined.

A practical di5culty with using steepest-descent con-
tours to define the path integral is that, thus far, the
mathematical basis for this idea is not understood, not
even at a formal level. In the de Sitter model, Halliwell
and Louko consider complex contours only for the single
integral over the lapse (in our notation, the integral over
spacetime volume), but do not consider complex contours
for the functional integral over canonical variables (in our
language, the functional integral for the kernel). As a re-
sult, they must reply on scaling arguments that fix the
form of the functional integral only to within an overall
constant. Another feature of using steepest-descent con-
tours is that there may be no simple relationship between
the path integral with coordinates fixed at the end points
and the path integral with momenta fixed at the end
points.

At this point, it is worthwhile recalling that in our cal-
culations, the geometries that extremize the phase in the
path integral are Euclidean whenever the initial and final
three-volumes are smaller than the minimum de Sitter
space three-volume xo=2n. (3/A) . But a Euclidean
four-geometry has imaginary four-volume. So in order to
evaluate the Lorentzian path integral semiclassically, the
integration contour for spacetime volume can be distort-
ed from the real line into the complex plane to pass
through the imaginary stationary points. This is
mathematics, not physics: the complex contour is used
here only as a device to obtain an approximation to an in-
tegral over real values of spacetime volume. There is no
physical content in this technique —we do not use
steepest-descent contours to define the path integral.

In this paper we have discussed the definition of the
path integral for quantum cosmology, and evaluated the
path integral for a simple model. But there are crucial
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questions that we have not addressed: What is the mean-
ing of the path integral'7 How is it used' As a Green
function for the Wheeler-DeWitt equation, the path in-

tegral is analogous to a Green function for the time-
independent Schrodinger equation. For unbounded po-
tentials in nonrelativistic quantum mechanics, that Green
function seems to have little use beyond perturbation cal-
culations in scattering theory. The real part of the path
integral, which solves the Wheeler-DeWitt equation, may
be the more useful object, assuming it plays a role analo-
gous to the (time-dependent or time-independent) wave
functions of nonrelativistic quantum mechanics. Howev-
er, in both cases, we are faced with problems of interpre-
tation.

As a final observation, it is possible that in quantum
cosmology the kernel is physically fundamental and is a
more useful object than the Green function. As men-
tioned in Sec. II, the kernel is given by a path integral in
which spacetime volume is fixed, but not the cosmologi-
cal constant. Indeed, in minisuperspace models there is a
motivation for focusing on the kernel rather than the
Green function: the kernel is mathematically like the
transition amplitude of nonrelativistic quantum mechan-
ics, and unlike the Green function it obeys the usual com-
position law. Unfortunately, this attractive property is
an artifact of the minisuperspace reduction, and will not
hold in a full field theory of quantum cosmology.
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APPENDIX: CONVERGENCE

For the de Sitter minisuperspace model of cosmology,
the following simple arguments suggest that the Lorentzi-
an path integral is well defined. The kernel (2.4b} can be
evaluated in principle as the infinite limit of a finite num-
ber of integrations through a time-slicing procedure.
Then the integrals over p at each time t are wel1 defined
as Fresnel (Gaussian) integrals, and the resulting ex-
ponent is (i/R times) the discretized version of the La-
grangian action. In turn, the integrations over x for each
time are well defined: At large x, the x potential is
suppressed in the action, and each x (t) integral is seen to
converge as x ~ ~ as a Fresnel integral. At sma11 x, the
potential term dominates the action and a change of vari-
ables from x to x ' ' shows that the integrals converge
as x ' ~~ (x~O) as well. Therefore, assuming the
limit of infinitely small time steps is convergent, the ker-
nel is well defined. By the same criteria outlined above,
the kernel for a sum over Euclidean histories diverges.

The full path integral (2.4) includes an integration over
spacetime volume T. The convergence of this integral de-
pends on the behavior of the kernel for small and large T.
First consider small values of T. In this case, the kernel

can be evaluated approximately using the semiclassical
methods of Sec. III. The result is a sum, with appropri-
ate phases, of two single-history contributions as in Eqs.
(3.14)—(3.17)—one contribution from a direct classical
path and the other from a reflected classical path. For
the direct path, the "energy" A/~ is large and the poten-
tial is unimportant. Then the kernel (3.17) assumes the
form, for a "free" universe,

Kt„„(x",T~x', 0) —T ' exp[ i (x—"—x') j(3@A'T)],

(A 1)

in the limit T~O. Likewise, direct calculation shows
that as T~O the single-history kernel for the reflected
classical path has this same form, but with x"—x' re-
placed by x "+x'. For each of these single-history terms,
the T integral in Eq. (2.4a) for the Green function con-
verges at T=O; this may be seen by changing variables
from T to T ' and comparing the result with a Fresnel
integral.

For large T, notice first that the "free" kernel (Al)
tends to zero like T ' . This can be understood physi-
cally by viewing the kernel as a wave function. Using the
language of nonrelativistic quantum mechanics, the ker-
nel is a time- (T-) dependent wave function in x" for a
particle that is initially localized at x' at T =0. In time,
this wave packet spreads: as T increases the magnitude
of the wave function at x "Ax' initially increases, but at
late times it falls to zero as the wave function spreads to
plus and minus infinity. Evidently, this behavior will also
occur for the kernel (2.4b), which describes a "particle"
in a potential V(x}. In this case, the kernel may not tend
to zero as quickly as does the "free" kernel, because the
wave packet can only spread to x=+00 and not to
x = —~. However, that difference should only change
the asymptotic behavior of the kernel by a factor of 2.
[On the other hand, the presence of the potential (3.7)
will expedite the vanishing of the kernel by "pushing" the
wave packet to infinity. ] The conclusion is that the ker-
nel (2.4b) tends to zero at large T at least as quickly as
T ' . Then the integral over T for the Green function
is seen to converge at the upper limit of integration.
Consequently, the Lorentzian path integral for the de Sit-
ter model converges.

As a final comment, it is important to recognize that
for d-dimensional minisuperspace models, the kernel will
consist of sums of "free" kernels as T approaches zero.
In this case, the contribution to the sum corresponding
to, say, a direct classical path will have the form of Eq.
(Al), but where (x"—x') is a sum of squares and the
factor T ' is replaced by T . For d 4, the in-
tegral over T near zero converges only when the kernel is
viewed as the boundary value of a function that is analyt-
ic in the lower half complex (x"—x') plane. This
same situation arises both for the proper time representa-
tion of the Feynman Green function for the relativistic
point particle, and also for the Green function (2.4a) for
nonrelativistic mechanical systems, whenever the dimen-
sion is four or more. We hope to explore this issue in a
future publication.
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